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Abstract

A Dempster-Shafer belief structure provides a
mechanism for representing uncertain knowledge about
a variable. A compatibility relation provides a
structure for obtaining information about one variable
based upon our knowledge about a second variable. An
inference scheme in the theory of evidence involves the
use of a belief structure on one variable, called the
antecedent, and a compatibility relationship to infer a
belief structure on the second variable, called the
consequent. The concept of monotonicity in this
situation is related to change in the specificity of the
consequent belief structure as the antecedent belief
structure becomes more specific. We show that the
usual compatibility relations, type 1, are always
monotonic. We introduce type Il compatibility
relations and show that a special class of these, which
we call irregular, are needed to represent nonmonotonic
relations between variables. We discuss a special class
of nonmonotonic relations called default relations.

1. Introduction

In many reasoning environments we are required to
represent our knowledge about a variable in a probabilistic
manner. However it is often the case that our knowledge
about the probability distribution of these random variables
is not complete, we are not sure of the assignment of the
probability weights to the individual outcomes of the
variable. The mathematical theory of evidence [Dempster,
1967; Dempster, 1968; Shafer, 1976; Shafer, 1987;
Lowrance and Garvey, 1982; Gordon and Shortliffe, 1984;
Smets, 1988; Yager et al., 1994] allows for the
representation and manipulation of this nonspecific type of
knowledge. A number of different semantics can be
associated with this theory, Dempster [1967], Shafer [1976]
and Smets and Kennes [1994]. While in this paper we shall
favor the one introduced by Dempster the basic ideas
presented in this work are valid in the other interpretations.

Within this theory, a belief structure, a basic
probability assignment function (bpa), provides a knowledge
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scheme for representing our incomplete knowledge about the
probability distribution of a variable. One manifestation of
this situation is that our knowledge of the probabilities of
these type of variables is usually an interval rather then a
point, it lacks specificity. Increased knowledge results in a
narrowing of these intervals. A second concept which plays
a central role in this theory is the idea of a compatibility
relation. A compatibility relation provides information
about the allowable solutions to one variable given
information about a second variable. It is closely related to
the concept of a rule in expert systems.

The inference scheme in this theory involves the
inputting of a belief structure on one of the variables, called
the antecedent or primary variable into compatibility relation
and to obtain a belief structure on the secondary variable. A
compatibility relation is called monotonic if as we gain
more information about the distribution of the primary
variable we don't lose information about the secondary
variable. The originally compatibility relations introduced
by Shafer only allowed the representation of monotonic
relationships. In this work we propose a representation of
compatibility relation to allow for the representation of
nonmonotonic knowledge in the framework of the theory of
evidence.

2. Dempster-Shafer Structure and

Information

In this section we briefly review some ideas from the
theory of evidence necessary for our development. Assume
V is a random variable which can take its values in the set
X. A belief structure or Dempster-Shafer structure (D-S
structure) on X is a mapping m, called a basic probability

assignment, (bpa), where m: 2* -> [0, 1] such that
(1) > m(A)=1and (2) m(0)=0.

AcX

Assume B is any subset of X. Two important measures
are associated with B in the framework of this theory. The
first measure, called the measure of plausibility, denoted
P1(B), is defined as



PI(B) = Y Poss[B/A] » m(A), where Poss[B/A] = 1 if the
AcX
set A B # ¢ and Poss[B/A] = 0 if the set A m~ B=¢. The
second measure is called the measure of belief, denoted
Bel{B], and defined as Bel(B) = Y, Ceri{B/A] * m(A) where
_ AcX
Cert[B/A] = 1 - Poss[B/A]). Cernt{B/A] is a measure of the
degree of inclusion of A in B, if A — B then Cert[B/A] = 1
otherwise it is zero.

An important aspect of these two measures is that they
provide an upper and lower bound on the probability of B,
that is Bel(B) € Prob(B) < PI(B).[Dempster, 1967; Strat,
1984] For cach B, we define R(B) = [Bel(B), PI(B)), as our
range of indefiniteness about the probability of the sct B.
The smaller PI(B) — Bel(B) the more we know about the
probability of B.

Definition: Assume mj and my are two D-S siructures
on X if R{(B) < Ro(B) for all B < X, we shall say m is
more specific than m9 and denote this as mg § mj.

Thus a bpa being more specific than another indicates
the first provides better knowledge of the probabilities
involved in the situation,

Ifa’<aandb' 2band if Prob(B) € |a, b] then we can
infer that Prob(B) € [a', b']l. This observation allows one to
introduce a logical entailment principle associated with D-5
granules [Yager, 1985; Yager, 1986]. In particular, if we
know that mq is a valid representation of the probability
structurc on X and if m; § my then my also presents a
true, although less informative, picture of the probability
structure on X. We can capture this idea in the form of a
logica) entailment principle

my; & my S mp-mj.

Yager [1986] has introduced an idea of containment of

two D-8 structures.
Definition: Assume mj and mp are two D-§ structures
such that Ay, ..., Ag are the focal elements of my, with
their weights mj(Aj) = aj. Let By, ..., By be the focal
elements of my with their weights mg(Bj) = bj. If a set of
values Cij» 0 Scij £1,j=1,..,n, can be found which
have the following properties, then we say my € m»,

n
z cij=ai i=1,..,9
5=

9

z cij=bj ji=1,...n
and cjj > Ol(_)—r:ly if Aj « B;. The condition cj; > 0if
Aj c Bj is cquivalent 10

Cij < Cert[Bj/Ai].
It can be easily seen that if my < m9 thenmy § my and if
m; < mg then mi ~mo. ¢

Closely related ideas have been suggested by other

authors. [Dubois and Prade, 1986; L.amata and Moral, 1989;

Kruse and Schwecke, 1990; Klawonn and Smets, 1992}
Assume m is a bpa on X with focal elements Ay and
Aj with m(A) = a; and m(A3) = ay. Let m' also be a bpa
on X with focal elements B1, B3 and B3 where m(Bj) = b;
and By = A|, By = Ay and B3 = Aj. Furthermore assume
b; = a3, a3 = b + b3. It can be shown for any subset D of
X PI'(D) = PI(D) and Bel(D) = Bel'(D). Thus m and m' are
effectively the same bpa. We say m' is an a ternative

yiew of m.
Assume mj is a bpa on X with focal elements

A1, .y Aq with my(Aj) = a;. Assume mj is a bpa on X
with focal elements By, ..., B, where mz(Bj) = bj.
Assume my < my. The following useful aliernative view
m3 can be made of my. m3 has focal elements Gj; where
Qij = B; for all i and m3(Qij) = Gjj satisfy the properties in
the definition of containment

n
Zcij"‘ai i=1,...q
=1

q
Zl cij=b; J=L...,n
Cij ; O only if Aj c B;.
We shall call my an an;mnugggmf_mz _:agggzd_m_ml.
Alternatively, we can say that if my and m5 are two bpa on
X and if there exists an alternative view, ma, of my tagged
10 mj then mj < mg and mj € my and my = m3,

Assume mj and my are two bpa on X relating
information about V. The effect of both these pieces of
information is a conjuncted bpa m on X denoted

m=mj M my
where m is obtained via Dempster's rule [Dempster, 1967]
such that for each A = ¢

m(Ay=(1/1-k) 3 m(Aj)*m)(B).
Ai('\Bl =A
where A; and B; are the focal elements of m) and m9 and
K= 2 m(A;)»myB;.

ANB =0
IFK = 1, we call mq and my combinable or non-conflicting.

3. Compatibility Relations and Inference
in D-S Structures

Assume V and U are two variables taking their values
in the sets X and Y, respectively. A compatibility relation
C between V and U is a relation on X X Y such that for each
x € X there exists at least one y such that (x, y) € C and for
each y € Y there exists at least one x € X such that (x,
y) € C. Formally, we shall call this a type 1 compatibility
relation. If A; = {y1C(x;,y)=1} and Bj = {x | C{x, yj) =
1} then we require A; # ¢ and B;#¢. Intuitively, we shall
use a compalibility relation to represent the idea that if we
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know that V = x; then A; equals the subset of valves of Y

that are possible solutions for the variable U.
We note that any C can be naturally represented in
matrix form,

b ¥n
xy [ 7
X
y/
Cij

Xq L i
where Cj; = 1 means (x;, y;) € C and Cj; = 0 means
(x4, ¥j) & C

Compatibility relations are effectively rules. Let A and

Bbesubsetsof Xand Y, Therule f Ve AthenUc Bis

represented by the compatibility relation C(x, y) = 1 for
xe Aandye B;C(x,y)=0forxe Aandy<¢ B and
Cx,y)=1forxe A,

A general principle for combining these type I
compatibility relations can be established. Assume Kq, K3,
. ... K are r pieces of knowledge about the relationship
between V and U each of which is representable as a
compatibility relation Cq, ..., C;. The effect of all of
these pieces of knowledge is a conjunction of the individual
pieces of knowledge "K; and K3, ... and K," which
results in an overall compatibility relation C, where
C=C;nCy ...,nC. An important implication of
this principle is that if C is the effective compatibility
relation under Kjp...., K; and if we get further
information about the relationship between V and U in
terms of another piece of information, K, 1. resulting in an
effective relation C* = C n Cp; 1 where C* « C. We recall
C¥* c Cif C*(x, y) £ C(x, y) for all x, y. Thus more
information usually results in a smaller compatibility
relation in the sense of cardinality.

An important class of inference problems involves the
situation in which we have some knowledge about the
probability structure of the variabie V in terms of a bpa m
on X, we have knowledge about the relationship between V
and U in terms of a compatibility function C on X x Y and
we are intercsted in obtaining knowledge about the
probability structure on U in terms of a bpam* on Y. The
procedure for securing this information in essence involves
an application of Dempster’s rule.

Assume Aj are the focal elements of m such that
m(A;) = a;. We proceed as follows

1. Extend m to be a bpaon X XY where
m(A; x Y) = m(Ap.
2. Apply Dempster's rule to C and m to obtain a
conjuncted structure m* such that

m*(E;) = m(A; X Y) = m(Aj)
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where E; = (A; xY) nC.
3. Obtain the bpa on Y, m* by projecting E; onto
Y. That is m*(F;) = m(A;) where F; = Projy[Ei] = [y |if
E;(x, y) = 1 for some x}. Effectively, Fi(y) =
Maxy Ej(x, y}.
Since it is possible for two different E's 1o project into the
same F,
mE)= %
over E;s.t.
F =Prnoj E;
Essentially we call a compatibility relation monotonic
if an increase in knowledge about the antecedent does not
result in a decrease in knowledge about the consequent. In
the following definition we formalize this idea.
Definition: Assume C is a compatibility relation on
X x Y. Let mj and my be two bpa on X such that

m(E;).

mi S mg. If mj and C allows us to infer m'i on Y and
m+ and C allows us to infer m'i on Y then C is said to be

monotonic if m; S ma.

It can be shown [Yager, 1988] that every type I
compatibility relation is monotonic and thus it is
impossible to represent a nonmonotonic relationship with
these type 1 compaltibility relations. Since many kinds of
commonsense knowledge have a nonmonolonic aspect there
is a need 1 provide compatibility structures to represent this
type of knowledge. In the following we introduce such a
structure.

4. Non-monotonicity
Compatibility Relations

and Type II

Assume V and U are two variables taking values in the
set X and Y respectively. Let oX be the power set of X
minus the null element, thus T € «X is a non-null subset of
X.

Definition: A type II compatibility relation R is a
relation on «X'x Y such that for each T € X there exists a y
€ Y such that R(T, y) = 1.

The understanding to be accorded a type I compatibility
relation is that if R(T, y) = 1 then if V is known 10 be some
element in T then y is a possible value for U, thus R(T, y)
implies (x, y), for all x € T, are possible solution pairs for
Vand U.

The following terminology and definitions shall be
useful in our future discussions. We shall call the subsets
of X which are singletons the principle elements of »X.
With each T € «X we shall denote W 10 be the subset of Y
that are the possible values of U when x € T,
W= (ylif R(T, y) = 1}. W is called the associated set in
Y of T and sometimes we shal! denote this pairas T — W,

With X = (x7,x9, x3) and Y = (yy, y». y3]a type Il
compatibility relation would be as shown in the following
matrix.



{x1)

(x2)

{x3}

{x1, X2}
{x1,x3}
{x2, X3}
.{X1.xz.x3}

Definition: Assume T; are the principle elements of oX,
Ti = (x;) and let T; — W;. Assume T is some arbitrary
non-principle element in X where T — W. We call a
relation R normal if
Woc U W,
i
xi€T
Thus we see that a relation is normal if an associated set is
contained in the union of the associated sets of principle
clements making it up.
In point of faclt, all reasonable compatibility relations
can be seen to be normal. Assume there exists y € W but

b gt et O e e A
i

= b ek s s O O
o

Y Y e N
&

b —

y € U W, Since the knowledge V € T implies that the
1
Xi€ T
value of V must be some x € T, the value for U must be
possible under an x € T, but if y is not associated with any
x € T then it can't be a solution.
Definition: A normal compatibility relation R of type II
shall be called regular if for all Ty = W, Ty - W»,

T3 — W3 such that T3 =Ty w Ty then W3 = W U Wa.
It is called irregular if there exists such a triple where
WaWuWs,

We shall now describe the reasoning process used when
we have a type Il compatibility relalion. Assume R is a
Lype two compatibility relation on X XY Let our
information about V be given in terms of a bpa m on X
such that Ay, ..., Ap are the focal elements of m where
m(A;) = a;. We are here interested in obtaining a bpa m*
on Y providing the information about U. The procedure is
essentially the same as in the case of a type 1 compatibility
relation after an initial space transformation 1s made.

0. Transform m to an equivalent bpa m' on oX as
follows:

m’ is a bpa on X with focal elements A;' € X where

Ai{' = (A} and m'(A;) = m(A)) = a;.

That is the focal elements of m are singleton subsets of
oX whose element is the corresponding focal element in X.
Thus if Aj = (x7, x7]} then A = {{xq, x2]].

1. Extend m' 1o be a bpa on X x Y such that
m'(A;' X Y) = m'(A;{") = m(A)) = 3;

2. Conjunct R and m’ to obtain a bpa m™* also on
oX'x Y such that m*(E;") = a; where
Ei'=(AxY)nR
3. Obtain the bpa m* on Y by projecting E;' onto Y.
That is m*(F;") = a; where
F = projy(Ei'). that is
Fi'(y) = Max[E; (T, y)I.
Te oX

Using this inference mechanism we can show that
every regular type I relation is monotonic. We will now
proceed to show that all all irregular relations are non-
monotonic. We recall that a relation R is non-monotone if
there exists a pair mj and my on X where m|  m» such
that, Remj ¢ R o my,

Theorem: All irregular relations are non-monotone.
Proof: Assume R is an irregular relation. This implies
that there exists at least three elements Ty, To and T of oX
such that T; w Ty = T with Wy, W4 and W being their
associated sets in Y such that W is strictly less than
Wi W Wo, ie. there exists one y* € y such that y* ¢ W
and but where y* € Wy or y* € W4, Consider the two bpa
my and mj on X such that my is defined by m((T) = a and
m{(T3) = 1 ~ a where a > 0 and where m3 is defined by
my(T) = 1. It is obvious that mj < m9, since T} c T and
Tog <« T. We first note that if m} = R omj then
mj(W)) =aand mj(Wa)=1-aandifm3 = R o mo then
rn;(W) = 1. Consider the subset D = [y*] of Y,
Pl{(D} = a Poss[D/W1] + (1 - a) Poss[D/W;] and P1(D) =
Poss[D/W]. Since y*¥ ¢ W then Poss[D/W] = 0 and
P14(D)=0. Since y is in at least one of Wy or W7 without
loss of generality assume it is definitely in Wy then
Poss[D/W] =1 and hence P11(D) 2 a. Thercfore

[Bel (D), Py(D)] & [Bely(D), Pla(D)]

thus m} @ m and the theorem is proven.

This result 1aken with our previous observation
indicates that not only are all irregular relations
nonmongtonic but the only way to represent a
nonmonotonic compatibility in terms of normal relations is
via an irregular relation. Thus these irregular type II
compatibility relations provide the desired structure for
representing nonmonotonic knowledge.

5. Default Compatibility Relations

A particularly important class of nonmonotonic
relations are the so-called defaull relations [Reiter, 1980;
McCarthy, 1986; McDermott and Doyle, 1980; Ginsberg,
1987]. Default type knowledge plays a crucial role in the
representation of commonsense knowledge. Basically, a
default rule is used to represent situations in which, when

YAGER 1905



we are uncertain as to the value of V, we act as if the value
of V was known 1o be the defaull value. For example, if we
have a bird but we are sure of what type it is we act as if it
was a {lying bird. Another type of default rule is when you
are uncertain as to the cause of some symptom and act as if
it were the one simplest to fix. We now look at the
representation of these default relations as irregular
compaltibility relations.

The essential structure of a default relation is captured in
the following relation. Assume V and U are two variables
taking their values in X = {x7,x2} and Y = {yy, y2}
respectively, Assume that the relation between U and V 1s

4! Y2
T = (x1) 1 0
T = {(x2} 1 1
T = (x1,x2} 1 0
Since {x7)} v {x9} = {x1. x2} we have

TiwTs=Ty > WcW;u Wi
A fruitful way of interpreting this relationship is by
observing that we infer the default consequent yy when our

antecedent knowledge allows for the possibility that the
value of V can be xy. Thus we infer y| for T such that

Poss[{x]1/T] = 1. A natural reading of this default relation
would be
"if V is X, _is possible then U is y1".
A more genecral pau_crn for default relations can be
introduced. Let X = [xy,..., xq] and let Y = {yq., .
yp}. Let A be a subset of X and let By and B be subsets of
Y where B9 @ By. Let the relationship R between V and U
be characterized by the following, R: X — Y such that for
any Te X
Ro T=By ifPoss[A/T]=1
Ro T=Bs if Poss[A/T]=0.
Thus we see that R is a function of Poss[A/T]. We shall
indicate this as R = D(A, By, B7) and call it a standard
default rule. We can read this as "if V is jn A is possible
then U is in B else it is in B2". An important special case
occurs when By =Y. This is called a simple default rule.
Theorem: A standard default rule generates an irregular
compatibility relation.
Proof: 1) If Ty, T € A then
Ty —»W;=By, T > W;=Bjand
TyuT9cT-—» Wi =Bthus
T, TpcT—-TiuTr=T) 2 W UWr=W.
2y fTy, Tg A we similarly show
TIivTa=T=a Wi UWy =W
3) If it is not contained in either A or A then
T =Ty w Ty where Ty € A and Ty < B since T) — B,
andTy > Boand T BthenT=TyuTyr > WcBju

Bs.
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Assume our knowledge of V is expressed by the bpa
Ajq,..., A where m(A;) = Aj. Let our relation between V

and U be expressed by the standard default rule
D(A, By Bp). Then if m* is our expression of knowledge
of U
m*(W;) = a
where W; is the associated Y set of A;. Furthermore
A; = By if Poss[A/Aj] = 1 and A; = B if Poss[A/A;] =0
thus m* is obtained as
T
m*(B1)= Y, Poss[Aj/A] * m(A)] = PI(A)
i=1
T
m*(Ba)= 3 (1 - Poss[A/A;]) » m(A;).

i=1

= i Cert[A] * m(A;) = Bel(A).

i=1
An interesting type of default rule is what we shall call
a hierarchical default rule. Assume A;,..., A are a
collection exclusive and exhaustive subsets of X, ie
k

Al Aj=¢and UA; =X. Let By, ..., By be asetof

=1
subsets of Y such that for i > j, B; « Bj. We shall call R a

hierarchical relation,

ifR: X>Y
such that

Ro T=B) ifPossfA)/T]=1

Roe T = By if Poss[A1/T] = 0 and
Poss{Aq/T] = 1

R o T =B3 if Poss[A1/T] = Poss[Ay/T] = 0 and
Poss[A4/T] = 1

R o T=DBe if Poss{AjT]=0 j=1.,...
and Poss[A/T} = 1.
We shall denote such a relation as
H(A{, Aa, ..., A By.....,By)
We see that

D(A, By, Bp) = H(A, A: By, By).

A prototypical rule which gencrates a hierarchical
compatibility relation is the rule always do the easiest
thing. Consider a device made up of three paris qj, 93, q3-
Let x; indicate the proposition "part i is busted” and let y;
indicate the action “replace part i”. Assume the parts are
such that qy, g9, q3 is the order in ascending difficulty of
fixing the parts. Then the following hierarchical relation
implements this rule

e—1



{x1} 1 0 0
{x2} 0 1 0
{x3) 0 0 |
{x1, %2} 1 Q 0
{x1, X3) 1 0 0
{x2, X3} 0 1 0
{x1, %2, X3} { 0 0

we can easily show that these hierarchical default relations
csult in a irregular compatibility relation.
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