
International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 128

Improving Indirect Key Management Schemes of

Access Hierarchies

Brian J. Cacic and Ruizhong Wei

(Corresponding author: Ruizhong Wei)

Department of Computer Science, Lakehead University

Thunder Bay, Ontario P7B 5E1, Canada

(Received Oct. 5, 2005; revised and accepted Jan. 3, 2006)

Abstract

This paper examines possible modifications to indirect
key management schemes that may improve their perfor-
mance and efficiency for use within access hierarchies. A
new method is proposed which uses a dedicated HMAC
construction as the key transformation function, a new
addressing strategy to improve accessibility verification,
and a cached key update strategy which seeks to min-
imize key updates in large environments when immedi-
ate changes to the hierarchy are required. The proposed
method can be applied to simple access hierarchies, and a
modification is proposed which allows more complex ac-
cess hierarchies to be addressed.

Keywords: Key management, access control, access hier-
archy, and HMAC

1 Introduction

Many of our organizations in society are structured as hi-
erarchies. These social hierarchies help to establish levels
of accountability and authority within our organizations.

In most instances, we find that individuals in higher
positions of the social hierarchy have greater authority
and accountability. Previous research has demonstrated
how to strengthen computer security by extending the
idea and use of these social hierarchies to create access
hierarchies for computer resources [2, 7].

In general, access hierarchies start by dividing mem-
bers of a computer system into disjoint security classes
(class), Ci (Figure 1). Resources stored at a particular
class are only accessible by members of that class and
any class that is principal and accessible. For example,
resources stored at C7 are accessible to C7 and its prin-
cipals C1 and C3 (Figure 1). In many instances, we may
choose to model the access hierarchies after an organiza-
tion’s social hierarchy [7].

While access hierarchies have provided a valuable com-
puter security service [8], they by themselves provide no
support for the sharing of encrypted resources. That is,

Figure 1: An example of an access hierarchy

if a member belonging to a security class encrypts his re-
sources with some enciphering key, members of security
classes which are principal and accessible should be al-
lowed to obtain the proper key and decrypt the resource.
For this type of system to be supported within an access
hierarchy we must seek some form of key management.

Akl and Taylor were the first to propose a method
of key management within an access hierarchy [1]. In
their method, each security class (Ci) is assigned a unique
prime number which is used to calculate a security class’s
public parameter (PBi). The enciphering key, Ki, for
each security class, Ci, is calculated using the public pa-
rameter and a key transformation function based on the
modular exponentiation arithmetic of RSA. To obtain the
enciphering key of an accessible subordinate, a principal
requires his enciphering key, his public parameter, the
subordinate’s public parameter, and the key transforma-
tion function. Accessibility is verified by the divisibil-
ity of the subordinate’s and principal’s public parameter.
A symmetric cryptosystem is used to encipher all infor-
mation within the hierarchy; thus, only the single enci-
phering key is required. The Akl-Taylor method, sub-
sequent improvements, and subsequent derived methods

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 129

Figure 2: An example of Sandhu’s key management
method for an access hierarchy

are collectively known as direct key management schemes
[1, 5, 9, 10, 11, 12].

However, there is a second method of key management,
known as indirect key management, which has not re-
ceived as much attention.

The first indirect key management scheme was pro-
posed by Sandhu [15]. In it, a master key is assigned to
the most principal member of a hierarchy, and subsequent
keys for subordinates are calculated using some property
of the subordinate, its immediate principal’s key, and a
one-way function, f (Figure 2). A principal generates a
key for a subordinate by following the security class rela-
tionships within the access hierarchy and generating keys
as relationships are traversed. A symmetric cryptosystem
is used to encipher all information within the hierarchy;
thus, only the single enciphering key is required. Sandhu’s
schemes and subsequent derivations which use a master
key and recursive key operations are commonly referred
to as indirect key management schemes [11].

Sandhu’s method of indirect key management was met
with criticism for its inefficiency and limited application
because some regard the recursive nature of the key gen-
eration and transformation approach to be much less ef-
ficient than what could be achieved under the direct key
management schemes [9, 11]. Application is also limited
to simple access hierarchies where each security class has
no more than one immediate principal [15].

More recently, Yang proposed an indirect key man-
agement scheme to address the applicability of Sandhu’s
method [18]. In Yang’s method, multiple hash func-
tions are used to address access hierarchies where security
classes have more than one immediate principal (Figure
3). While using multiple hash functions does address the
more complex hierarchy, Yang’s method creates a shared
key situation where the immediate principals of the shared
subordinate must coordinate a key sharing policy between
themselves (e.g. security class E in Figure 3). This is
necessary because the subordinate is assigned a key com-

A
(K)

 B C
f (K)f (K)

 D E F

K = f (K) + f (K)

A

1 A 2 A

E 1 A 2 A

Figure 3: An example of Yang’s key management scheme
for an access hierarchy

posed from each immediate principal’s key; thus, a princi-
pal wishing to access the shared subordinate requires the
necessary keys from the immediate co-principals. Also in
Yang’s method, situations can arise where verification of
the accessibility between principal and subordinate fails
and time is lost traversing the hierarchy only to generate
a false key.

In this paper, we sought to examine indirect key man-
agement schemes and look for ways of improving their
performance and efficacy within access hierarchies. In the
following sections we present a formal description of our
proposed indirect key management scheme, and discuss
our proposed modifications, their rationale, and security
of the scheme.

2 Our Proposed Indirect Key

Management Scheme

In this section we formally propose our indirect key man-
agement scheme and our modifications to the key trans-
formation and key update operations, and our modifica-
tions to address more complex access hierarchies.

First, we begin with a set of assumptions:

• The access hierarchy is defined and controlled by
some trusted central authority (CA). It is assumed
that the CA is in a secure environment that provides
no viable communication channel vulnerable to at-
tack.

• All users within the CA’s environment are divided
into security classes, SC = C1, ..., Cn, which are par-
tially ordered by the binary relation ≤. The resulting
relations, Cj ≤ Ci, means that users belonging to se-
curity class Ci have access to information stored at
the subordinate security class Cj ; however, the re-
verse relation does not hold. That is, subordinates
are not allowed access to information stored at the
principal (Ci).

• Users belonging to a security class Ci only know di-
rect relationships. That is, members in Ci know who

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 130

Figure 4: A tree-structured access control hierarchy

their direct principal security class (Cp) is, and who
their direct subordinate classes (Cs) are.

• For now, we assume the hierarchy is represented as a
simple tree. That is, no security class has more than
one direct principal security class, and the most prin-
cipal security class is located at the root of the tree.
Later, we modify the method to handle more general
hierarchies represented as directed acyclic graphs.

• All keys within the hierarchy expire after time tr.
After which, new keys are generated and assigned to
the security classes. Maintaining the common prin-
ciple of good key management [16], we place this re-
striction to discourage exhaustive key search attacks
and cryptanalysis of key-encrypted information. In
practice, the key assigned to a security class can be
a session key while the data are stored using master
keys.

We denote H(K|M), to be the hashed message au-
thentication code (HMAC, defined in [3]) that uses the
dedicated secure hash function (e.g., SHA-1 (H)), with
a key (K), concatenated with a security class property
(M).

Hierarchy preparation and key assignment proceeds as
follows:

1) Each security class (Ci) in the hierarchy contains
three properties: a human readable name (Mi), a
unique positive integer (Ni), and a path address ar-
ray (Yi). These properties are the public parameters
other security classes are allowed to view.

2) The human readable name, M , is the name of the
security class that allows users to discriminate one
security class from another. Common names can be
any length.

3) A unique positive integer (N) is assigned sequen-
tially, starting at 1 at the root and in a left-to right
top-down manner, to each security class in the hier-
archy of Figure 4. Later, as we add classes to the
hierarchy, regardless of their position within the hi-
erarchy, we assign them the next integer in the se-
quence.

Table 1: Summary of public parameters assigned to secu-
rity classes belonging to Figure 4

Unique Number (N) Path Array (Y)
1 [1]
2 [1 2]
3 [1 3]
4 [1 2 4]
5 [1 2 5]
6 [1 3 6]
7 [1 3 7]

4) The path array (Y) acts as an address for a security
class in Table 1. The address assigned to a security
class records the N traversal path starting from the
root to the security class. The last entry in a security
class’s path array should correspond to its N value.

5) The CA assigns the root of the tree (the most prin-
cipal security class) a randomly generated 1024-bit
master key, K1, which is kept secret (see Section 3.2).

6) A security class Ck is assigned a key dependent on
its direct principal security class Ci as follows:

Kk = H(Ki|Nk). (1)

When a user belonging to a security class Ci wishes to
derive the key for security class Ck, and Ck is the direct
subordinate of Ci, then Kk is obtained using

Kk = H(Ki|Nk).

Otherwise, if Ck is not a direct subordinate of Ci, Ci

proceeds as follows:

1) Ci retrieves the path array for Ck, Yk.

2) Using a sequential search on the array, Ci checks for
his Ni within Yk.

3) If the search returns FALSE, then Ci knows that it
lacks the sufficient permission to access security class
Ck and does not proceed to generate the key. If the
search returns TRUE, Ci stops and records the index
x at which its Ni was located and proceeds to the
next step.

4) Starting from x+1 to the end of Yk, Ci generates the
key using the HMAC. For example, if the portion of
the array is [Ni,Nj ,Nk] then the key derivation step
is:

Kj = H(Ki|Nj)
Kk = H(Kj |Nk)

(2)

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 131

Figure 5: Adding a new security class to a leaf position
in a simple tree hierarchy

2.1 Adding and Removing Security

Classes from the Hierarchy

Ideally, it would simplify all key management solutions if
the hierarchy remains static. Unfortunately, this is not
always the case. As users come and go, or as an orga-
nization changes, the need to add and remove security
classes from the hierarchy will arise. As such, our key
management method should handle these changes.

We identified four cases for adding and removing secu-
rity classes from the hierarchy. They are as follows:

1) Adding a security class to a leaf position,

2) Removing a security class from a leaf position,

3) Adding a security class to an interior position, and

4) Removing a security class from an interior position.

Adding and removing security classes to or from a leaf
position is trivial. In Figure 5, 8 is added to a leaf posi-
tion, becoming the new subordinate to 2. It is assigned
a common name M8 and a unique number N8 = 8. The
path array for 8 (Y8) is created by inheriting the path ar-
ray from 2 (Y2 = [1,2]) and appending N = 8 to the end
of the path (Y8 = [1,2,8]). Removing a security class from
a leaf position in the hierarchy can be done without any
affect to any principal classes.

Adding and removing security classes to and from in-
terior (non-leaf) positions presents some challenges. In
studying the key management problem, we saw that all
previous direct and indirect methods dealt with the prob-
lem in a similar manner. Their designers chose to imme-
diately re-calculate and update the keys for the affected
classes [9, 14, 11, 15, 18]. This may or may not be advan-
tageous in all situations. For example, the necessity to
immediately add or remove a security class cannot be de-
layed or overlooked, but the disturbance caused to users
within the affected security classes, or the time and re-
sources required to update the keys would be costly or in-
convenient. In these instances, it would be better to have

Figure 6: A simple tree hierarchy

a method that could delay a key update until a more con-
venient time arises, or as in our method, a pre-specified
key freshness time (tr) expires.

To address this problem of key updates, we created
an update strategy called the cached key update strategy.
The cost associated with the method is that it requires a
newly added security class to have additional storage allo-
cated for one extra key (a key cache), and a modification
to the key derivation process.

2.1.1 Cached Key Update Strategy

The cached key update strategy is best understood with
illustrations. In Figure 6, we show our simple tree access
hierarchy. For brevity, we refer to security classes by their
Ns (e.g. (8)).

For internal additions to the hierarchy the rule-set is
as follows:

• (Figure 7) If a new security class (28) is added be-
tween two classes whose key caches are empty, (1,2),
the CA assigns the new class (28) a path address
from 1 (Y28 =[1,28]) and a key from its direct prin-
cipal class (K28 = H(K1|28)). The CA also provides
the key for the direct subordinate (2) to the new
class (28), which the new class (28) will store in its
key cache. If additional classes (25) are added to the
new class (28) as direct subordinates, they are as-
signed a path and key relative to the new class (28)
– (25: K25=H(K28|25), (Y25 = [1,28,25])).

• (Figure 8) If a new security class (38) is added be-
tween two classes where the subordinate key cache
is empty (2) and the principal full (28), the new
class (38) is given a path from 1 (Y38 =[1,28,38]), a
key derived from its parent’s key (K38=H(K28|38)),
and a key from the direct subordinate (2) which
the class (38) will store in its key cache. If addi-
tional classes (25) are added to the new class (38)
they will receive a path containing the new class
(Y25 =[1,28,38,25]) and a key generated from the new
class (K25 =H(K38|25)).

• (Figure 9) If a new security class (48) is added
between two classes where each key cache is full

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 132

Figure 7: Adding a new security class between two classes
with empty key caches

Figure 8: Adding a new security class between two classes
were the subordinate’s key cache is empty

(28,38), we initiate an update. Key caches are cleared
(28,38). The new class (48) is given a path from 1
(Y48 =[1,28,48]) and a key derived from its principal’s
key (K48 =H(K28|48)). The classes subordinate to
the new class (38,2,4,5) have their keys regenerated
and paths updated.

• (Figure 10) If a new security class (58) is added as
a principal to a class that has a full key cache (28),
we initiate an update. Key caches are cleared. The
new class (58) is given a path from 1 [1, 58]. The
classes subordinate to the new class (28,38,2,4,5,...)
have their keys regenerated and paths updated.

The process to remove a key follows a similar method
to addition. The rule set is as follows:

• (Figure 11) If the security class being removed (8)
has subordinates that are leaf-classes (9, 10), the
leaf-classes (9, 10) are assigned to the principal (2).
Because the paths from the principal (2) to new sub-
ordinates (9,10) is short, there are two options. First,
if the update of keys and paths to the subordinates
(9,10) would cause no inconvenience, then the keys
and paths may be updated immediately. Otherwise,

Figure 9: Adding a new security class between two classes
with full key caches

Figure 10: Adding a new security class as the principal
to a class that has a full key cache

the principal (2) caches the key of the outgoing class
(8).

• (Figure 12) If the security class being removed (5)
has subordinates that are not leaf-classes (8,9,10),
the principal (2) receives the outgoing class’s (5) key
to store in the key cache, and the subordinates be-
longing to the outgoing class (9,10) are added as sub-
ordinates to the principal (2).

• (Figure 13) If the security class being removed (8)
is not a leaf-class and is subordinate to a principal
whose key cache is full (2), the principal receives the
subordinate classes (9,10) of the outgoing class (8),
clears its (2) cache, and updates paths and keys to
all its subordinate classes (9,10).

Each security class holding a cached key must mod-
ify its search strategy when searching a path array. For
example, in Figure 7 if 28 requests the path array for 4

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 133

Figure 11: Security class (with leaf-classes) being removed

(Y4), then 28 searches Y4 for its N and the N belonging
to the cached key (K2). If it locates the N belonging to
its cached key (K2), then 28 uses the cached key (2) to
derive the key for 4 by following the path and using the
cached key. Otherwise if 28 finds its N within Y4, it uses
its key to follow the path and recursively generate the key
for 4 (see Equation 2).

A side benefit of the cached key strategy is that we
may be able to accommodate additions where previous
deletions occurred. For example, in Figure 11 if a class
was added into the position previously held by 8, we could
modify our addition strategy to have the CA simply re-
assign the new class a value of N = 8 and the key held in
cache by 2 (K8). This would suggest that rather than re-
moving a class completely from the hierarchy, the better
strategy might be to have the CA maintain a deletion list
to keep track of classes that are removed. This way, if a
new class is re-introduced to a deletion point, adding it
can be accommodated much more easily than undergoing
a completely new addition and key update.

2.2 Addressing Complex Hierarchies

In access hierarchies represented as directed acyclic
graphs, a subordinate security class can have more than
one direct principal class in Figure 14. Consequently, the
subordinate requires a key that can allow both direct prin-
cipal classes access to the subordinate.

With indirect approaches, directed acyclic graphs
present issues regarding traversals of paths. Referring to
Figure 14, when either 2 or 3 wishes to access informa-
tion stored at 5, they must have some knowledge about

Figure 12: Security class (with non-leaf subordinates) be-
ing removed

Figure 13: Removing a subordinate from a principal with
a full key cache

the composition of 5’s key. Similar to Yang’s approach,
we chose to generate the subordinate’s key by composing
the direct principals’ keys. For example, in Figure 14 the
key assigned to 5 would be

K5 = H(H(K2|5)|H(K3|5)).

Thus, in order for either 2 or 3 to derive the key for
5, either 2 would require the knowledge of the sub-key
H(K3|5), or 3 would require the knowledge of the sub-key
H(K2|5). We chose to have the CA cache the sub-keys.
A consequence of this approach is that principal classes
which share a direct subordinate will rely upon the CA
to provide the cached key.

However, the more immediate problem was how to rep-
resent this security class as having a key composed from
two or more direct subordinates. Yang’s solution was to
use multiple hash functions, but we preferred the flexibil-
ity of having a single fast dedicated hash function within

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 134

Table 2: Modified path addresses for security classes in a
DAG access hierarchy

Security Class Path Address
1 (1)
2 (1, 2)
3 (1, 3)
4 (1, 2, 4)
5 ((2 3), 5)
6 (1, 3, 6)
7 ((4 5 6), 7)

the HMAC-method. The best solution we could devise
modified the path address array (Y).

Using Figure 14 as an example, Table 2 shows how each
security class’s path address would appear under the mod-
ified addressing scheme. For brevity, we refer to security
classes by their unique numbers (UN).

Figure 14: Directed acyclic graph structured hierarchy

Our modification was to change the structure of the
path address from being an array to being a list that
could contain nested lists. A nested list within the list
(e.g. ((2 3) , 5)), indicates that the security class holds
a key which is composed from the sub-key belonging to
the security classes in the nested list. For example, from
Table 2 the address list for security class 5, ((2 3) , 5),
indicates that 5 is composed from the sub-keys of secu-
rity class 2 and security class 3. Security classes that
are not composed of sub-keys are simply represented as
a list of numbers (e.g. 4, (1 , 2 , 4)). Next, we modified
the key derivation process to reflect the modified path list
addressing scheme.

If the first element in a path list is not a nested list
(e.g. (1 , 2 , 4)), then we know that a direct path exists
to the desired class and we operate on the list as if we
were using the path address array from a security class in
a simple tree hierarchy.

If the first element in a path list is a nested list
(e.g. ((2 3) , 5)), we implement an expand-and-search
strategy. For example, in Figure 14 if security class 1
wanted to access security class 5, it requests the path list
for security class 5, (((2 3) , 5)), notices the nested list
as the first element, and proceeds to follow the expand-
and-search strategy:

1) The security class searches the nested list looking for
its UN. In our example, 1 searches the list ((2 3) , 5)
and does not find itself in the nested list.

2) If the UN is not located within the nested list, the
address for the first element in the nested list is ex-
panded. In our example, the list ((2 3) 5) is
expanded and becomes (((1 2) 3) , 5).

3) The principal security class repeats steps 1-2 until it
finds its UN within an expanded list. In our example,
1 will find itself in the expansion of 2’s address list:
(((1 2) 3) , 5). If 1 did not find itself in the ex-
panded list of 2, it would move onto the next element,
3, and perform the expand-and-search again.

4) Once the UN is found within a list, the key repre-
sented for that list is generated. In our example 1
will create the key for 2 by following the path ad-
dress ((((1 2) 3) , 5) → ((((K2) 3) , 5).

5) At this point, search-and-expand stops and the se-
curity class will request the CA to produce the sub-
keys for the other members of the sub-list. In our
example, having generated the key for 2, 1 will stop
expand-and-search and request the CA to produce
3’s sub-key for 5: ((K2, K35

), 5).

6) Having received the remaining sub-keys from the CA,
the principal can combine them in order to produce
the key for the desired subordinate. In our example,
1 will create 5’s key using H(H(K2|5)|K35

).

With this new derivation method, the best case sce-
nario is that the first element in the nested list produces
a valid key and the search-and-expand is aborted so that
the remaining sub-keys can be requested. The worst case
scenario is that all members of the nested list undergo
search-and-expand and no keys are produced. This situa-
tion could occur frequently in weakly connected directed
acyclic graph access hierarchies. For example, Figure 15
shows just such a hierarchy. If 1 were to request access
to 4, it would spend time performing search-and-expand
only to find that it lacked the proper access. Having spent
time with the problem we leave it as open and state that
although our newly devised path list addressing scheme
could accommodate DAG hierarchies, it is not an opti-
mal method for all DAG hierarchies.

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 135

Figure 15: A weakly connected DAG hierarchy

3 Discussion

3.1 Proposed Modifications and Ratio-

nale

In our attempts to improve indirect key derivation
schemes, we first sought an improved method of verifying
accessibility relationships between principals and subor-
dinates before undertaking a key derivation traversal. We
noted the problems encountered in the schemes proposed
by Sandhu and Yang, so our goal was to eliminate ex-
haustive searches of the hierarchy and false key genera-
tions. That will save time from path searching and key
derivations. Previous research had suggested using long
character strings delimiting the traversal path [15]. Our
improvement over using a character string naming con-
vention was to assign a unique integer identification num-
ber to each security class and provide each security class
with an address array. The benefit is that searching an in-
teger array and comparing integer values can occur much
more quickly then string manipulations and string com-
parisons. The address array allows us to quickly verify
accessibility relationships; thus, preventing unnecessary
traversals and false key derivations. We still use charac-
ter strings as names for security classes, but these are used
to help individuals discriminate different security classes.

As we developed our method, we discovered some prag-
matic problems with regards to key updates. We found
that there could be situations where structural changes
to the access hierarchy must be made immediately, but
the resulting key updates that would occur may be too
costly, in time and/or money, to undertake. The cached-
key update strategy was designed to address this issue.

In our cached key update strategy, the size of the key
cache determines the delay between key updates. Increas-
ing the number of cached keys will increase the delay be-
tween key updates. However, increasing the size of the
key cache will require some modifications to the rule-set
of adding and removing classes. With one key cache, we
are able to cache keys belonging to immediate subordi-
nates. Consequently, in situations where more than one
key from a subordinate would need to be cached, we cur-
rently initiate an update. With larger key caches the rule-
sets will need to be modified to reflect the fact that keys

from lower subordinates must be cached. The need for
larger or smaller key caches will be dependent upon the
nature of the organization the hierarchy represents and/or
the key expiry and key update schedule an organization
wishes to implement.

The cached key update strategy we proposed is to ad-
dress concerns with the overhead and costs incurred if we
update the hierarchy in response to every addition and
deletion of a security class. As the name suggests, the
cached key update strategy sacrifices a small amount of
storage per affected security class. Updates to portions of
the hierarchy are delayed if such updates would be costly
or inconvenient. Fortunately for additions, the cached
key is assigned to the newly added security class, thus it
may be easier to assign a cached key to a new class than
to update keys in the affected subordinates. A removed
class provides its key to its principal so that the principal
may access the inherited subordinates. Using a deletion
list and cached keys, we may also be able to accommo-
date unique situations where classes are deleted, yet new
classes are re-introduced into the same position sometime
later. We should reiterate that the cached key update
strategy may not be suitable for all situations. The na-
ture of the keys and organization may warrant the simple
immediate update strategy taken by previous indirect and
direct methods.

In evaluating the key transformation function we de-
cided to use a message authentication code (MACs) built
from a single dedicated hash function; specifically SHA-
1. The decision to use a single dedicated function and
a single key transformation function was out of simplic-
ity and security. Dedicated hash functions provide good
throughput, and being able to use an unaltered “off-the-
shelf” implementation of a single hash function helps to
simplify the development and management of the system.
However, the structure of our scheme is independent from
the hash function we used. should the hash function be-
ing used become compromised, it could be substituted by
another hash function without significantly altering the
key transformation procedure. Another reason for choos-
ing HMAC is that only one key should be stored for one
security class in the scheme (for example, NMAC is not
suitable for our scheme).

Finally, while the use of a single hash function with the
key transformation function proved adequate for simple
hierarchies, modifications were required to address com-
plex hierarchies where a subordinate has more than one
immediate principal. The procedure we designed to ad-
dress this issue suffers from a similar key sharing prob-
lem found in the Yang method, but we are hopeful that
a better method, either pragmatic or mathematical, will
be found and we are re-addressing this issue with further
research.

3.2 Security

The security of our proposed method lies in the underlying
security of the master key and the SHA-1 dedicated hash

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 136

function.

We chose the master key be at least 1024-bits in size,
because the master key can derive all keys within the hier-
archy. Such a large key size helps thwart random guessing
of the master key. The probability of an attacker guessing
the key would be 2−1024. An exhaustive key search of the
key would require the attacker to generate and test all
21024 possible key combinations. We believe this key size
can provide adequate protection of the master key.

We chose to specifically use SHA-1 as an example, be-
cause it produces a digest length of 160-bits, resulting
in 2160 possible message digests. Under the birthday at-
tack, to force a collision under SHA-1 would require an
exhaustive search and comparison of at least 280 message
digests. However, without having access to the message
digests that are being used as keys for security classes,
the attacker would most likely have to generate all 2160

message digests and test each one he creates against each
security class in the hierarchy. This should increase the
complexity of the attack. If the attacker tries to simply
guess a key, his probability of success is 2−160.

Although there are collision attacks on SHA-1 recently,
our scheme should still be safe. The main reason is that
our scheme used a hash function as a one-way function
with a secret key. The collision attacks do not help finding
K from the knowledge of H(K|M). In fact, even if a lot
of collision values xi, i = 1, . . . , n, are found such that
H(xi) = H(K|M), it is most likely that xi 6= K|M for
i = 1, . . . , n. So it is infeasible for a class to find the key
of its direct principal class. However, to fully prove the
security of our scheme, we need to use a random oracle
assumption (see [4]). So we can use a random oracle R

instead of using a hash function in the scheme. Here a
random oracle is a map from {0, 1}∗ to {0, 1}∞ chosen by
selecting each bit of R(x) uniformly and independently for
every x. Then we can use steps similar to the proofs of the
scheme in [17] to our scheme. The main difference is that
the scheme in [17] depends on Diffie-Hellman assumption
(DDH), but our scheme depends on the random oracle
assumption.

4 Conclusions

We have proposed an indirect key management scheme
for access hierarchies which is modified from the schemes
of [15] and [18].

In our scheme, an HMAC is used as a one-way function
which is more efficient than the scheme in [15] which used
DES. The scheme in [18] also used hash functions, but it
requires many secure hash functions. Using a keying hash
function is a practice solution.

Comparing to direct key management scheme, one dis-
advantage of indirect key management schemes is that it
needs to find a path to a lower level node from a higher
level node. Our scheme uses path arrays to take care of
this problem. The scheme in [18] didn’t consider the path
search problem. The scheme in [15] used long character

strings which is not as efficient as our methods. More-
over, the method in [15] only works for tree structured
hierarchies.

One advantage of indirect key management scheme is
that it can be used for dynamic access control problems,
such as adding, deleting or modifying relationships be-
tween nodes (see [18]). So when one node changes, just
all the related nodes need to refresh keys. In our scheme,
we proposed a cached key update strategy which further
enhanced this advantage of indirect key managements.
Using this strategy, adding or removing a node will not
cause key refreshing for other nodes in many situations.
This strategy can be used in any indirect key management
for access hierarchies.

Acknowledgement

Research supported by NSERC grant 239135-01.

References

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution
to a problem of access control in a hierarchy,” ACM
Transaction on Computer System, vol. 1, no. 3, pp.
239-248, 1983.

[2] D. Bell and L. LaPadula, Secure Computer System
Unified Exposition and Multics Interpretation, Tech-
nical Report MTR-2997, MITRE Corp., Bedford,
MA, Mar. 1976.

[3] M. Bellare, R. Canetti and H. Krawczyk, “Key-
ing hash functions for message authentication,”
CRYPTO’96, LNCS 1109, pp. 1-15, Springer-Verlag,
1996.

[4] M. Bellare and P. Rogaway, “Random oracles are
practical: a paradigm for designing efficient proto-
cols,” in First ACM Conference on Computer and
Communication Security, pp. 62-73, ACM Press,
1993.

[5] G. C. Chick and S. E. Tavares, “Flexible access con-
trol with master keys,” in Proceedings on Advances in
cryptology, LNCS 435, pp. 316-322, Springer-Verlag,
New York, Inc., 1989.

[6] H. Dobbertin, A. Bosselaers, and B. Preneel,
“Ripemd-160: A strengthened version of ripemd,”
in Proceedings of the Third International Workshop
on Fast Software Encryption, pp. 71-82, Springer-
Verlag, 1996.

[7] D. Ferraiolo and R. Kuhn, “Role-based access con-
trols,” in 15th NIST-NCSC National Computer Se-
curity Conference, pp. 554-563, 1992.

[8] M. P. Gallahger, A. C. O’Connor, and B. Kropp,
The Economic Impact of Role Based Access Control,
NIST Planning Report 02–01, National Institute of
Standards and Technology, 2002.

[9] L. Harn and H. Y. Lin, “A cryptographic key gener-
ation scheme for multilevel data security,” Computer
Security, vol. 9, no. 6, pp. 539-546, 1990.

International Journal of Network Security, Vol.4, No.2, PP.128–137, Mar. 2007 137

[10] M. S. Hwang, “A new dynamic key generation
scheme for access control in a hierarchy,” Nordic
Journal of Computing, vol. 6, no. 4, pp. 363-371,
1999.

[11] M. S. Hwang and W. P. Yang, “Controlling access
in large partially ordered hierarchies using crypto-
graphic keys,” Journal System Software, vol. 67, no.
2, pp. 99-107, 2003.

[12] S. J. MacKinnon, P. D. Taylor, H. Meijer, and S.
G. Akl, “An optimal algorithm for assigning crypto-
graphic keys to control access in a hierarchy,” IEEE
Transaction on Computers, vol. 34, no.9, pp. 797-
802, 1985.

[13] B. Prenel and P. C. V. Oorschot, “Mdx-mac and
building fast macs from hash functions,” in Pro-
ceedings of the 15th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pp. 1-14,
Springer-Verlag, 1995.

[14] I. Ray, I. Ray, and N. Narasimhamurthi, “A cryp-
tographic solution to implement access control in a
hierarchy and more,” in Proceedings of the seventh
ACM symposium on Access control models and tech-
nologies, pp. 65-73, ACM Press, 2002.

[15] R. S. Sandhu, “Cryptographic implementation of a
tree hierarchy for access control,” Information Pro-
cessing Letters, vol. 27, no.2, pp. 95-98, 1988.

[16] B. Schneier, Applied Cryptography (2nd ed.): Proto-
cols, Algorithms, and Source Code in C, John Wiley
& Sons, Inc., 1995.

[17] J. Wu and R. Wei, “An access control scheme for par-
tially ordered set hierarchy with provable security,”
in Proceedings of SAC’05, pp. 223-245.

[18] C. Yang, A Secure Object-Oriented Role-Based Ac-
cess Control Model for Distributed Systems, PhD
thesis, University of Regina, Regina, Saskatchewan,
Aug. 2003.

Brian Cacic received his M.Sc. in Mathematical Sci-
ence from Lakehead University in 2004, and is currently
studying law at the University of Western Ontario.

Ruizhong Wei received the B.Sc degree from the Suzhou
University, China, in 1982, and the Ph.D degree from
the University of Nebraska-Lincoln in 1998. Before join-
ing Lakehead University, Canada in 2000, he worked at
the Suzhou University, the University of Nebraska-Lincoln
and the University of Waterloo. He is currently a Profes-
sor in Computer Science. His research interests include
cryptography, network security and combinatorics. He is
a Fellow of Institute of Combinatorics and its Application.

