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Abstract

We propose a formal approach to the prob-
lem of prediction based on the following steps:
First, a mental-level model is constructed based
on the agent's previous actions; next, the model
is updated to account for any new observations
by the agent, and finally, we predict the op-
timal action w.r.t. the agent's mental state
as its next action. This paper formalizes this
prediction process. In order to carry out this
process, we need to understand how a mental
state can be ascribed to an agent and how this
mental state should be updated. In [Brafman
and Tennenholtz, 1994b], we examined the first
stage. Here we investigate a particular update
operator and show that its ascription requires
making only weak modeling assumptions.

1 Introduction

Tools for representing information about other agents
are crucial in many contexts. Often, the goal of main-
taining such information is to facilitate prediction of
other agents' behavior, so that we can function better
in their presence. Mental-level models, models that use
formal counterparts of various mental states to describe
the state of an agent, provide tools for representing such
information. Once we have a model of an agent's mental
state, we can use it to predict future actions by find-
ing out what an agent in such a state would perceive
as its best action. The goal of this paper is to advance
our understanding of basic questions related to the con-
struction of a mental-level model, and in particular its
application to prediction.

The idea of ascribing mental qualities for the purpose
of prediction is not new. John McCarthy discusses it
in [McCarthy, 1979]. An important aspect of his ap-
proach is that even when nothing in the internal struc-
ture of the entity modeled directly resembles beliefs, de-
sires, or other mental qualities, it may be possible and
useful to model it as if it has such qualities. Thus, Mc-
Carthy views mental qualities as abstractions. This view
is shared by another well-known author, Allen Newell
[Newell, 1980], who contemplates the possibility of view-
ing computer programs at a level more abstract than
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that of the programming language, which he calls the
knowledge-level.

The notion of a mental state is useful because it is ab-
stract. Models at more specific levels, e.g., mechanical
and biological models, are difficult to construct. They re-
quire information that we often do not have, such as the
mechanical structure of the agent, or its program. On
the other hand, mental-level models can be constructed
based on observable facts the agent's behavior - to-
gether with some background knowledge. In fact, as
McCarthy points out, we might sometimes want to use
these models even when we have precise lower level spec-
ifications of the agent, e.g. C code. We might do this
either because the mental-level description is more in-
tuitive or because computationally it is less complex to
work with.

We present a formalism that attempts to make these
ideas more concrete and that will hopefully lead to bet-
ter understanding of how the ascription of mental state
could be mechanized. Motivated by work in decision-
theory [Luce and Raiffa, 1957] and work on knowledge
ascription [Halpern and Moses, 1990; Rosenschein, 1985],
we suggested in [Brafman and Tennenholtz, 1994b] a spe-
cific structure for mental-level models, consisting of be-
liefs, desires and a decision criterion. This model showed
how these elements act as constraints on the agent's ac-
tion, and how these constraints can be used to ascribe
beliefs to the agent. We would like to use this model
in a particular prediction context, where we observe an
agent performing part of a task, we know its goal, and
we would like to predict its next actions. We use the
following process: first, we ascribe beliefs to the agent
based on the behavior we have seen so far. Next, we up-
date the ascribed beliefs based on observations the agent
makes, e.g., new information it has access to or the out-
comes of its past actions. Then, in order to predict the
agent's next action, we examine what action would be
perceived as best by an agent in this mental state.

In order to perform this prediction process, we must
understand how beliefs can be ascribed, how they should
be updated, and how they should be used to deter-
mine the best perceived action. We have examined the
first and the last question in [Brafman and Tennenholtz,
1994b] (although not in the context of prediction). In
this paper, we wish to concentrate on the second ques-
tion, that of modeling the agent's belief change.
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Figure 1: Example 1

The reader should not confuse this last question with
another important question which has received much at-
tention: how should an agent change its beliefs given
new information? (For example, see [Levesque, 1984,
Friedman and Halpern, 1994; Katsuno and Mendelzon,
1991; del Val and Shoham, 1993; Alchourron et a/., 1985;
Goldszmidt and Pearl, 1992].) In our work we are con-
cerned with externally modeling the changes occurring
within the agent rather than saying how that agent
should update its beliefs. Although that agent may be
implementing one of the above belief revision methods,
it is quite possible that it has no explicit representation
of beliefs and that its "idea" of update is some complex
assembler routine.

Our discussion of the problem of prediction will be
in the context of the framework of mental-level mod-
eling and belief ascription investigated in [Brafman and
Tennenholtz, 1994b]. This framework is reviewed in Sec-
tion 2. In Section 3 we discuss the problem of prediction.
We suggest a three-step process for prediction and high-
light the importance of the ascription of a belief change
operator to this process. In Section 4 we introduce a
particular belief change operator and show that it has
desirable properties from a decision-theoretic perspec-
tive. Moreover, we show that under minimal assump-
tions, this belief change operator can always be ascribed
to an agent.

2 The Framework

We start by establishing a structure for mental-level
models. Our framework, discussed in [Brafman and Ten-
nenholtz, 1994b], is motivated by the work of Halpern
and Moses [Halpern and Moses, 1990] and Rosenschein
[Rosenschein, 1985] on knowledge ascription, and by
ideas from decision-theory [Savage, 1972; Luce and
Raiffa, 1957]. To clarify the concepts used, we will refer
to the following example.

Example 1 We start with a robot located at an initial
position. The robot is given a task of finding a small can
located in one of three possible positions: A, B, or C
The robot can move in any direction and can recognize a
can from a distance of 2 meters. (See Figure 1).

2.1 The agent - basic description

An agent is described by a set of possible (local) states
and a set of possible actions. The agent functions within
an environment, which may also be in one of a number
of states. We refer to the state of the system, i.e., that

of both the agent and the environment as a global state.
W.l.o.g., we will assume that the environment does not
perform actions. The effects of the agent's actions are
a (deterministic) function of its state and the environ-
ment's state.’ This effect is described by the transition
function. Together, the agent and the environment con-
stitute a state machine with two components, with tran-
sitions at each state corresponding to the agent's possi-
ble actions. It may be the case that not all combinations
of an agent's local state and an environment's state are
possible. Those global states that are possible are called
possible  worlds.

Definition 1 An agent is a pair 4 = (L 4, A 4), where
L, 4 1s the agent’s set of local states and A 4 15 its set of
actions. Ly is the environment’s set of possible states.
A global state is ¢ pair Uq.dg) € Ly xLg. The set
of possible worlds, S, is a subset of the set of global
states L 4 x Lg. A context? C = (7 ,I), consists of a
transition function, 7 : (L gxLg)xA 4 = (L g4xLg),
and the set I C S of possible initial stales.

Example 1 (continued): Suppose that our robot has im-
perfect sensing of its position. Thus, its local state would
include its position reading as well as whether or not it
has observed the can; its actions correspond to motions
in various directions.  The state of the environment de-
scribes the actual position of the can and each possible
world describes (1) the robot's position, (S)the can's po-
sition (3) the robot's position reading and (4) whether it
has observed the can. The transition function describes
how each motion changes the global state of the system.
There are three initial states. In each the position of the
robot is the given initial position and the can is located
in one of positions A, B, or C.

We say that an agent knows some fact if in all the
worlds the agent should consider possible, this fact holds.
The worlds an agent should consider possible are those in
which its information (as represented by its local state)
would be as it is now.

Definition 2 The set ofworlds possible at /, PW/(l),
is {w € S : the agent's local state in w is I}. The agent
knows @ at w € S if @ holds in all worlds in PW(l),
where | is its local state at w.

Example 1 (continued): Let us assume from now on
that the robot's position reading is perfect. In that case,
the robot knows its position, since a position reading r is
part of its local state and r can only be obtained in worlds
in which the actual position of the robot is r. However,
unless the robot has observed the can, it does not know
the can's position, since it has possible worlds in which
the can's position is different.

The agent's observed, or programmed behavior is for-
mally captured by the notion of a protocol.

'A framework in which the environment does act can be
mapped into this framework using richer state descriptions
and larger sets of states, a common practice in game theory.

2Though context is an overloaded term, its use here seems
appropriate, following [Fagin et al., 1994].
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Definition 3 A protocol for en agent A is a function
Pag:Lyg— Ay

Example 1 (continued): The robot’s protocol would
specify in what direction to head in each position.

Later, we will consider the problem of prediction in
the following context: We observed an agent taking a
number of actions in pursuit of some known goal and
we would like to predict its next action. In this setting,
the behavior of the agent involves taking a number of
steps aimed at achieving some goal. To model this we
need some formal notion that will describe the dynamic
evolgtion of the agent in its environment. We call this a
r™un.

Deflnition 4 A run of an agent A whose possible int-
tial worlds are I is a sequence of possible worlds, r =
{wo,w1,...,wn} satisfying the following conditions: (1)
wo € I and (2) w,yy = 7(w,, ), wherea € A 4; The set
of all possible runs is denoted by R. The runs possible
atl, PR(l}, are those runs in R in which et some slage
the agent’s local staie 1s .

A (w,P) run-prefix of an agent A i3 o run prefiz
{wo, w1, ..., wm = w} such thet w,py = 7{w,, P(w,)) for
0<i<m. A (w,P) ran-suffix of an agent A is ¢ run
suffix {wy = w,...,w}, such that wyy = r(w,, P(w,))
for k <i<l.

A (w,P) run prefix is a prefix of a run starting at [
and ending at w, throughout which the agent acts in
accordance with the protocol P. (w,P) run suffixes are
defined analogously, where w is now the initial state of
the run suffix.

Example 1 {continued): A run is a sequence of global
states. In our example this sequence can be described by
the trajectory of the robol through the space, the pasition
of the can, and, at each point along the run, whether the
robot has observed the can.® Each such trojectory must
start at the initial position.

2.2 The Agency Hypothesis

We start the description of mental-level models by defin-
ing the notion of a belief assignment.

Definition 5 A belief assignment iz a function, B :
L 4 — 2%, such that for alll: B(l) # @ and if w € B(l)
then (1) the agent’s local state in w is I, and (2) there
ezists o (w,Pa) run-prefiz.

A belief assignment specifies those worlds the agent con-
siders currently plausible. These worlds should be con-
sistent with the agent’s past actions. The notion of plau-
sible runs at [ is similar.

Example 1 (continued): At each local state in which
the can has not been observed yet, the robot has three
possible worlds. Each corresponds to a different position
of the can. A belief assignment would assign a subset of
these at each local state. If B(l) contains the world in

*We will assume runs are finite. The extension to infinite
runs is straightforward.

‘A continuous model of time may be preferred here. This
is possible, ¢.g., [Brafman et al., 1994].
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which the can is ot A, the robot is viewed as believing
that the cen is in location A.

Knowledge (or PW(l)) defines what is theoretically
possible; belief defines the set of worlds that, from the
agent’s perspective, should be taken into consideration.®
This notion of belief makes sense only as part of a fuller
description of the agent’s mental level. Such a descrip-
tion requires additional notions, which we now introduce.
We start with the agent’s preference order over the set
of run suffixes, represented by a utility function. This
preference order embodies the relative desirability of dif-
ferent futures.

Definition 6 A utility function u is a regl-valued func-
tion on the set of run-suffizes.

It is well known [von Neumann and Morgenstern,
1944] that a utility function can represent preference or-
ders satisfying certain assumptions, which in this paper
we will accept. This means that for any two run suffixes
ry,72: 1y is preferred over ro iff u(ry) > u(rz). We would
also expect additional properties from u. These prop-
erties would capture our intuitions that certain related
suffixes should have similar utility. These consideration
are tangent to our current discussion.

Example 1 {continued}): In our ezample, we will assume
a simple arbitrary utility function that depends on the
length of the robot’s trajectory and the location of the
can. If the length of the robot’s trajectory is =, then

u = 10 — = + 20%(The trajectory terminates at the can).

When the exact state of the world is known, the result
of following some protocol, P, is also precisely known.
(Actions have deterministic effects). We can then eval-
uate a protocol by looking at the utility of the run it
would generate in the actual world. However, due to
uncertainty about the state of the world, the agent con-
siders a number of states to be possible. [t can then
subjectively aszess P in a local state [ by a vector whose
elements are the utilities of the plausible runs P gener-
ates. More precisely we have the following definition, in
which we assume the set B(l) is ordered.®

Definition 7 Given a context C and a belief assignment
B, let wy denote the kt* state of B(l). The perceived
outcome of a protocol P in l is a tuple whose k** ele-
ment is the utility of the (wy,P) run-suffiz.

Example 1 (continued): Suppose that the possible
worlds of our example are ordered alphabetically accord-
tng to the position of the can. Suppese that B(l;) =
{A, B}, i.e., initially, the robot believes the can is ei-
ther in A or in B. The perceived outcome of the protocol
that takes the robot to A first, and if not there to B, is
{19,15}, since the distance to A is {approz.) 11 meters
and the distance from A to B is (approz.) 4 (so the to-
tal distance is 15). Notice that the perceived outcome
ignores possible worlds that are not plausible.

SWe remark, that (after adding interpretations to each
world) this approach yields a K D45 belief operator.

®This is used to simplify presentation. All definition ex-
tend to infinite sets by replacing tuples with functions.
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Figure 2: Robot’s initial path

While utilities are easily compared, it is not a priori
clear how to compare perceived outcomes, thus, how to
choose among protocols. A strategy for choice under un-
certainty is required. This strategy could depend on, for
example, the agent's attitude towards risk. This strat-
egy is represented by the decision criterion, a function
taking a set of perceived outcomes and returning the set
of most preferred among them.

Definition 8 A decision criterion p is a function

which maps each set of tuples (of equal length) of real
numbers, fo a subset of it.

Two examples of decision criteria are maximin, which
chooses the tuples in which the worst case outcome is
maximal, and the principle of indifference which prefers
tuples whose average outcome is maximal.(A fuller dis-
cussion of decision criteria appears in [Luce and Raiffa,
1957; Brafman and Tennenholtz, 1994a].)

We come to a key definition that ties all of the com-
ponents we have discussed so far.

Definition 9 The agency hypothesis; at each state
the agent follows a protocol whose perceived outcome
is most preferred (according to its decision criterion)

among the set of perceived outcomes of all possible-
protocols.”

The agency hypothesis takes the view of a rational
balance among the agent's beliefs, utilities, decision cri-
terion and behavior. It states that the agent chooses
actions whose perceived outcome is maximal according
to its decision criterion.

Since given a fixed utility function, the decision crite-
rion induces a choice among actions, we will often use the
term 'most preferred protocol' in place of 'the protocol
whose perceived outcome is most preferred'.

2.3 Ascribing Belief

The various elements at the mental-level are related
through a rational balance. We can exploit this relation
to ascribe a mental state to an agent. We use the avail-
able information, such as observed behavior and back-
ground information, to constrain the possible values of
the unknown mental state. We now show how belief can
be ascribed according to our framework.

Belief ascription requires certain information regard-
ing the agent. This information should specify some of
the other elements of the rational balance we have just

"The possible protocols are implicitly denned by the set
of actions A, (cf. Def. 1).
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Figure 3: Three step prediction process

discussed. Using this information we look for belief as-
signments confirming the agency hypothesis. That is,
suppose the entity modeled satisfies the agency hypoth-
esis and that its utilities and decision criterion are as
given, then such beliefs would lead us to act as was ob-
served. This is a process of constraint satisfaction. Thus
a formal statement of belief ascription is the following:
Given a context C for an agent A, find a belief
assignment B such that B together with the
agent's behavior, its utility function and its de-
cision criterion confirm the agency hypothesis.

Example 1 (continued): We will try to ascribe beliefs to

the robot. We assume that the decision criterion used is
maximin.  (What follows applies also to the principle of
indifference). Suppose we observe the robot moving along

the path described in Figure 2. What can we say about
its beliefs? We must see under what beliefs the path ob-
served would yield the highest utility. It is easy to see the
ascribed plausible worlds are {A,B}). If the robot believed
only one state to be plausible it would head directly to it.
Similarly, if {B,C} was believed the robot's path would
head more toward them. If the robot believes {A,B,C},
a better path would be along the middle, rather than the
left-hand  side.

Our ability to ascribe belief in the framework of the
mental-level model just presented is discussed in [Braf-
man and Tennenholtz, 1994b].

3 Predictions

We wish to explore the application of mental-level mod-
els in a particular form of prediction: We observed an
agent taking part in some activity; we know its goals;
and we wish to predict its next actions. In what follows
we try to examine what problems this task raises and
how we might solve them. We will concentrate on one
particular issue, belief change. We will soon see how it
relates to our task. The approach we suggest underlies
some of the work done in belief and plan ascription. We
believe that a formal approach will aid in understanding
this task better and in detecting the implicit assump-
tions made in predicting an agent's future behavior.

To predict an agent's next action, we go through three
steps (illustrated in Figure 3): (1) construct a mental-
level model of the agent based on actions performed until
now; (2) revise the agent's ascribed beliefs, if needed,
based on the observations it made after performing the
last action; (3) predict the action which has the most
preferred perceived outcome based on these beliefs.
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Example 1 (continued): In the previous section we saw
an example of belief ascription. This corresponds to the
first stage: constructing a mental-level model based on

observations and background knowledge. The robot's be-
liefs were {A,B}. Based on these beliefs we can predict
that the robot will continue to move in its current direc-
tion wuntil it can observe whether the can is in A or B.
Suppose the can was observed to be in B. In that case, the
beliefs of the robot are revised to contain only B. Given
these beliefs, we expect the robot to turn to the right (i.e.
toward B).

Our human experience shows that models of mental-
state are useful in predicting human behavior, and we
believe they are also likely to succeed with human-made
devices (hence the agency hypothesis: the device acts
as an agent of its designer, echoing its goals and beliefs).
Thus, using mental-level models seems to make heuristic
sense. However, when is this really appropriate? More-
over, when is the particular formalism suggested here
appropriate? Reexamining the three-step prediction pro-
cess we see two major implicit assumptions:

+ We can model the observed behavior of an agent using
a mental-level model.
* We can assume some methodical belief change process.

We discussed the first among these issues in our previ-
ous work [Brafman and Tennenholtz, 1994b]. In particu-
lar, we have shown a class of agents that can be ascribed
the mental-level model discussed in Section 2. We devote
the rest of this paper to the second issue.

4 Belief change

Suppose we have constructed a mental-level model based
on past behaviors. To use it in predicting future be-
havior, we must make an additional assumption, that
there is some temporal coherence of beliefs. Consider
the example of the robot that accompanied the preced-
ing sections. We observe the robot move along a certain
path and ascribe it the belief assignment {A,B}. At a
certain stage, it is near enough to A and B to be able
to see whether the can is in one of these two positions.
We expect this new information to affect the behavior
of the robot. In our ascribed model of the robot, we ex-
pect this information to be manifested in terms of belief
change. However, unless the new belief can be somehow
constructed from the old beliefs and the observation, we
will have very little ability to predict future behavior.

We first suggest a restriction on the relationship be-
tween beliefs in different states. Later on, we will show
that this restriction is both natural and useful.

4.1 Admissibility

Consider the following restriction: if my new information
is consistent with some of the runs | previously consid-
ered plausible, | will now consider plausible those runs
previously considered plausible that are consistent with
this new information.

Let NA(S) = T(VA(S)), i.e., the state that will follow
s when A performs the action specified by its protocol,
and Na{T) = {Na(s)\s E T}
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10 A belief assignment B (for agent A) s
if for local states 1,1' such that I' follows |
on some run: whenever NA(B(1)) n PW(I') 0 then
B{V) = Nu@B(l)) D PW{(l)j otherwise V is called a re-
vision state and B(V) can be any subset of PW(V).

Definition
admissible,

If worlds corresponded to models of some theory, then, in
syntactic terms, admissibility corresponds to conjoining
the new data with the existing beliefs, whenever this is
consistent. It is closely related to the probabilistic idea
of conditioning beliefs upon new information.

It turns out that admissible belief assignment can be
viewed in a different way. As the following theorem
shows, an admissible belief assignment is equivalent to
a belief assignment induced by a ranking of the set of
initial states, that is, a belief assignment which assigns
to every local state those worlds in PW() that originate
in initial states whose rank is minimal. Intuitively, we
associate minimal rank with greater plausibility.

Theorem 1 8 Assuming perfect recall,’ let I. -p, de-

note the initial state of the (w,V) run prefix. A belief
assignment B is admissible iff there is a ranking function
r (i.e., a total pre-order) on the possible initial worlds I,
such that B(l) = {w € PW{1) : |, (w,p).is r-minimal}.

4.2 Why admissibility

The fact that admissible beliefs have a nice represen-
tation seems encouraging. It suggests a refinement to
our model in which beliefs have the additional structure
provided by a ranking over possible worlds. However,
this by itself is no reason to accept this restriction. Re-
member that we want to show that mental-level models
are abstractions that are grounded in lower level phe-
nomena. The kind of support we need would look like
"under assumption X on the agent's behavior, a ranked
belief assignment can be ascribed to it". In this section,
we would like to present results of this nature. Once
these questions are answered, we would be able to make
justified predictions based on the approach presented in
the previous section. On our way to this goal, we will
also get some interesting results from a decision-theoretic
perspective.

Recall the agency hypothesis. The agent was viewed
as choosing among protocols based on the utility of the
runs they generate'® and its beliefs. However, there is
an alternative way for choosing among actions given the
agent's beliefs, called backwards induction.

Definition 11 A backwards induction (BIl) protocol
for an agent A is defined inductively as follows: For
local states I, all of whose children are final states, assign
a most preferred action at that state. (In this case an
action determines a run suffix) Inductively, assign to
each local state an action that is most preferred given
the choices for its descendents.

®Proofs are omitted due to lack of space, and will appear
in a longer version of this paper.

°An agent is said to have perfect recall if its local state
contains all previous local states.

'"This section assumes that there are only a finite number
of possible local states, that runs are finite, and that the
agent has perfect recall.



Backwards induction is considered the rational way of
choosing actions according to classical decision-theory.
Another decision-theoretic concept we will use is the fol-
lowing (where o denotes vector concatenation):

Definition 12 A decision criterion satisfies the sure-
thing principle if v o v' is at least as preferred as u o u'
whenever v is at least as preferred as v' and u is at least
as preferred as U

That is, suppose the agent has to choose between two
actions, a and a' It prefers a over a’' when the plausible
worlds are B. It also prefers a over a’ when the plausible
worlds are B'. If this agent satisfies the sure-thing prin-
ciple it should also prefer a over a' when the plausible
worlds are B U B. In what follows we assume that the
agent satisfies the sure-thing principle.

One final note: when we compare protocols at an ini-
tial state we only care about their outcome on states that
are plausible; we are indifferent to what actions we take
in revision states. We can view this as a choice among
partial protocols, defined only on the plausible worlds.
However, once we get to a revision state we will have to
choose among a new set of partial protocols, depending
upon our beliefs in the revision state. Since we assume
perfect recall, these choices are independent. Hence, it
will be convenient for us to think about the agent mak-
ing all these choices initially. That is, at the initial state
it chooses not only what to do on the plausible worlds,
but also what to do on revision states, if it ever gets to
them. This way we view the agent as choosing among
full protocols, and the notion of most preferred protocol
will be defined accordingly.

Given the above machinery, we first look at normative
reasons for accepting admissibility.

Theorem 2 Let A be an agent with admissible beliefs.
Its most preferred protocols at the initial local state re-
main most preferred at all the following states.

Therefore, agents of Theorem 2 can choose a protocol
once and for all at the initial state based on its perceived
outcome. When beliefs are not admissible, a counter ex-
ample can be constructed where protocols most preferred
at the initial states are not most preferred later on.

Another nice property associated with admissible be-
liefs is given by the following theorem and corollary.

Theorem 3 Let A have admissible beliefs, V is a Bl
protocol for A iff it is most preferred at the initial state.

Corollary 1 Assume A has admissible beliefs. There is
a utility function on states such that A can be viewed as
executing the best local action at each state.

Our claim that admissibility is a good modeling as-
sumption is supported by the following result:

Theorem 4 Let V be the observed protocol of an entity.
If this entity can be ascribed beliefs at the initial state
and at subsequent revision states based on this protocol,
it can be ascribed an admissible belief assignment at all
local states.

Thus, admissibility is free if we can ascribe beliefs at
the initial and revision states.

The previous results imply that admissible beliefs are
useful for ascription and prediction. In fact, the results

can be even further improved. The fact that we associate
utilities with runs rather than states complicates our life
when we try to ascribe beliefs. To ascribe beliefs we
must at each state compare whole protocols and the run
suffixes they produce. It would be much easier if we
could only look at single actions and their immediate
outcomes. Doing this would require defining a utility
function over the set of states, rather than the set of run
suffixes. Indeed, this is possible:

Theorem 5 Let *P be the observed protocol of an agent,
and suppose that this agent can be ascribed beliefs at the
initial state and at all subsequent revision states based
on this protocol. Then, it can be ascribed an admissible
belief assignment at all local states and a local utility
function over states such that its observed action has the
most preferred perceived outcome according to the local
utility function.

5 Discussion

The following question motivates much of the research
in belief and belief change: Given that we can make
better programs by equipping them with large amounts
of knowledge, how should this knowledge be repre-
sented, and how should it be updated? (For example,
see [Levesque, 1984; Friedman and Halpern, 1994; Kat-
suno and Mendelzon, 1991; del Val and Shoham, 1993;
Alchourron et al, 1985; Goldszmidt and Pearl, 1992].)
That work often attempts to capture our intuitive notion
of belief and belief change. In addition, it often implic-
itly assumes that we, the designers, are those who will
supply the agent with its knowledge, at least initially.

We are concerned with a more specific question of rep-
resentation and ask: how should an agent represent its
information about another agent in a way that will facil-
itate explaining and predicting the other agent's behav-
ior? Moreover, we assume that the bulk of an agent's
knowledge about other agents comes from a particular
source, observation of these agent's behavior. Thus, we
are more concerned with modeling agent's ascribed be-
liefs than with designing them.

An important related work that shares some of our
perspective is Levesque's [Levesque, 1986], which is con-
cerned with treating computers as believers. However,
his work describes the beliefs of one particular class of
agents whose actions are answering queries. Our work
attempts to address a more general class of agents, whose
actions are arbitrary.

Modeling data is a central task of machine-learning.
Much like our work, these models are constructed to
help make predictions, e.g., a decision tree helps us pre-
dict what class an instance belongs to. Our work brings
to this task a special bias in the form of the agency-
hypothesis: Machines are agents of their designers; they
are usually designed with a purpose in mind and with
some underlying assumptions; therefore, they should be
modeled accordingly. With this motivation in mind, this
work and [Brafman and Tennenholtz, 1994b] attempt to
understand the basis for modeling entities as if they
have a mental state. The central issues are: what el-
ements should such a model contain? How should we
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use observable information to construct it? And, under
what assumptions is our modeling "bias" justified?

An important issue for future work involves predicting
an agent's behavior at revision states. Currently, we do
not know how to model an agent's belief revision process
and cannot predict an agent's action after an unexpected
observation. Past actions do not tell how to ascribe be-
lief in that case. We believe some form of an inductive
leap is required, which should exploit additional struc-
ture, not present in our current model. Such structure
could be obtained by e.g., augmenting our purely se-
mantic construction with an interpretation of a suitable
language over the possible states.'’

This paper complements our previous work on be-
lief ascription [Brafman and Tennenholtz, 1994b] and
supplies initial answers to the above-mentioned ques-
tions. In this paper, we reviewed our proposed struc-
ture for mental-level models and their construction, and
explained how they can be used to predict an agent's
future behavior. In order to use mental-level models in
making predictions, we must constantly update them.
A key component in this update process is the ability to
model the belief change of other agents. We suggested
admissibility as a belief change operator, examined its
properties and showed that we can accept it under rather
weak modeling assumptions. Putting these ingredients
together, we get a theory of action prediction using a
mental-level model, which consists of the three-step pro-
cess, a theory of belief ascription (discussed in [Brafman
and Tennenholtz, 1994b]), and a study of belief change
modeling.'?
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