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Abstract

An overview is given, with new results, of math-
ematical models and algorithms for probabilis-
tic logic, probabilistic entailment and various
extensions. Analytical and numerical solutions
are considered, the former leading to auto-
mated generation of theorems in the theory of
probabilities. Ways to restore consistency and
relationship with Bayesian networks are also
studied.

1 Introduction

Numerous models and algorithms have been proposed
for reasoning under uncertainty in knowledge-based sys-
tems. Among these, models based on logic and the the-
ory of probabilities are, after a period of relative dis-
favor, attracting much attention again. These models
differ according to the independence assumptions made
about the events or logical sentences under consideration
and the amount of information requested from the ex-
pert or decision maker. At one extreme of the spectrum,
well illustrated by the probabilistic logic and probabilistic
entailment models of [Nilsson, 1986], no independance
assumptions are made and only the available informa-
tion is used. Moreover, this information may be vague,
i.e., expressed by probability intervals instead of precise
values. In probabilistic logic, the probabilities of being
true of m logical sentences are given. It is asked whether
these probabilities are consistent or not. In probabilis-
tic entailment an additional logical sentence is consid-
ered and it is asked to find best possible lower and up-
per bounds on its probability of being true. In both
cases the joint probability distribution on the set of pos-
sible outcomes is only partially specified. At the other
extreme of the spectrum, the Bayesian network mod-
els (e.g., [Pearl, 1988], [Lauritzen et ai, 1988]) usually
make strong independence assumptions and request suf-
ficient information for the joint probability distribution
to be entirely specified. When those requirements are
satisfied the probability of any event may be computed,
often in moderate time. Moreover, evidence can be ef-
ficiently propagated through the network. Attempts to
combine both methodologies have been made by [Van
der Gaag, 1990] [Van der Gaag, 1991] and by [Andersen
et ai, 1994].

1862 REASONING UNDER UNCERTAINTY

Brigitte Jaumard
Ecole Poly technique de Montreal
C.P. 6079, Succ. Centre-Ville
Montreal (Quebec) H3C 3A7, CDN

Marcus Poggi de Aragao
Univ. Estadual de Campinas, Brazil

The purpose of this paper is to present an overview,
with new results, of mathematical models and algorithms
for probabilistic logic, probabilistic entailment and their
extensions. Motivation stems from the facts that both
problems have a long history and are the object of re-
search dispersed among several literatures. This explains
recent overly pessimistic statements as to the possibil-
ity of solving large instances. After stating the prob-
lems mathematically, analytical solution is studied. It
is shown that one can use Fourier elimination or enu-
meration of vertices and extreme rays of polytopes. The
latter approach leads to automated generation of theo-
rems in the theory of probabilities. Numerical solution of
large instances is then discussed. The column generation
approach of linear programming, combined with special-
ized nonlinear 0-1 programming techniques to solve aux-
iliary subproblems (computation of the most negative
or positive reduced costs) leads to algorithms efficient
in practice. Extensions are then examined, i.e., use of
probability intervals, conditional probabilities, Linear re-
lations between probabilities and qualitative probabili-
ties. Moreover, we show that (i) restoration of consis-
tency through minimal changes in the probability inter-
vals can be handled by the same type of models and
(11)elimination of inconsistency through minimal dele-
tion of logical sentences can be solved by combining col-
umn generation with branch-and-bound. The Bayesian
logic model proposed by [Andersen et al., 1994] is finally
investigated: we show that while this model is one of
nonlinear nonconvex programming, many cases to which
it applies can in fact be expressed as linear programs.

2 Probabilistic Satisfiability

The probabilistic logic problem of [Nilsson, 1986] may
be expressed mathematically as follows. Let § =
{51,83,...,5mn} be a set of m logical sentences defined
on a set X = {z1,z2,...,2,} of n boolean variables
with the usunal operators V (disjunction), A (conjunc-
tion), and - (negation). Let m = (m,%2,...,7m) be a
vector of probabilities that these sentences are true. Are
these sentences together with their probabilities consis-
tent ? To make this question precise, consider all 2"
possible assignments X = of truth valuea to the variables
of X and let A* be a m-vector such that a; = 1 if S;
is true for X* and ai; = 0 otherwise. Then the system



of sentences and probabilities is consistent. if and only if
the linear system

Lp = 1 (1)
Ap = = (2)
p 2 0, (3)

where A = (A*), has a solution. In other words, the
system is consistent if and only if there is a probability
distribution over the set of truth assignments such that,
for each sentence the sum of probabilities of the truth
assignments for which it is true is equal to its probability
of being true.

In Nilsson’s probabilistic entailment problem an ad-
ditional sentence Sy,4; 18 considered, a 2" row vector
Am+1 18 defined by ami1 .k = 1 if 8,4, is true for X*
and am4i1 & = 0 otherwise, It is asked to find best possi-
ble lower and upper bounds on the probability that Sp4
is true. In other words, one seeks the optimal values of
the linear programs

min(max) Tmy1 = Apmypr.p (4)

subject to constraints (1)-(3). Note that [Nilsson, 1986]
briefly discusses how to use standard techniques to re-
duce problems of first-order probabilistic logic to the
propositional case. Instead of the names probabilistic
logic and probabilistic entailment, [Georgakopoulos et
al., 1988] propose to use the name probabilistic satisfia-
bility, in decision and optimization versions respectively.
Indeed, [Nilsson, 1986] proposes useful models but not a
logici i.e., a system of axioms and a study of inference
rules, for reasoning about logic and probabilities. Such
a logic extending the results of [Nilsson, 1986] has been
explored by [Fagin et a/., 1990]. There are many other
proposals in that area. Moreover, the name probabilistic
satisfiability stresses the relationship of problem (1)-(3)
with the classical satisfiability (SAT) problem of propo-
sitional logic (which corresponds to the case where is
equal to 1). From now on, we use the name probabilistic
satisfiability (PSAT).

The (PSAT) problem has a long history. The earliest
occurrence of both versions appears to be in the classi-
cal work of [Boole, 1854] on The Laws of Thought. They
are called conditions of possible experience and general
problem in the theory of probabihttes respectively. Both
problems also appear in the subjective approach to prob-
ability theory of [de Finetti, 1974], De Finetti's funda-
mental theorem tn the theory of probability ([de Finetti,
1974], p. 112) is indeed very close to Boole's general
problem. The work of [Boole, 1854] on probability at-
tracted little attention until it was revived in a seminal
paper of [Hailperin, 1965] and discussed and extended in
a subsequent book of the same author on Boole a Logic
and Probability [Hailperin, 1986]. Several independent
rediscoveries of (PSAT) have been made (including that
of [Nilsson, 1986]).

3 Analytical Solution of PSAT

In his book of 1854 and in several contemporary and
subsequent papers, [Boole, 1854] proposes procedures to
solve (PSAT) approximately or exactly. The most effi-
cient one works as follows: (i) express each sentence as a

sum of products, each product involving all logical vari-
ables in direct or complemented form; (it) associate un-
known probabilities to each of these products and iden-
tify the resulting sums to the given probabilities; (iii)
eliminate in the equations so obtained and in the non-
negativity constraints on the probabilities the variables
corresponding to the probabilities of the products.
More than a century Ilater, [Hailperin, 1965]
[Hailperin, 1986] discusses Boole's methods and shows
that the above mentioned one is equivalent to Fourier
elimination. Moreover, [Hailperin, 1965] expresses
(PSAT) as the linear program (1)-(3) or (1)-(4) and shows
that an analytical expression for the bounds on the prob-
ability 7rn+i can be obtained by vertex enumeration of
polytopes. To this effect, consider the dual D, (Anax)
of(1)-(4):
min(max) yo + 7y (9)

subject to:

I+ A'y2 AL, (B + Ay < A:n-H)' {6)

As the optimal solution of a linear program occurs at
one (or several) ol its extreme points, one has:

Theorem 1 ([Hailperin, 1965]) The best lower (upper)
bound for w4y 13 grven by the following convex (con-
cave) precewsse linear function of the probabilily assign-
ment:

Tmer (T} =  nax (1. ™'y ., (7)

=1,é&y .

(Am41(7) = mun
j=1.2

=l A m

(1) ) (8)

where . (. .) for all j represent the kpax (kmin)
eztreme points of {Dmax} {{(Dnn /).

This result has recently been completed; the dual (D) of
(1)-(3) is:
miny, + 7y (9)

subject to:
Ty, + A'y < 0. (10)

Then, from the duality theory of linear programming

Theorem 2 ([Hansen et al., 1995/} (PSAT) is consisteni
tf and only if the inequalty

(1,m)fr <0

holds for all extreme rays r of (D).

Theorems (1) and (2) lead to complete analytical so-
lutions of instances of (PSAT) given in parametric form,
i.e.. with unspecified truth probabilities x;. Once such
solutions are at hand it suffices, for given values of the
7; to substitute in (11) to check consistency and in (7)
and (8) to obtain best possible bounds.

As algorithms for enumeration of extreme points and
rays of polytopes are readily available (e.g., [Chen et al.,
1991), [Dyer, 1983)) it is possible to obtain analytical so-
lutions for given systems of sentences and probabilities
in an entirely automated way. An example of such an
antomatically generated theorem in the theory of prob-
abilities is the following ([Hansen et al., 1995]):

(11)
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Theorem 3 If logical sentences £, and x3 have prob-
ability 71 and =x respectively and the inference rule
(£, V 22) — 23 has probability w9 then x; + x3 > 1
and ¥2 + 73 > 1 must hold and the probability for xs
to be true is between max{m + 72 + 73 — 2,0} and 73.
Moreover, these bounds are best possible.

While results such as the above are easily obtained by
direct reasoning, automation becomes useful when more
sentences are considered as the numbers of conditions
and ofterms in the bounds increase rapidly.

4 Numerical Solution of PSAT

(PSAT) is NP-hard, as it is in NP and contains the NP-
hard problem (SAT) as a particular case ([Georgakopou-
los et ai, 1988]). Moreover, the problems (1)-(3) and
(1)-(4) have a number of columns exponential in the size
of the input when, as is usually the case, the size (or
total number of variable occurrences) of the sentences
S; is bounded by a constant. (Note that this restriction
on size is natural, as otherwise reading the input would
require time exponential in the number of variables). So
writing (1)-(3) or (1)-(4) explicitly already requires ex-
ponential time. This has led [Van der Gaag, 1990] [Van
der Gaag, 1991] to surmise that solution of (PSAT) re-
quires exponential time in general and not only in worst
case. (In fact, many polynomial cases have been identi-
fied, see [Georgakopoulos et ai, 1988], [Kavvadias et ai,
1990], [Jaumard et ai, 1991]). [Nilsson, 1986] [Nilsson,
1993] stresses less formally, but as strongly, the diffi-
culty of solving instances of (PSAT) with many variables
and suggests Looking for heuristics. [Frisch et at, 1994]
propose under the name of anytime deduction a heuris-
tic approach to (PSAT) based on sequential application
of rules giving smaller and smaller intervals. This has
the advantage of allowing reasoning to be followed step
by step but may not yield best possible bounds. How-
ever, the powerful column generation technique of lin-
ear programming (see, e.g.,[Chvatal, 1983], chapter 18)
can be brought to bear. This was proposed by [Zemel ,
1982] for an application of (PSAT) to reliability, then for
the general case by [Georgakopoulos et ai, 1988], whose
work is extended in [Jaumard et a/., 1991], and ([Hooker
, 1988], see also [Andersen et ai, 1994]). When solv-
ing a linear program by column generation a compact
tableau is kept; at each iteration the entering column
is found by solving a combinatorial subproblem and the
tableau is updated following the rules of the revised sim-
plex method. Finding the column with minimum (max-
imum) reduced cost at a current iteration is equivalent
to minimization (maximization) of

m

Gk — Yo — ) Gik¥; (12)
i=1

where the u; are the dual variables associated with con-
straints (1) and (2). Associating the values true with 1
and false with 0, (12) may be rewritten

Sma1 — uO_ESiui (13)

i=1
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which is a nonlinear expression in the variables X; with
the operators V, A and -. These operators may be elimi-
natedasz = l—z,zAy=zxyandzVy=zr+y—-zxy
where x and y are logical variables. Minimization (max-
imization) of the resulting nonlinear function in 0-1
variables can be done approximately by variable-depth
search ([Kavvadias et ai, 1990]) or tabu search ([jau-
mard et ai, 1991]) and exactly by an algebraic method
([Jaumard et ai, 1991], [Crama et ai, 1990]) or by lin-
earization ([Hooker , 1988], [Andersen et ai, 1994]). As
an exact solution is only required when no more column
with a reduced cost of adequate sign can be found heuris-
tically, variable-depth and tabu search are useful even if
one wants proved best possible bounds. Heuristics will
be used as long as possible and followed by a usually
more time-consuming exact method. The column gener-
ation technique has led to solve large instances of (PSAT),
with up to 140 variables and 300 sentences ([Jaumard et
ai, 1991]) in reasonable computing time. The number
of columns generated is a very small proportion of the
overall number in the instance (e.g., about 2100 columns
for problems with 70 variables, and hence 27° columns,
and 200 sentences).

5 Extensions of PSAT

In addition to uncertainty, expressed by probabilities,
expert knowledge often suffers from vagueness. Indeed
giving a single value for the truth probability of a sen-
tence is quite arbitrary in many situations. Vagueness
may be expressed in (PSAT) by using probability inter-
vals {m;, %] for the truth of sentences S, instead of single
values. Then the expert is not forced to provide more in-
formation than he has. Generalizing (PSAT) in this way
was already proposed by [Hailperin, 1965]. Constraints
(2) are replaced by

x<Ap LT (14)

The column generation technique for (PSAT) described
above extends readily to this case, columns correspond-
ing to slack or surplus variables being treated separately.
The increase in computing time when replacing single
probability values by intervals is moderate ([Jaumard et
ai, 1991]).

Expert knowledge may also be precise in some situa-
tions only, which is expressed by using conditional prob-
abilities m¢; = prob(S;|S;)i. Such conditional probabil-
ities can be integrated into (PSAT) in several ways. As

He — prob(5;5;)
prob(Si|S;) = —-——-—-—pmb(sj)

1991] the two constraints:

, one can use [Jaumard et a

Ac,p = Wi ¥ = 0

App = T,

where Ag = (@a k) With @5 g = 1 if S; A8y is true and 0
otherwise, Ag = (agg) with age = 1if S; is true for X*
and 0 otherwise. A more compact expression, obtained
by elimination of ¥y, is:

Ap=0 (15)



where Ay = (ayg) with aqp = 1 — my; if S; A S; is true,
—7,i; if 5; 18 true and S; is false, and a.,; = 0 otherwise.
Using (1) to add #;j; 1o all columns, one can also write

Asp = m;

where A5 = (agk) with a5 = 1 if S; ASJ' is true, asr = 0
if §; is true and S; is false and as;, = 7|; otherwise. This
corresponds to the three-valued definition of conditional
probability of [de Finetti, 1974]. Consistency conditions
using this last form are derived by [Gilio, 1973), among
others. If best possible bounds are sought for a con-
ditional probability the objective function (4) must be
replaced by:

Aap

App
and the problem becomes a hyperbolic (or fractional)
programming one. [Hailperin, 1986] observes that this
problem can be reduced to a linear program with one
more variable using a standard technique of [Charnes et
al., 1962]: one minimizes A,p adding to the constraints
ABp = 1 and multiplying right-hand sides by a scaling
factor t; once the solution is found, the probabilities p,
are divided by t. Alternately [Jaumard et ai, 199I] one
can apply the lemma of [Dinkelbach, 1967] for fractional
programming and solve (I)-(3), (16) by a sequence of
linear programs. Again column generation techniques
apply and computing time is not much larger than for
standard (PSAT) problems of the same size [Jaumard et
al., 1991]. Intervals for conditional probability values
can be handled as for usual probabilities.

(16)

[Fagin et a/., 1990] develop a logic for reasoning about
probabilities which extends the results of [Nilsson, 1986].
In particular they consider linear expressions in the prob-
abilities Wj. If some of these are unknown, such expres-
sions can be handled within the column generation ap-
proach, again by keeping separate explicit columns.

A step further is made by [Coletti, 1994] who consid-
ers qualitative probabilities or conditional probabilities:
their values are unknown but a partial order on them
is assumed to be given. The resulting generalization of
(PSAT) remains linear for probabilities but is a nonlin-
ear nonconvex problem for conditional probabilities and
thus hard to solve. [Coletti, 1994] presents conditions of
consistency for such problems.

If a system of sentences is not consistent, which easily
happens after addition of rules by different experts, one
may seek to restore consistency with minimal changes.
A first criterion is to minimize the sum of increases of
the probability intervals, possibly weighted to express
the degree of confidence of the expert in his evaluations.
This leads to the following linear program [jaumard et
al., 1991]:

min wf + Wu
subject to:

- <Ap<T+u, plu>0

where f,-(u‘-) in the decrease in the lower bound (increase
in the upper bound) on the probability of Si, w; and Wi
are attenuation factors for these changes.

Another criterion is to minimize the number of sen-
tences to remove in order to restore consistency. The

lp=1,

resulting probiem, called probabilistic maximum satisfi-
ability (PMAXSAT) as it generalizes the (MAXSAT) prob-
lem of propositional logic (e.g., [Hansen e? al., 1990)), is a
mixed-integer programming one ([Hansen et af., 1992]):

min L.y
subject to;

lp:l! I_tsApS?r—-i'u) "+£SU;

p.Luz0, ye {01}

Consistent problems with up to 185 sentences to which
are added 15 to 25 more sentences, and which then be-
come inconsistent, are readily solved, with a small num-
ber of branchings.

6 Bayesian Logic

In Bayesian networks, denoted G = (V, E) (e.g., [Pearl,
1988]), nodes v; € V are associated with simple events
(or logical variables z;, we assume here only two out-
comes are possible for each event, i.e., true or false} and
directed arcs (v, v;) are used to represent probabilistic
dependence among events. Morover, these netwroks are
acyclic. The probabilities of each node conditioned on
the values of its immediate predecessors are given. Then
the probability thal a node 15 true, when condilioned on
the truth values of all ils non-successors, is equal to the
probability that it is true, condilioned only on the truth
values of 1is immediaie predecessors.
Example. [Andersen ef al, 1994] consider a net-
work with six nodes and assume the following con-
ditional probabilities to be given: prob{zsjzsre)
= 1, prob(zs|(—~zs)ze) = 1, prob{zy|zs(—~ze)) =
1, prob(zgl(—rs)(-xs)) = 0, prob(xzjzy) = 04,
prob(zs|-z4) = 0.05, prob(zslzs) = 0.2, prob{xal-z4)
= 0.1, prob(zy|zax3) = 0.95, prob(z;|(~23)xs) = 0.8,
prob(z,|z2{=z3)) = 0.7, prob(z;{(=z2}(—z3)) = 0.1, as
well as the marginal probabilities prob(25) = 0.25 and
prob(zg) = 0.15. As z5 and z4 are assumed to be in-
dependent, prob(z4) = prob(zs V z5) = prob(zsze)+
prob((—z5)z¢)4 prob(zs(—z¢)) = 0.3625.

Let X; denote x; or -z;. Then the probability of any
truth assignment X;, X2,...,X, can be computed by
the chain rule

pI‘Ob(X1X2 . .Xn) =
prob(X1|X2X3 ... Xn)prob(Xz|XsXs ... Xa). . . prob(X,)

and in view of the above mentioned independence as-
sumption this can be done using the specified conditional
probabilities only.

Example (continued). Removing nodes vy and ve as
prob(z4) i8 known, one has

pl‘Ob(.Yt Xg.YaX..;] =
prob(X | XoX3X4)prob{X2|XsX4)prob(Xs|Xs)prob(Xy)
= prob(X| Xz Xa)prob(X2|X4)prob(Xa]Xs)prob(Xa);

for instance prob(z)(—z2)(—zs)(~z4)) = 0.1 x 0.85 x
0.9 x 0.7375 = 0.6306.
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The probability of any sentence S; may be computed
in a similar way. For other types of operations answer-
able by Bayesian networks and in particular for propa-
gation of evidence, see, e.g., [Pearl, 1988], [Andersen et
ai, 1994].

The Bayesian Logic proposed by [Andersen et al,
1994] consists in using the (PSAT) model to interpret
probability statements associated with Bayesian net-
works and then to study various generalizations. To this
effect conditional independence statements are encoded
as additional nonlinear constraints. These constraints
have the general form

prob(4, A4¢}B, By, C,Co) = prob(4, 4o|B, Bo)  (17)

where A, B and C are sets of propositional variables,
with \A\ = a, \B\ = 6, \C\ — c and Ao, Bo and Co are sets
of fixed atomic propositions. [Andersen et ai, 1994] show
that there are (2""—1)2*’(20—1) nonredundant constraints
among those described by (17). From the definition of
conditional probability, (17) is equal to

prob(A4, Ao, B, By, C, Cy).prob( B, By)
- pl‘Ob(A, AQ, B, Bg).prob(B, BU,C, Co)

[Andersen et ai, 1994] propose to solve the extended
(PSAT) model with constraints (17) by generalized Ben-
ders decomposition. Following that approach the prob-
lem is split into a nonlinear master problem in the n
variables and a linear subproblem in the p variables, of
the (PSAT) type. The subproblem is used to generate
from its dual, linear constraints in the n variables, called
Benders cuts, as long as it is infeasible. These cuts are
added to the master problem. The procedure stops af-
ter a finite number of steps when the master problem
is infeasible or the subproblem is feasible. The master
problem has the form of a signomial geometric program
for which specialized algorithms exist. Such problems
belong to global optimization and only instances with
few variables can be solved in reasonable time. This ap-
parently limits the scope of Bayesian logic, even if the
number of m variables is much smaller than the num-
ber of p variables. Fortunately, there are many cases in
which one need only add linear constraints to (PSAT) to
express the independence assumptions of Bayesian net-
works and generalizations of them.

Theorem 4 Computing the probability of a sentence S,
in a Bayesian network can be expressed as a (PSAT) prob-
lem with  conditional probabilities.

Proof. ~ Conditional probabilities for nodes given the
truth value of their immediate predecessors can be ex-
pressed by (15) and marginal probabilities by (2). For
independence conditions, let Bj denote the set of atomic
propositions associated with immediate predecessors of
V, and Aj a similar set for non immediate predecessors
of vi Then the condition

prob(z;|B;, A;) = prob(z;|B;) (18)

18 equivalent to the expression
prob(z;, B;, Aj) = prob(z;|B;)prob(B;, A;)
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which is linear as the right-hand side of {18) is given.
Finally, independence of sets A of nodes without pre-
decessors is expressed by identifying prob{A) with the
product of the corresponding marginal probabilities x. »
Example (continued). Assume one seeks the value of
prob(zz|z1z3). Associate the probabilities py, p2,. .., p1g
to the truth assignements as follows:

PL P2 P3 P4 Ps Ds Pr P8
£ 1 1 1 1 1 1 1 1
z2 1 1 1 1 0 0 0 0O
24 1 1 0 0 1 1 0 O
zs 1 0 1 0 1 0 1 0

Ps Pio Pt P12 P13 P14 Pi1s e

zy O 0 0 0 0 0 0 0
zz 1 1 1 1 0 0 0 O
rzz 1 1 0 0 1 1 0 ©
z4 | 0 1 0 1 0 1 O

Using the technique of [Charnes ef al., 1962, the objec-
tive function is expressed by

min{max) p; + p2 ;
subject to:
Pr+pr+ps+ps=1;
the conditional probabilities, using (15), by
0.8p; ~ 0.2p3 + 0.8ps — 0.2p7 + 0.8ps — 0.2p1;
4+0.8p13 ~ 0.2p15 =0
0.9p2 — 0.1p5 + 0.9p6 — 0.1ps + 0.9p10 — 0.1p12
+0.9p14 —~0.1p16 =0
0.95p; + 0.95p4 — 0.06ps — 0.05ps + 0.95p10 + 0.95p12
-0.09py4 = 0.05p16 =0
U.ﬁpl + 0.6p3 - 0.4p5 - 0.4p7 + D.GPQ + 0.6p11
—0.4p13—-04p;5s =0
0.05p; + 0.05p; — 0.95py — 0.95p10 = 0
0.3pa+03ps~0.7p1; = 0.Tp12 =0
0.2p5 + 0.2ps — 0.8p15 — 0.8p14 =0
0.9p7 + 0.9pg - 0.1p15s — 0.1p1s = 0;
the marginal probability by
p1+pa+ps+pr+petpu+ pa+ pis — 0.3625t = 0
the normalizing constraint by

16
2?;-—1‘—‘:0

i=1

the independence constraints

prob(X2|X4) by
0.6p1 - 0.4?5 + 0-6})9 - 0.4p13 = 9
0.95p, — 0.05pg + 0.95p10 — 005p14 = O;

and the independence constraints prob(X;|X2X3X4) =
prob{.X{|X2X3) by

ptob(Xz |X3X4) =

0.05pr -095py =0
0.3ps -0.7p;; =0
0.2ps —-08p;s =0
09pr —0.1pg =0.



The optimal value is 0.26863.

Clearly the number of sets of non-immediate prede-
cessors of a node may be exponential. However, not
all corresponding constraints need be written. [Lau-
ritzen et al., 1988] explain how to represent indepen-
dence relations by an undirected graph G' in which all
pairs ofimmediate predecessors are joined and edges are
added until the graph is triangulated. Then the joint
probability distribution can be expressed as a product
of marginal probability distributions on the maximal
cliqgues of G', adequately scaled. [Van der Gaag, 1990]
[Van der Gaag, 199l] proposes to use this property in a
decomposition method for (PSAT), discussed in a com-
panion paper ([Douanya et al, 1995]). It is shown there
that the usual (PSAT) model gives the same bounds as
the decomposition-based version. Consequently (PSAT)
takes implicitly into account in the computation of the
bounds the conditional independence constraints (18) in-
volving variables which do not all belong to the same
maximal clique.

Example (continued). A graph G' associated with
the example after deletion of v56 and v6 is composed
of triangles on v1,v2,V3 and on V2,v3,V4. This shows
that when computing bounds on prob (x2Ix1 x3 one
neeed not take explicitly into account the constraints
prob(X;|X3XaX4) = prob(X|X;X3), ie., the four last
ones listed above.

[Andersen c/ a/., 1994] also explore cases where the
number of independence constraints is limited. The main
interest of Bayesian logic is not, however, to propose an
alternate method for the computation made in Bayesian
networks, but to consider more general assumptions.
Example (continued). Assume as done by [Andersen et
al., 1994] that the atomic propositions x5 and x6 are not
independent. Then, 0.25 < prob(x) < 040. Replacing
the line giving the marginal probability of a:4 by

Pre+pat+ps+pr+po+pi+tpatps— 02520
Prt+pa+ps+prtp+rutpiatpis—040t<0

minimizing and maximizing yields bounds of 0.21786 and
0.28358. Note that when using Benders decomposition
the computation of the lower bound required 57 itera-
tions, i.e., solution of 57 (PSAT) and 57 signomial geo-
metric programming problems.

As discussed in [Andersen et a/., 1994], many other ex-
tensions of Bayesian networks can be considered within
the (PSAT) framework: one can replace single proba-
bility values by intervals, add constraints of different
types than the conditional implications, allow for net-
works with cycles, etc. Not all extensions will remain
linear. For instance, if in the example, the marginal
probabilities for x5 and X6 are replaced by intervals and
the independence assumption is kept a quadratic con-
straint

prob(xs A zs) = prob{zs)prob{ze)

arises. The resulting quadratic programs can be solved
in many ways using global optimization techniques.
Finding which are most efficient is an open problem.
To conclude, (PSAT) appears to be a flexible and com-
putationnally tractable model for reasoning under un-
certainty. It has already been extended in many ways,

while remaining linear. Further exploration of the prob-
lems which may be so expressed and of solution methods
for the nonlinear case are attractive topics for future re-
search.
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