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Abs t rac t 
Overfitt ing is a well-known problem in the fields 
of symbolic and connectionist machine learn­
ing. It describes the deterioration of gen­
eralisation performance of a trained model. 
In this paper, we investigate the ability of 
a. novel artif icial neural network, BP-SOM, to 
avoid overfitt ing. BP-SOM is a hybrid neu­
ral network which combines a multi-layered 
feed-forward network ( M F N ) wi th Kohonen's 
self-organising maps (SOMS). During train­
ing, supervised back-propagation learning and 
unsupervised SOM learning cooperate in find­
ing adequate hidden-layer representations. We 
show that BP-SOM outperforms standard back-
propagation, and also back-propagation wi th 
a weight decay when dealing wi th the prob­
lem of overfitt ing. In addit ion, we show that 
BP-SOM succeeds in preserving generalisation 
performance under hidden-unit pruning, where 
both other methods fail. 

1 On avoid ing over f i t t ing 
In machine-learning research, the performance of a 
trained model is often expressed in its generalisation per­
formance, i.e., its capability to process correctly new in­
stances not present in the training set. When the gener­
alisation performance of the trained model is much worse 
than its performance on the training material (i.e., its 
abil i ty to reproduce the training material), we speak of 
overfitt ing. Overfi t t ing is sometimes due to the sparse-
ness of the training material: e.g., the training material 
does not sufficiently cover the characteristics of the clas­
sification task. A second cause for overfitting might be 
a high degree of non-linearity in the training material. 
In both cases, the learning algorithm might not be able 
to learn more from the training material than the classi­
fication of the training instances itself (see, e.g., Norris, 
1989). 

The issue of avoiding overfitting is well-known in the 
field of symbolic and connectionist machine learning 
(e.g., Wolpert, 1992; Schaffer, 1993; Jordan and Bishop, 
1996). In symbolic machine learning, a commonly used 

heuristic to avoid overfitting is minimising the size of 
the induced models (cf. Quinlan's (1993) C4.5 and 
C4.5rules), in the sense of the minimum'description-
length (MDL) principle (Rissanen, 1983). For instance, 
smaller (or less complex) models should restrict the num­
ber of parameters to the minimum required for learning 
the task at hand. 

In connectionist machine learning (neural networks), 
avoiding overfitting is closely related to finding an op­
t imal network complexity. In this view, two types of 
methods of avoiding overfitting (or regularisation) can 
be distinguished: (i) starting wi th an undersized net­
work and gradually increasing the network's complexity 
(Fahlman and Lebiere, 1990), and (ii) starting wi th an 
oversized network and gradually decreasing its complex­
i ty (e.g., Mozer and Smolensky, 1989; Le Cun, Denker, 
and Solla, 1990; Weigend, Rumelhart, and Huberman, 
1991; Hassibi, Stork, and Wolff, 1992; Prechelt, 1994; 
Weigend, 1994). 

In this paper we analyse the overfitting-avoidance be­
haviour of a novel artif icial neural-network architecture 
(BP-SOM, Weijters, 1995), which belongs to the sec­
ond type of connectionist machine-learning methods. In 
BP-SOM, the network complexity is reduced by guiding 
the hidden-layer representations of a multi-layer feed­
forward network (MFN, Rumelhart et a/., 1986) to sim­
plified vector representations. To achieve its aim, BP-
SOM combines the tradit ional MFN architecture wi th self-
organising maps (SOMS) (Kohonen, 1984): each hidden 
layer of the MFN is associated wi th one SOM (see Fig­
ure 1). During training of the weights in the MFN, the 
corresponding SOM is trained on the hidden-unit acti­
vation patterns. The standard MFN error-signal is aug­
mented wi th information from the SO Ms. The effect of 
the augmented error signals is that , during learning, the 
hidden-unit activation patterns of clusters of instances 
associated wi th the same class tend to become highly 
similar. Intuit ively speaking, the self-organisation of the 
SOM guides the MFN into arriving at adequate hidden-
unit representations. 

We demonstrate that BP-SOM avoids overfitt ing by re­
ducing the complexity of the hidden-layer representa­
tions. In Section 2, we provide a description of the 
BP-SOM architecture and learning algorithm. Section 
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Figure 1: An example BP-SOM network. 

3 presents experiments with BP-SOM trained on three 
benchmark classification tasks, focusing on the ability 
to avoid overfitt ing. In addition, we study the robust­
ness of BP-SOM to hidden-unit pruning. Our conclusions 
are given in Section 4. 

2 BP-SOM 
Learning in BP-SOM is a cooperation between supervised 
learning in BP and unsupervised learning in SOM. The 
unsupervised dimension reduction and clustering on the 
SOM guide BP learning during the development of ad­
equate hidden-layer representations on the MFN. The 
influence of the SOM causes clusters of hidden-layer rep­
resentations associated wi th the same class, to become 
increasingly similar to each other. In this section we 
describe how the cooperation between BP and SOM is 
implemented. 

2.1 The B P - S O M arch i tec ture 
The BP-SOM architecture is composed of two types of 
well-known building blocks, viz. an MFN combined with 
one or more sOMs. The number of S0Ms equals the num­
ber of hidden layers in the MFN; each SOM is associated 
wi th one hidden layer. Figure 1 illustrates a BP-SOM 
network wi th five input units, one hidden layer with four 
units, two output units, and one SOM. The size of the 
SOM is arbitrari ly chosen to be 3 x 3. Each of the nine 
elements, denoted by contains an acti­
vation vector, denoted by VEi, of length 4 (equal to the 
number of hidden units), a class label, two class counters 
(equal to the number of output classes), and a reliability-
value field. 

2.2 The BP-SOM learning algorithm 
We assume that BP-SOM, wi th / hidden layers and l as­
sociated SOMs (/ > 1), is trained on a classification task 
wi th two or more distinct output classes. Training of 
the MFN and SOMs proceeds in parallel as follows: after 
feed-forward activation of an input instance, Vhidden, the 
activations of the units of each hidden layer of the MFN 
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1. Initialise the MFN and the corresponding SOMs (i.e., as­
sign random numbers within predefined bounds to all 
connection weights and SOM-element vectors). Initialise 
the class labels, the class counters, and the reliability 
field of all SOM elements to unlabelled, zero, and zero, 
respectively. 

2. Train the MFN during a fixed number of cycles (TO). For 
each cycle do 

a. For each training instance with its associated output 
class in the training set: 
• Compute the MFN output via feed-forward acti­

vation through the MFN. Collect for all hidden* 
layers their and train the corresponding 
SOMs on these vectors using Kohonen's (1989) 
SOM learning algorithm. 

t Calculate and update the MFN 
weights according to equation (1). 

b. After each nth training cycle (1 < n < m), re­
compute the class labels and reliability of all SOM 
elements by performing a class-labelling procedure 
as described in the text. 

Figure 2: A conceptual description of the BP-SOM learn­
ing algorithm. 

The threshold parameter is used to prevent unreliable 
SOM elements to influence During the last 
step of processing a training instance, the B P - S O M algo­
r i thm handles the bpsom-errorj of each hidden unit in 
the same way as BP uses the bp_errorj in the tradit ional 
on-line back-propagation weight-updating rule. A con­
ceptual description of the BP-SOM learning algorithm is 
given in Figure 2. 

Upon completion of learning, the SOMs become redun­
dant, as they do not interact wi th the propagation of 
activation through the MFN network. 

3 Experiments wi th BP-SOM 
In this section, we present three experiments wi th the 
BP-SOM architecture and the BP-SOM learning algorithm. 
In these experiments, we compare BP-SOM wi th (i) stan­
dard BP (Rumelhart et al.,1986), and (ii) BP augmented 
w i th weight decay (Hinton, 1986), henceforth denoted 
by BPWD. Weight decay is included in the comparison, 
as it is a simple, commonly used method for avoiding 
overfitt ing in BP-trained MFNs. BP-SOM, BP, and BPWD 
are trained on three benchmark classification tasks, viz. 
the date-calculation task, the parity-12 task, and the 
task of detecting splices in DNA sequences. The date-
calculation task and the parity-12 task are hard to learn 
for many learning algorithms, often leading to overfitting 
(Norris, 1989; Schaffer, 1993; Thornton, 1995), because 
the output classification in both tasks depends on the 
values of ai l input features. For example, knowing the 
date and the month and not the year makes it impossi­
ble to estimate the day of the week wi th a probability 
greater than chance. The genc-splicc detection task does 

not have this property. 
We have used a fixed set of parameters for all three 

experiments described. The parameter values for BP (in­
cluding the number of hidden units for each task) were 
determined by performing pilot experiments wi th BP, 
and taking the values which led to opt imal validation 
performance. Hence, the BP learning rate was set to 
0.15 and the momentum to 0.4. BP, BPWD, and BP-SOM 
were trained for a fixed number of cycles m = 2000. The 
following parameter values, specific for BP-SOM, gave op­
t imal generalisation performance in a number of pilot ex­
periments on the date-calculation task. In all SOM*s a de­
creasing interaction strength from 0.15 to 0.05, and a de­
creasing neighbourhood-updating context from a square 
wi th maximally 25 units to only 1 unit (the winner) was 
used. The influence of the SOM error vector, a, was set 
to 0.25, and the reliability threshold t to 0.95. Class 
labelling in BP-SOM was performed at each fifth cycle 
(n = 5). The term was enabled after the first five 
cycles. Early stopping, a common method to prevent 
overfitting, was used in all experiments wi th BP, BPWD, 
and BP-SOM: the performance of a trained network was 
calculated in percentages of incorrectly-processed test in­
stances at the cycle where the classification error on vali­
dation material was minimal (Prechelt, 1994). The min­
imal classification error was always reached well wi th in 
the l imit m. 

3 .1 I m p r o v i n g g e n e r a l i s a t i o n p e r f o r m a n c e 

F i r s t e x p e r i m e n t : da te ca l cu la t i on 
Date calculation is an example of a task which easily 
leads to overfitting in MFNs trained by BP; hence the 
trained MFN has a low generalisation performance (Nor­
ris, 1989). The task is: given a certain date (e.g., March 
10, 1975), determine the day of the week it fell on (e.g., 
Monday). Norris (1989) describes a connectionist model 
of an idiot-savant date calculator, using an MFN and BP. 
He concluded that BP was not able to learn this task, 
unless it was decomposed into three easier subtasks. 

In our experiments wi th BP-SOM, we concentrated on 
the same interval of dates as Norris, i.e., training and 
test dates ranged from January 1, 1950 to December 31, 
1999. We generated two training sets, each consisting 
of 3,653 random selected instances, i.e., one-fifth of all 
dates. We also generated two corresponding test sets 
and two validation sets (wi th 1,000 instances each) of 
new dates within the same 50-year period. In all our ex­
periments, the training set, test set, and validation set 
had empty intersections. The date November 23, 1988 is 
represented by setting unit 23 in the day field to 1, unit 
11 in the month field to 1, and unit 39 of the year field to 
1. A l l other 90 input units are set to zero. The output is 
represented by 7 units, one for each day of the week. The 
MFN contained one hidden layer w i th 12 hidden units for 
BP (found to result in optimal validation performance), 
and 25 hidden units for BPWD and B P - S O M . The corre­
sponding SOM of the B P - S O M network was of size 12 x 12. 
Two different data sets were generated. On each set, five 
runs wi th different random weight initialisations were 
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Table 1: Average generalisation performances (plus standard deviation, after averaged over ten experiments) in 
terms of incorrectly-processed training and test instances, of BP, BPWD, and BP-SOM, trained on three tasks. 

performed wi th BP, BPWD, and BP-SOM. The average 
classification errors on the test material for these thirty 
experiments are reported in the top row of Table 1. 

From Table 1 it follows that the average classifica­
t ion error of BP is high: on test instances BP obtains a 
classification error of 28.8%, while the classification er­
ror of BP on training instances is 20.8%. Compared to 
the classification error of BP, the classification errors on 
both training and test material of BPWD and BP-SOM are 
much lower. 

However, BPWD's generalisation performance on the 
test material is seriously worse than its performance on 
the training material: this is an indication of over-fitting. 
We note in passing that the results of BPWD contrast 
with Norris' (1989) claim that BP is unable to learn the 
date-calculation task when it is not decomposed into sub-
tasks. The inclusion of weight decay in BP is sufficient 
for a good approximation of the performance results of 
Norris' (1989) decomposed network. 

The results in Table 1 also show that, the performance 
of BP-SOM on the training material is comparable, albeit 
very roughly, wi th that of BPWD; however, the perfor­
mance of BP-SOM on test material is significantly better 
than that of BPWD (t(19)=7.39, p<0.001). Consider­
ing that the performances of BP-SOM on training and 
test material are in the same range, we conclude that for 
the date-calculation task, BP-SOM has been able to avoid 
overfitting. 

Second e x p e r i m e n t : pa r i t y -12 
BP, BPWD, and BP-SOM were applied to the parity-12 
task, viz. the task to determine whether a bit string 
of 0's and l 's of length 12 contains an even number of 
l 's. The training set contained 1,000 different instances 
selected at random out of the set of 4,096 possible bit 
strings. The test set and the validation set contained 100 
new instances each. The hidden layer of the MFN in all 
three algorithms contained 20 hidden units, and the SOM 
in BP-SOM contained 7 x 7 elements. The algorithms were 
run wi th 10 different random weight initialisations. The 
second row of Table 1 displays the classification errors 
on training instances and test instances. The results 
again indicate that BP-SOM performs significantly better 
than BP and BPWD on test material (t(19)=3.42, p<0.01 
and t(19)=2.42, p<0.05, respectively), and that BP-SOM 
is able to avoid overfitting better than BP. The results 
show that BPWD is also able to avoid overfitting, but this 

is at the cost of low performance on both training and 
test material. 

To visualise the differences between the representa­
tions developed at the hidden layers of the MFNs trained 
with BP, BPWD, and BP-SOM, we also trained SOMs with 
the hidden layer activities of the trained BP and BPWD 
networks. The left part of Figure 3 visualises the class 
labelling of the SOM attached to the BP-trained MFN af­
ter training; the middle part visuahses the SOM of the 
BPWD-trained MFN, and the right part displays the SOM 
of the BP-SOM network after training on the same ma­
ter ial The SOM of the BP-SOM network is much more 
organised and clustered than that of the SOMs corre­
sponding with the BP-trained and BPWD-trained MFNs. 
The rehabihty values of the elements of all three SOMs are 
represented by the width of the black and white squares. 
It can be seen that the overall rehabihty and the degree 
of clusteredness of the SOM of the BP-SOM network is con­
siderably higher than that of the SOM of the BP-trained 
and BPWD-trained MFNs. 

T h i r d e x p e r i m e n t : gene-splice de tec t i on 
A third comparative experiment was performed by us­
ing the gene-1, gene-2, and gene-3 benchmark data 
sets extracted from the Probeu1 benchmark collection 
(Prechelt, 1994). The three data sets are different par-
titionings of a large data set representing the task of 
detecting sphce boundaries between DNA exons and in-
trons on the basis of a window of 60 DNA sequence ele­
ments (nucleotides). Each data set features 1,588 train­
ing instances, 794 validation instances, and 793 test in­
stances. The MFN used in the BP, BPWD, and BP-SOM 
experiments contained 120 input units, 2 hidden units, 
and 3 output units (the optimal numbers of units as 
reported in Prechelt, 1994). The size of the correspond­
ing SOM was set to 3 x 3. The three bottom rows of 
Table 1 display the generalisation performances of BP, 
BPWD, and BP-SOM on the three gene tasks, again in­
dicating a clear advantage of BP-SOM over BP. For 
all three data sets, the generalisation performance of 
BP-SOM was significantly better than that of BP (gene-
1: t (19)=5.65,p<0.001; gene-2: t(19)=4.86, p<0.001; 
gene-3: t(19)=6.05, p<0.001). BP-SOM also performs 
significantly better than BPWD on test material (gene-
1: t(19)=3.79, p<0.001; gene-2: t(19)=8.60, p<0.001; 
gene-3: t(19)=4.09, p<0.001). Nevertheless, the differ­
ences between classification errors on training and test-
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Figure 3: Graphic representation of a 7 x 7 SOM associated wi th a BP-trained MFN (left) and a BPWD-trained MFN 
(middle), and a 7 x 7 SOM associated with a BP-SOM network (right), all trained on the parity-12 task. Whi te squares 
represent class 'Even'; black squares represent class 'Odd' . The width of a square represents the reliability of the 
element; a square of maximal size represents a reliability of 100%. 

ing material for all three algorithms indicate that neither 
BP, nor BPWD, nor even BP-SOM succeed in fully avoiding 
overfitt ing. 

3.2 P r u n i n g of h idden un i ts 

By including in the error signal during BP-
SOM learning, the hidden-unit activation patterns asso­
ciated wi th the same class tend to become more similar. 
When looking at the hidden-unit activations in BP-SOM 
networks, we observed an additional effect, viz. that 
hidden-unit activations culminated in switching between 
two or three values, or resulted in having a stable activ­
i ty wi th a very low variance. This clearly contrasts with 
hidden units in MFNs trained wi th BP, of which all acti­
vations usually display high variance. To illustrate this 
phenomenon, Figure 4 shows the standard deviations on 
training material of the 20 hidden-unit activations of an 
MFN trained w i th BP (top row), BPWD (middle row), and 
BP-SOM (bottom row), all three algorithms trained on 
the parity-12 task (1,000 instances). The standard devi­
ations of ten of the twenty units in the BP-SOM network 
are equal to 0.01 or lower. 

Whenever a unit has a stable activity wi th a low stan­
dard deviation for all training instances, it is redundant 
in the input-output mapping. In that case, the unit can 
be pruned from the network. Its effect on the following 
layer (i.e., its mean activation multiplied by its weights 
to units in the following layer) can be included in the 
weights from the bias unit. This pruning can be per­
formed both during and after training. 

We trained BP, BPWD, and B P - S O M on the date-
calculation task and the parity-12 task, attempting to 
prune hidden units according to a threshold criterion 
during training. (The gene-splice task was not included 
because only two hidden units were used in the MFN.) 
We introduced a stability threshold parameter s, denot­
ing the standard deviation of the unit 's activation below 
which it is pruned. After a number of pilot experiments 
wi th different values for s, we performed experiments 
wi th 5 = 0.01. A l l three algorithms were trained on each 

Figure 4: Standard deviations of the activations of the 
20 hidden units of an MFN trained wi th BP (top), wi th 
BPWD (middle), and wi th BP-SOM (bottom), all three 
trained on the parity-12 task (1,000 instances). 
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of the two tasks wi th ten different random initialisations. 
We found that BP-SOM was able to prune 8 out of 25 

hidden units for the case of the date-calculation task, and 
12 out of 20 hidden units for the case of the parity-12 
task (in both tasks, it is an averaged result over 10 ex­
periments), wi thout loss of generalisation performance. 
W i t h the same setting of s, trained on the same tasks, no 
hidden units could be pruned wi th BP, nor with BPWD. 
Only wi th s = 0.1 hidden units could be pruned dur­
ing BP and BPWD learning; however, this led to seriously 
worse generalisation performance of these networks. 

4 Conclusions 
We have shown that BP-SOM has been able to avoid 
overfltt ing for the date-calculation task and also for the 
parity-12 task. Moreover, it outperforms BP and BPWD 
when dealing wi th the gene-splice detection task, al­
though on this task it does not succeed fully to avoid 
overfltt ing. Furthermore, BP-SOM is shown to increase 
the amount of hidden units that can be pruned without 
loss of generalisation performance. These improvements 
are due to the cooperation in BP-SOM between supervised 
and unsupervised learning; i.e., its ability to guide clus­
ters of hidden-unit representations associated with the 
same class to be more similar to each other. The highly 
varying hidden-unit representations of MFNs trained with 
BP and BPWD are simplified by BP-SOM learning to repre­
sentations wi th l imited activation values. This reduction 
of complexity occurs during learning, which enables the 
pruning of hidden units (the reduction of the size of the 
network) during learning. 
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