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A b s t r a c t 

We propose a formal approach to the prob­
lem of prediction based on the following steps: 
First, a mental-level model is constructed based 
on the agent's previous actions; next, the model 
is updated to account for any new observations 
by the agent, and finally, we predict the op­
timal action w.r.t. the agent's mental state 
as its next action. This paper formalizes this 
prediction process. In order to carry out this 
process, we need to understand how a mental 
state can be ascribed to an agent and how this 
mental state should be updated. In [Brafman 
and Tennenholtz, 1994b], we examined the first 
stage. Here we investigate a particular update 
operator and show that its ascription requires 
making only weak modeling assumptions. 

1 I n t r o d u c t i o n 

Tools for representing information about other agents 
are crucial in many contexts. Often, the goal of main­
taining such information is to facilitate prediction of 
other agents' behavior, so that we can function better 
in their presence. Mental-level models, models that use 
formal counterparts of various mental states to describe 
the state of an agent, provide tools for representing such 
information. Once we have a model of an agent's mental 
state, we can use it to predict future actions by find­
ing out what an agent in such a state would perceive 
as its best action. The goal of this paper is to advance 
our understanding of basic questions related to the con­
struction of a mental-level model, and in particular its 
application to prediction. 

The idea of ascribing mental qualities for the purpose 
of prediction is not new. John McCarthy discusses it 
in [McCarthy, 1979]. An important aspect of his ap­
proach is that even when nothing in the internal struc­
ture of the entity modeled directly resembles beliefs, de­
sires, or other mental qualities, it may be possible and 
useful to model it as if it has such qualities. Thus, Mc­
Carthy views mental qualities as abstractions. This view 
is shared by another well-known author, Allen Newell 
[Newell, 1980], who contemplates the possibility of view­
ing computer programs at a level more abstract than 

that of the programming language, which he calls the 
knowledge-level. 

The notion of a mental state is useful because it is ab­
stract. Models at more specific levels, e.g., mechanical 
and biological models, are difficult to construct. They re­
quire information that we often do not have, such as the 
mechanical structure of the agent, or its program. On 
the other hand, mental-level models can be constructed 
based on observable facts the agent's behavior - to­
gether with some background knowledge. In fact, as 
McCarthy points out, we might sometimes want to use 
these models even when we have precise lower level spec­
ifications of the agent, e.g. C code. We might do this 
either because the mental-level description is more in­
tuitive or because computationally it is less complex to 
work with. 

We present a formalism that attempts to make these 
ideas more concrete and that will hopefully lead to bet­
ter understanding of how the ascription of mental state 
could be mechanized. Motivated by work in decision-
theory [Luce and Raiffa, 1957] and work on knowledge 
ascription [Halpern and Moses, 1990; Rosenschein, 1985], 
we suggested in [Brafman and Tennenholtz, 1994b] a spe­
cific structure for mental-level models, consisting of be­
liefs, desires and a decision criterion. This model showed 
how these elements act as constraints on the agent's ac-
tion, and how these constraints can be used to ascribe 
beliefs to the agent. We would like to use this model 
in a particular prediction context, where we observe an 
agent performing part of a task, we know its goal, and 
we would like to predict its next actions. We use the 
following process: first, we ascribe beliefs to the agent 
based on the behavior we have seen so far. Next, we up­
date the ascribed beliefs based on observations the agent 
makes, e.g., new information it has access to or the out­
comes of its past actions. Then, in order to predict the 
agent's next action, we examine what action would be 
perceived as best by an agent in this mental state. 

In order to perform this prediction process, we must 
understand how beliefs can be ascribed, how they should 
be updated, and how they should be used to deter­
mine the best perceived action. We have examined the 
first and the last question in [Brafman and Tennenholtz, 
1994b] (although not in the context of prediction). In 
this paper, we wish to concentrate on the second ques­
tion, that of modeling the agent's belief change. 
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The reader should not confuse this last question w i t h 
another impor tan t question which has received much at­
tent ion: how should an agent change its beliefs given 
new informat ion? (For example, see [Levesque, 1984; 
Fr iedman and Halpern, 1994; Katsuno and Mendelzon, 
1991; del Va l and Shoham, 1993; Alchourron et a/., 1985; 
Goldszmidt and Pearl , 1992].) In our work we are con­
cerned w i t h external ly model ing the changes occurr ing 
w i th in the agent rather than saying how that agent 
should update i ts beliefs. A l though that agent may be 
implement ing one of the above belief revision methods, 
it is quite possible tha t it has no expl ici t representation 
of beliefs and tha t its " idea" of update is some complex 
assembler rout ine. 

Our discussion of the problem of predict ion wi l l be 
in the context of the framework of mental-level mod­
eling and belief ascr ipt ion investigated in [Brafman and 
Tennenholtz, 1994b]. This f ramework is reviewed in Sec­
t ion 2. In Section 3 we discuss the problem of predict ion. 
We suggest a three-step process for predict ion and high­
l ight the importance of the ascript ion of a belief change 
operator to this process. In Section 4 we introduce a 
part icular belief change operator and show that it has 
desirable propert ies f rom a decision-theoretic perspec­
t ive. Moreover, we show that under min ima l assump­
t ions, this belief change operator can always be ascribed 
to an agent. 

2 The Framework 
We star t by establishing a structure for mental-level 
models. Our f ramework, discussed in [Brafman and Ten­
nenholtz, 1994b], is mot ivated by the work of Halpern 
and Moses [Halpern and Moses, 1990] and Rosenschein 
[Rosenschein, 1985] on knowledge ascript ion, and by 
ideas f rom decision-theory [Savage, 1972; Luce and 
Raiffa, 1957]. To clar i fy the concepts used, we wi l l refer 
to the fo l lowing example. 

E x a m p l e 1 We start with a robot located at an initial 
position. The robot is given a task of finding a small can 
located in one of three possible positions: A, B, or C 
The robot can move in any direction and can recognize a 
can from a distance of 2 meters. (See Figure 1). 

2 . 1 T h e a g e n t - b a s i c d e s c r i p t i o n 
An agent is described by a set of possible (local) states 
and a set of possible actions. The agent functions wi th in 
an environment, wh ich may also be in one of a number 
of states. We refer to the state of the system, i.e., that 

of both the agent and the environment as a global state. 
W.l.o.g., we wi l l assume that the environment does not 
perform actions. The effects of the agent's actions are 
a (deterministic) funct ion of its state and the environ­
ment's state.1 This effect is described by the transition 
function. Together, the agent and the environment con­
st i tute a state machine w i th two components, w i t h t ran­
sitions at each state corresponding to the agent's possi­
ble actions. It may be the case that not al l combinations 
of an agent's local state and an environment's state are 
possible. Those global states that are possible are called 
possible worlds. 

Example 1 (continued): Suppose that our robot has im­
perfect sensing of its position. Thus, its local state would 
include its position reading as well as whether or not it 
has observed the can; its actions correspond to motions 
in various directions. The state of the environment de­
scribes the actual position of the can and each possible 
world describes (1) the robot's position, (S)the can's po­
sition (3) the robot's position reading and (4) whether it 
has observed the can. The transition function describes 
how each motion changes the global state of the system. 
There are three initial states. In each the position of the 
robot is the given initial position and the can is located 
in one of positions A, B, or C. 

We say that an agent knows some fact if in al l the 
worlds the agent should consider possible, this fact holds. 
The worlds an agent should consider possible are those in 
which its informat ion (as represented by its local state) 
would be as it is now. 

D e f i n i t i o n 2 The set of w o r l d s p o s s i b l e at /, PW(l), 
is {w € S : the agent's local state in w is I}. The agent 
k n o w s Φ at w € S if Φ holds in all worlds in PW(l), 
where I is its local state at w. 

Example 1 (continued): Let us assume from now on 
that the robot's position reading is perfect. In that case, 
the robot knows its position, since a position reading r is 
part of its local state and r can only be obtained in worlds 
in which the actual position of the robot is r. However, 
unless the robot has observed the can, it does not know 
the can's position, since it has possible worlds in which 
the can's position is different. 

The agent's observed, or programmed behavior is for­
mal ly captured by the not ion of a protocol . 

1A framework in which the environment does act can be 
mapped into this framework using richer state descriptions 
and larger sets of states, a common practice in game theory. 

2Though context is an overloaded term, its use here seems 
appropriate, following [Fagin et al., 1994]. 
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Whi le ut i l i t ies are easily compared, it is not a priori 
clear how to compare perceived outcomes, thus, how to 
choose among protocols. A strategy for choice under un-
certainty is required. Th is strategy could depend on, for 
example, the agent's a t t i tude towards risk. This strat­
egy is represented by the decision criterion, a funct ion 
tak ing a set of perceived outcomes and returning the set 
of most preferred among them. 

D e f i n i t i o n 8 A d e c i s i o n c r i t e r i o n p is a function 
which maps each set of tuples (of equal length) of real 
numbers, to a subset of it. 

Two examples of decision cr i ter ia are maximin, which 
chooses the tuples in which the worst case outcome is 
max ima l , and the principle of indifference which prefers 
tuples whose average outcome is maximal . (A fuller dis­
cussion of decision cr i ter ia appears in [Luce and Raiffa, 
1957; Bra fman and Tennenholtz, 1994a].) 

We come to a key def in i t ion that ties al l of the com­
ponents we have discussed so far. 

D e f i n i t i o n 9 The a g e n c y h y p o t h e s i s ; at each state 
the agent follows a protocol whose perceived outcome 
is most preferred (according to its decision criterion) 
among the set of perceived outcomes of all possible-
protocols.7 

The agency hypothesis takes the view of a rat ional 
balance among the agent's beliefs, ut i l i t ies, decision cr i ­
ter ion and behavior. It states that the agent chooses 
actions whose perceived outcome is max imal according 
to its decision cr i ter ion. 

Since given a fixed u t i l i t y funct ion, the decision cr i te-
r ion induces a choice among actions, we w i l l often use the 
term 'most preferred protocol ' in place of ' the protocol 
whose perceived outcome is most preferred'. 

2 . 3 A s c r i b i n g B e l i e f 
The various elements at the mental-level are related 
th rough a ra t iona l balance. We can exploit this relation 
to ascribe a menta l state to an agent. We use the avail­
able in fo rmat ion , such as observed behavior and back­
ground in fo rmat ion , to constrain the possible values of 
the unknown menta l state. We now show how belief can 
be ascribed according to our framework. 

Bel ief ascr ipt ion requires certain in format ion regard­
ing the agent. Th is in format ion should specify some of 
the other elements of the rat ional balance we have just 

7The possible protocols are implicit ly denned by the set 
of actions AA (cf. Def. 1). 

discussed. Using this in format ion we look for belief as­
signments conf i rming the agency hypothesis. T h a t is, 
suppose the ent i ty modeled satisfies the agency hypoth­
esis and that its ut i l i t ies and decision cr i ter ion are as 
given, then such beliefs would lead us to act as was ob­
served. This is a process of constraint satisfaction. Thus 
a formal statement of belief ascription is the fol lowing: 

Given a context C for an agent A, find a belief 
assignment B such that B together w i t h the 
agent's behavior, i ts u t i l i t y funct ion and i ts de­
cision cri terion conf irm the agency hypothesis. 

Example 1 (continued): We will try to ascribe beliefs to 
the robot. We assume that the decision criterion used is 
maximin. (What follows applies also to the principle of 
indifference). Suppose we observe the robot moving along 
the path described in Figure 2. What can we say about 
its beliefs? We must see under what beliefs the path ob­
served would yield the highest utility. It is easy to see the 
ascribed plausible worlds are {A,B}. If the robot believed 
only one state to be plausible it would head directly to it. 
Similarly, if {B,C} was believed the robot's path would 
head more toward them. If the robot believes {A,B,C}, 
a better path would be along the middle, rather than the 
left-hand side. 

Our abi l i ty to ascribe belief in the framework of the 
mental-level model just presented is discussed in [Braf­
man and Tennenholtz, 1994b]. 

3 P r e d i c t i o n s 

We wish to explore the appl icat ion of mental-level mod­
els in a part icular form of predict ion: We observed an 
agent tak ing part in some act iv i ty ; we know its goals; 
and we wish to predict its next actions. In what follows 
we t ry to examine what problems this task raises and 
how we might solve them. We wi l l concentrate on one 
part icular issue, belief change. We w i l l soon see how it 
relates to our task. The approach we suggest underlies 
some of the work done in belief and plan ascr ipt ion. We 
believe that a formal approach w i l l aid in understanding 
this task better and in detecting the imp l ic i t assump­
tions made in predict ing an agent's future behavior. 

To predict an agent's next act ion, we go through three 
steps ( i l lustrated in Figure 3): (1) construct a mental-
level model of the agent based on actions performed un t i l 
now; (2) revise the agent's ascribed beliefs, if needed, 
based on the observations it made after per forming the 
last act ion; (3) predict the action which has the most 
preferred perceived outcome based on these beliefs. 
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Example 1 (continued): In the previous section we saw 
an example of belief ascription. This corresponds to the 
first stage: constructing a mental-level model based on 
observations and background knowledge. The robot's be­
liefs were {A,B}. Based on these beliefs we can predict 
that the robot will continue to move in its current direc­
tion until it can observe whether the can is in A or B. 
Suppose the can was observed to be in B. In that case, the 
beliefs of the robot are revised to contain only B. Given 
these beliefs, we expect the robot to turn to the right (i.e. 
toward B). 

Our human experience shows that models of mental-
state are useful in predict ing human behavior, and we 
believe they are also l ikely to succeed w i t h human-made 
devices (hence the agency hypothesis: the device acts 
as an agent of i ts designer, echoing its goals and beliefs). 
Thus, using mental- level models seems to make heurist ic 
sense. However, when is this really appropriate? More­
over, when is the par t icu lar formal ism suggested here 
appropr iate? Reexamining the three-step predict ion pro-
cess we see two ma jo r imp l ic i t assumptions: 
• We can model the observed behavior of an agent using 
a mental- level model . 
• We can assume some methodical belief change process. 

We discussed the first among these issues in our previ­
ous work [Bra fman and Tennenholtz, 1994b]. In par t icu­
lar, we have shown a class of agents tha t can be ascribed 
the mental- level model discussed in Section 2. We devote 
the rest of th is paper to the second issue. 

4 B e l i e f c h a n g e 

Suppose we have constructed a mental-level model based 
on past behaviors. To use i t in predict ing fu ture be­
havior, we must make an addi t ional assumption, tha t 
there is some tempora l coherence of beliefs. Consider 
the example of the robo t t ha t accompanied the preced­
ing sections. We observe the robot move along a certain 
pa th and ascribe it the belief assignment {A,B}. At a 
certain stage, it is near enough to A and B to be able 
to see whether the can is in one of these two positions. 
We expect th is new in fo rmat ion to affect the behavior 
of the robot . In our ascribed model of the robot , we ex­
pect th is i n fo rmat ion to be manifested in terms of belief 
change. However, unless the new belief can be somehow 
constructed f rom the o ld beliefs and the observation, we 
w i l l have very l i t t le ab i l i t y to predict fu ture behavior. 

We first suggest a rest r ic t ion on the relat ionship be­
tween beliefs in different states. Later on, we w i l l show 
tha t this res t r ic t ion is bo th na tura l and useful. 

4.1 Admissibility 
Consider the fo l lowing rest r ic t ion: i f my new in format ion 
is consistent w i t h some of the runs I previously consid­
ered plausible, I w i l l now consider plausible those runs 
previously considered plausible tha t are consistent w i th 
this new in fo rmat ion . 

Let NA{S) = T(VA(S)), i.e., the state tha t w i l l follow 
s when A per forms the act ion specified by its protocol , 
and NA{T) = {NA(s)\s E T}. 

D e f i n i t i o n 10 A belief assignment B (for agent A) is 
a d m i s s i b l e , if for local states 1,1' such that I' follows I 
on some run: whenever NA(B(1)) n PW(l') 0 then 
B{V) = NA(B(l)) D PW{(li)j otherwise V is called a re-
v i s i o n s t a t e and B(V) can be any subset of PW(V). 

I f worlds corresponded to models of some theory, then, in 
syntactic terms, admissibi l i ty corresponds to conjoining 
the new data w i t h the exist ing beliefs, whenever this is 
consistent. I t is closely related to the probabi l is t ic idea 
of condi t ion ing beliefs upon new in fo rmat ion . 

I t turns out tha t admissible belief assignment can be 
viewed in a different way. As the fo l lowing theorem 
shows, an admissible belief assignment is equivalent to 
a belief assignment induced by a rank ing of the set of 
in i t ia l states, tha t is, a belief assignment which assigns 
to every local state those worlds in PW(l) t ha t or ig inate 
in in i t ia l states whose rank is m in ima l . In tu i t ive ly , we 
associate m in ima l rank w i t h greater plausibi l i ty. 

T h e o r e m 1 8 Assuming perfect recall,9 let I. -p, de­
note the initial state of the (w,V) run prefix. A belief 
assignment B is admissible iff there is a ranking function 
r (i.e., a total pre-order) on the possible initial worlds I, 
such that B(l) = {w € PW{1) : I, (w,p). is r -m in ima l } . 

4 . 2 W h y a d m i s s i b i l i t y 
The fact tha t admissible beliefs have a nice represen­
ta t ion seems encouraging. It suggests a refinement to 
our model in which beliefs have the addi t iona l s t ructure 
provided by a rank ing over possible worlds. However, 
this by itself is no reason to accept this rest r ic t ion. Re­
member that we want to show tha t mental- level models 
are abstractions that are grounded in lower level phe­
nomena. The k ind of support we need would look like 
"under assumption X on the agent's behavior, a ranked 
belief assignment can be ascribed to i t " . In this section, 
we would like to present results of th is nature. Once 
these questions are answered, we wou ld be able to make 
just i f ied predict ions based on the approach presented in 
the previous section. On our way to this goal , we wi l l 
also get some interest ing results f rom a decision-theoretic 
perspective. 

Recall the agency hypothesis. The agent was viewed 
as choosing among protocols based on the u t i l i t y of the 
runs they generate10 and its beliefs. However, there is 
an al ternat ive way for choosing among actions given the 
agent's beliefs, called backwards induction. 

D e f i n i t i o n 11 A b a c k w a r d s i n d u c t i o n (BI) protocol 
for an agent A is defined inductively as follows: For 
local states I, all of whose children are final states, assign 
a most preferred action at that state. (In this case an 
action determines a run suffix.) Inductively, assign to 
each local state an action that is most preferred given 
the choices for its descendents. 

8Proofs are omitted due to lack of space, and wil l appear 
in a longer version of this paper. 

9 An agent is said to have perfect recall if its local state 
contains all previous local states. 

10This section assumes that there are only a finite number 
of possible local states, that runs are finite, and that the 
agent has perfect recall. 
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Backwards induc t ion is considered the rat ional way of 
choosing actions according to classical decision-theory. 
Another decision-theoretic concept we wi l l use is the fol­
lowing (where o denotes vector concatenation): 

D e f i n i t i o n 12 A decision criterion satisfies the s u r e -
t h i n g principle if v o v' is at least as preferred as u o u' 
whenever v is at least as preferred as v' and u is at least 
as preferred as u'. 

T h a t is, suppose the agent has to choose between two 
actions, a and a'. It prefers a over a' when the plausible 
worlds are B. It also prefers a over a' when the plausible 
worlds are B'. If th is agent satisfies the sure-thing pr in ­
ciple it should also prefer a over a' when the plausible 
worlds are B U B'. In what follows we assume that the 
agent satisfies the sure-thing principle. 

One f inal note: when we compare protocols at an in i ­
t ia l state we only care about their outcome on states that 
are plausible; we are indifferent to what actions we take 
in revision states. We can view this as a choice among 
par t ia l protocols, defined only on the plausible worlds. 
However, once we get to a revision state we wi l l have to 
choose among a new set of par t ia l protocols, depending 
upon our beliefs in the revision state. Since we assume 
perfect recal l , these choices are independent. Hence, it 
w i l l be convenient for us to th ink about the agent mak­
ing al l these choices in i t ia l ly . T h a t is, at the in i t ia l state 
i t chooses not only what to do on the plausible worlds, 
but also what to do on revision states, if i t ever gets to 
them. Th is way we view the agent as choosing among 
fu l l protocols, and the not ion of most preferred protocol 
w i l l be defined accordingly. 

Given the above machinery, we f irst look at normative 
reasons for accepting admissibi l i ty. 

T h e o r e m 2 Let A be an agent with admissible beliefs. 
Its most preferred protocols at the initial local state re­
main most preferred at all the following states. 

Therefore, agents of Theorem 2 can choose a protocol 
once and for al l at the in i t ia l state based on its perceived 
outcome. When beliefs are not admissible, a counter ex­
ample can be constructed where protocols most preferred 
at the in i t ia l states are not most preferred later on. 

Another nice proper ty associated w i th admissible be­
liefs is given by the fo l lowing theorem and corollary. 
T h e o r e m 3 Let A have admissible beliefs, V is a BI 
protocol for A iff it is most preferred at the initial state. 

C o r o l l a r y 1 Assume A has admissible beliefs. There is 
a utility function on states such that A can be viewed as 
executing the best local action at each state. 

Our c la im tha t admissibi l i ty is a good modeling as­
sumpt ion is suppor ted by the fol lowing result: 
T h e o r e m 4 Let V be the observed protocol of an entity. 
If this entity can be ascribed beliefs at the initial state 
and at subsequent revision states based on this protocol, 
it can be ascribed an admissible belief assignment at all 
local states. 

Thus , admiss ib i l i ty is free if we can ascribe beliefs at 
the in i t i a l and revision states. 

The previous results imp ly tha t admissible beliefs are 
useful for ascr ipt ion and predict ion. In fact, the results 

can be even further improved. The fact t ha t we associate 
ut i l i t ies w i t h runs rather than states complicates our l ife 
when we t r y to ascribe beliefs. To ascribe beliefs we 
must at each state compare whole protocols and the run 
suffixes they produce. It would be much easier if we 
could only look at single actions and thei r immediate 
outcomes. Doing this would require defining a u t i l i t y 
funct ion over the set of states, rather than the set of run 
suffixes. Indeed, this is possible: 

T h e o r e m 5 Let *P be the observed protocol of an agent, 
and suppose that this agent can be ascribed beliefs at the 
initial state and at all subsequent revision states based 
on this protocol. Then, it can be ascribed an admissible 
belief assignment at all local states and a local utility 
function over states such that its observed act ion has the 
most preferred perceived outcome according to the local 
utility function. 

5 Discussion 
The fol lowing question motivates much of the research 
in belief and belief change: Given that we can make 
better programs by equipping them w i t h large amounts 
of knowledge, how should this knowledge be repre­
sented, and how should it be updated? (For example, 
see [Levesque, 1984; Friedman and Halpern, 1994; Ka t -
suno and Mendelzon, 1991; del Val and Shoham, 1993; 
Alchourron et al, 1985; Goldszmidt and Pearl , 1992].) 
Tha t work often at tempts to capture our in tu i t ive not ion 
of belief and belief change. In addi t ion, i t often impl ic­
i t ly assumes that we, the designers, are those who wi l l 
supply the agent w i th its knowledge, at least in i t ia l ly . 

We are concerned w i t h a more specific question of rep­
resentation and ask: how should an agent represent i ts 
informat ion about another agent in a way that w i l l faci l­
i tate explaining and predict ing the other agent's behav­
ior? Moreover, we assume that the bulk of an agent's 
knowledge about other agents comes f rom a par t icu lar 
source, observation of these agent's behavior. Thus, we 
are more concerned w i t h model ing agent's ascribed be­
liefs than w i th designing them. 

An impor tant related work that shares some of our 
perspective is Levesque's [Levesque, 1986], which is con­
cerned w i th t reat ing computers as believers. However, 
his work describes the beliefs of one part icular class of 
agents whose actions are answering queries. Our work 
attempts to address a more general class of agents, whose 
actions are arbi t rary. 

Model ing data is a central task of machine-learning. 
Much like our work, these models are constructed to 
help make predictions, e.g., a decision tree helps us pre-
dict what class an instance belongs to . Our work brings 
to this task a special bias in the fo rm of the agency-
hypothesis: Machines are agents of their designers; they 
are usually designed w i t h a purpose in m i n d and w i t h 
some under ly ing assumptions; therefore, they should be 
modeled accordingly. W i t h this mot iva t ion in m i n d , th is 
work and [Brafman and Tennenholtz, 1994b] a t tempt to 
understand the basis for model ing entit ies as if they 
have a mental state. The central issues are: what e l ­
ements should such a model contain? How should we 
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use observable in fo rmat ion to construct i t? A n d , under 
what assumptions is our model ing "bias" just i f ied? 

An impor tan t issue for fu ture work involves predict ing 
an agent's behavior at revision states. Current ly , we do 
not know how to model an agent's belief revision process 
and cannot predict an agent's act ion after an unexpected 
observation. Past actions do not te l l how to ascribe be­
l ief in tha t case. We believe some form of an induct ive 
leap is required, which should exploi t addi t ional struc­
ture, not present in our current model. Such structure 
could be obta ined by e.g., augment ing our purely se­
mant ic construct ion w i t h an interpretat ion of a suitable 
language over the possible states.11 

Th is paper complements our previous work on be­
l ief ascr ipt ion [Brafman and Tennenholtz, 1994b] and 
supplies i n i t i a l answers to the above-mentioned ques­
t ions. In th is paper, we reviewed our proposed struc­
ture for mental- level models and their construct ion, and 
explained how they can be used to predict an agent's 
fu ture behavior. In order to use mental-level models in 
mak ing predict ions, we must constantly update them. 
A key component in this update process is the abi l i ty to 
model the belief change of other agents. We suggested 
admissib i l i ty as a belief change operator, examined its 
propert ies and showed tha t we can accept it under rather 
weak model ing assumptions. Pu t t i ng these ingredients 
together, we get a theory of act ion predict ion using a 
mental- level model , which consists of the three-step pro­
cess, a theory of belief ascr ipt ion (discussed in [Brafman 
and Tennenhol tz, 1994b]), and a study of belief change 
model ing.1 2 
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