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Abstract 
A Dempster-Shafer belief structure provides a 
mechanism for representing uncertain knowledge about 
a variable. A compatibility relation provides a 
structure for obtaining information about one variable 
based upon our knowledge about a second variable. An 
inference scheme in the theory of evidence involves the 
use of a belief structure on one variable, called the 
antecedent, and a compatibility relationship to infer a 
belief structure on the second variable, called the 
consequent. The concept of monotonicity in this 
situation is related to change in the specificity of the 
consequent belief structure as the antecedent belief 
structure becomes more specific. We show that the 
usual compatibility relations, type 1, are always 
monotonic. We introduce type II compatibility 
relations and show that a special class of these, which 
we call irregular, are needed to represent nonmonotonic 
relations between variables. We discuss a special class 
of nonmonotonic relations called default relations. 

1. In t roduct ion 

In many reasoning environments we are required to 
represent our knowledge about a variable in a probabilistic 
manner. However it is often the case that our knowledge 
about the probability distribution of these random variables 
is not complete, we are not sure of the assignment of the 
probability weights to the individual outcomes of the 
variable. The mathematical theory of evidence [Dempster, 
1967; Dempster, 1968; Shafer, 1976; Shafer, 1987; 
Lowrance and Garvey, 1982; Gordon and Shortliffe, 1984; 
Smets, 1988; Yager et al . , 1994] allows for the 
representation and manipulation of this nonspecific type of 
knowledge. A number of different semantics can be 
associated with this theory, Dempster [1967], Shafer [1976] 
and Smets and Kennes [1994]. While in this paper we shall 
favor the one introduced by Dempster the basic ideas 
presented in this work are valid in the other interpretations. 

Within this theory, a belief structure, a basic 
probability assignment function (bpa), provides a knowledge 

scheme for representing our incomplete knowledge about the 
probability distribution of a variable. One manifestation of 
this situation is that our knowledge of the probabilities of 
these type of variables is usually an interval rather then a 
point, it lacks specificity. Increased knowledge results in a 
narrowing of these intervals. A second concept which plays 
a central role in this theory is the idea of a compatibility 
relation. A compatibility relation provides information 
about the allowable solutions to one variable given 
information about a second variable. It is closely related to 
the concept of a rule in expert systems. 

The inference scheme in this theory involves the 
inputting of a belief structure on one of the variables, called 
the antecedent or primary variable into compatibility relation 
and to obtain a belief structure on the secondary variable. A 
compatibility relation is called monotonic if as we gain 
more information about the distribution of the primary 
variable we don't lose information about the secondary 
variable. The originally compatibility relations introduced 
by Shafer only allowed the representation of monotonic 
relationships. In this work we propose a representation of 
compatibility relation to allow for the representation of 
nonmonotonic knowledge in the framework of the theory of 
evidence. 

2. D e m p s t e r - S h a f e r S t r u c t u r e and 
In format ion 

In this section we briefly review some ideas from the 
theory of evidence necessary for our development. Assume 
V is a random variable which can take its values in the set 
X. A belief structure or Dempster-Shafer structure (D-S 
structure) on X is a mapping m, called a basic probability 

assignment, (bpa), where m: 2X -> [0, 1] such that 
(1) ∑ m(A) = 1 and (2) m(0) = 0. 

AcX 
Assume B is any subset of X. Two important measures 

are associated with B in the framework of this theory. The 
first measure, called the measure of plausibility, denoted 
P1(B), is defined as 
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