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Abstract

Recent work has pointed out that diagnosis
strategies are a necessary tool for the diagnosis
of complex systems. Nevertheless, though cur-
rent diagnosis systems are able to use explicit
system models, their representation of diagno-
sis strategies is only implicit. In this paper we
introduce a formal meta language to express
strategic knowledge in an explicit way, This
language is sufficient to formalize all strategies
introduced in previous work, and extends pre-
vious diagnosis strategies by the integration of
empirical knowledge and by explicit statements
about dependencies between actions. We pro-
vide a declarative semantics for this language
and an architecture for implementation.

1 Introduction

In order to handle the complexity of large-scale diag-
nosis we have to use more than one system model and
see diagnosis as a dynamic process controlled by diag-
nosis assumptions made explicit as working hypotheses
(as formalized first by Struss in [8]). In the same spirit
Boettcher and Dressier ([I], [2]) developed a catalogue of
diagnosis strategies and provided an intuitive semantics
and an ATMS-based implementation for these strate-
gies. The disadvantage of their approach is that they use
a static set of strategies which is coded into the diagnosis
algorithm. Missing a declarative semantics for these di-
agnosis strategies independent of a particular implemen-
tation makes the definition of new or application-specific
strategies more difficult than it should be.

In this paper we extend this approach by introducing
a formal meta-language for the definition of diagnosis
strategies. This language makes strategies explicit and
allows to define strategies specific to an application simi-
lar to defining system models. So our framework extends
model-based diagnosis in the sense that not only the be-
havior of the system but also the strategic knowledge
about the system model is represented explicitly.

2 Working Hypotheses

We consider a system described by a set of formulas SD
in a language C. An observation OBS of the system SD

is a finite set of formulas in £. £ is a first order language
with equality. For simplicity we postulate that £ con-
tains no function symbols with variable interpretation.
Functions with standard interpretation like mathemati-
cal operators etc. are allowed. By ATOMS we denote
the set of atoms of £. Qur theory does not depend on
a particular diagnosis definition. We encapsulate the
underlying diagnosis concept by a function diag, which
maps a theory T to a set of diagnoses D

0, if T" contradictory

diag(T) := a set of diagnoses

D={D|,A..Dn},

This general definition allows for a wide range of diag-
nosts concepts like minimal diagnoses {7], most probable
diagnoses [5], preferred diagnoses {4] and others.

Struss introduced the concept of working hypatheses
into model-based diagnosis in order to make diagnostic
assumptions explicit [8]. The diagnostic assumptions are
necessary in the diagnostic process for evaluating hier-
archies, using simplified behavioral models, focusing on
a particular kind of diagnoses, etc.

Definition 2.1 Working Hypothesis
Let WHY P C ATOMS(L) be a set of atorns. We call
each ground stom wh € WHY P a Working Hypothesis.

otherwise

We name the general set of working hypotheses
WHY P, a subset WH and elements of theses sets wh.
Working Hypotheses can be used to represent multiple
models of the system within one system description as is
shown by the following example.

Example 2.2 Use of Working Hypetheses
[

)

A component (' consists of the subcomponents
C1,...Cs.  The working hypothesis refine(C) can be
used to switch belween the abstract model of C and the
detailed model of (7 in which its subcomponents Cy, ...Cy
are vistble. In the system descriplion SD for some de-
vice contatning C the behavior of C 1s modeled depending
on refine(C):

-refine(CC} — Rules for the abstract model of C
refine(C') — Rules for the detatled model of C
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Now if we want to compute the diagnoses for the sys-
tem based on the detailed model of C we add re fine(C)
to the system description, i.e. we compule diag(SD U
OBS U {refine(C)}).

In general, to compute the diagnoses under a set
of working hypotheses WH we add WH to the sys-
tem description. Additionally we add {-wh| wh €
WHY P\WH}, ie. we make sure that WH is exactly
the set of working hypotheses which are true in the sys-
tem model.

Definition 2.3 Diagnosis under a Set WH of Working
Hypotheses

Consider a system described by (SD COMPS,OBS5),
where SD is the system description, COM FPS 15 the set
of the system components and OBS is a sel of obser-
vations. Let WH be a set of Working Hypotheses. Let
WH = WHYP\WH. Then the set of diagnoses un-
der working hypotheses W H, called diagwp 15 defined
as follows:

diagw g (SDUQBS) =
{DUWHID & diag( SDUOBSUWH
U{-wh] wheWH})}

We include the set WH itself in the diagnosis, so
that it is obvious from the diagnoses to which system
model they belong. So diagw g provides a valul diag-
nosis concept as SD U OBS U D is consistent, where
D € diagw g (SD U OBS).

Working hypotheses are an important concept for
making the current diagnosis assumptions explicit. But
the selection of suitable working hypotheses for a given
situalion 1s implicit in current diagnosis systems. In the
next section we introduce a language that makes the
knowledge for selecting the right hypotheses explicit and
thus provides a flexible and declarative way of specifying
strategic knowledge for the diagnostic process.

3 A Formal Language for Strategies

3.1 Preliminary Considerations

Diagnosis strategies control the diagnostic process by
specifying which diagnosis assumptions should be used
in a given situation. The state of the diagnostic process
manifests itself in the current set of possible diagnoses.
Thus the specification of a diagnosis strategy consists of

* a property of the current set of diagnoses, character-
izing a certain situation that can occur during the
diagnostic process

* an assumption or action modeled by a working hy-
pothesis that is suitable for handling that situation

Example 3.1 Diagnosis Strategy

Consider an abstract component C as described in ex-
ample 2.2. By default, we only use the abstract model
of this component for diagnosis, ie. —refine(G) is used
as working hypothesis. The detailed model is only used
when C is identified as faulty. This can be captured by
the following rule:

If an abstract component C occurs in all di-
agnoses, activate a more detailed model for C
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Figure 1: Diagnosis Systemn with a Meta Level

making its subcomponents visible to the diag-
nostic process.

In order to check if a given strategy should be applied
we have to evaluate a condition on the current set of
diagnoses. Such a condition cannot be modeled as part
of the system description. So Boettcher and Dressier
implement the check of these conditions as part of the
diagnosis system.

However, the only flexible way of evaluating these con-
ditions is by introducing a meta-level in the diagnosis
system as shown in figure 1. So the strategies are de-
fined on the meta level and they are evaluated using the
knowledge obtained so far during the diagnostic process
which is represented by the current possible diagnoses.

So diagwfi(SD U OBS) as defined in the previous
section is the information on which the decisions on
the meta-level are based. For some strategies it is not
sufficient to have information about the faulty compo-
nents only. For example, one necessary precondition
for proposing a measurement point is that the value at
that point is not known. To evaluate this condition we
need to extend the diagnoses by the values predicted in
the corresponding system models. So we postulate that
diagwH(SD  UOBS) contains all predicates needed by
the preconditions of the diagnosis strategies.

3.2 The Meta Language

The language Cstrat for defining diagnosis strategies de-
fines modal logic operators specifying properties of the
current diagnoses as well as for proposing working hy-
potheses. Before we give a formal definition of the lan-
guage we motivate the need for these modal operators
informally.

Modal Operators for Characterizing the
Current State of the Diagnostic Process:

As already stated the preconditions for the application
of diagnosis strategies are statements about the current
set of possible diagnoses. The atomic statements in these
conditions are:

* a property p(x) is true under all possible diagnoses,
or

* a property p(x) is true under at least one possible
diagnosis.



These statements can be formalized using the usual 85
modal operators (O for knowledge, { for belief):

Op pis true under all diagnoses of SDUOBSUWH.

Op p is true under at least one diagnosis of SD U
OBSUWH.

Modal Operators for Proposing Working
Hypotheses

Strategy formulas specify which working hypotheses
should be assumed in a given situation. This is achieved
by the following (informally described) modal operators:

BOwh wh is a necessary working hypotheses in the
current situation, i.e. the diagnostic process cannot
be continued without assuming wh.

®0wh wh is a possible (allowed) working hypotheses
in the current situation.

Actions can also be expressed in this approach by us-
ing a restricted form of procedural attachment in the
system description. For example, we have a working
hypotheses mcasure(x) for proposing a measurement.
The measurement itself is then implemented by a pro-
cedure get_value, which executes the measurement and
remembers the value. The combination of the two con-
cepts is modeled by a rule

Yz : Vv . measure(z) — (get_value(z v) & val(z, v))

in the system description. Thus, from the logical view-
point, the only effect of the predicate get®value is that
it tests if v is the value of x. Our language allows to ex-
plicitly represent dependencies between actions, eg it
is possible to express that action a is to be preferred over
action b if both are possible (see section 5).

Syntax of Cstrat

Besides the modal operators Lstrat contains the usual
logical connectives and quantifiers. In the following def-
initions we only consider V,—>A since this is already a
complete set.

Definition 3.2 Lgirq ~Formula

1. Let L be a formula in the language £. Then OL and
OL are Lgprar—Formulas.

2. Let 5 be a Lgirae—Formula, then 45 and BS are
L sira ~Formulas,

3. Let 5,83 be Lgirqe—Formulas. Then also =5; and
S1 A 52 are Lgieqr—Formulas,

4. Let vy, vy be variables. Then v; = vy 15 an Lsirar~
Formula

Then

§. Lel v be a variable, § an Lsipq—Formula,
VoS ts an Lsyprar —Formula.

6. Nothing else s an Lgepar —Formula.

Note, that £ ¢;prq has the same predicate symbols and
constants as the system description language £. The
varialies denote objects of £. This will be ensured m
the formal semantics presented in the next section. The
following i1s an example for a strategy formula:

Example 3.3 Lstrat-Formula for Structural Refine-
ment
For component C the strategy "Structural Refinement."

can be expressed by the strategy formula
Oab(C') —+ Wre fine(C').

By introducing a predicate refinablc(c) in the system
description, which is true for all components that have
subcomponents, we can generalize this rule:

Ye . (Ore finable(c) A Qab(c) — WOre fine(c))

More examples for the formalization of diagnosis
strategies can be found in section 5. In the next sec-
tion we define the declarative semantics for the strategy
language.

4 Declarative Semantics for Strategies

We consider a diagnosis problem that is now described
by
(SD, STRAT, COMPS, DBS)

where SD is the system description, ST RAT is a set of
L$f rat Formulas, COMPS is a set of components and
OBS is a set of observations.

Diagnosis strategies are used to guide the diagnostic
process. The semantics introduced in this section an-
swers two questions:

¢ What are the possible sequences of diagnostic de-
cisions implied by the given diagnosis strategies,
i.e. which diagnostic process is consistent with re-
spect to the given strategies STRAT (and with SD,
CO MPS, OBS)?

* Which diagnoses are the result of such a consistent
diagnostic process?

4.1 Characterization of the Diagnostic
Process

The state of the diagnostic process can be characterized
by a set of working hypotheses. Then, given SDUOBS
the diagnoses can be inferred by applying diagwH-

The diagnostic process as a whole can be characterized
by specifying which states can be adopted or which tran-
sitions between states are considered. We will therefore
define a state transition relation as follows:

Definition 4.1 State Transition Relation

A State Transition Relation is a binary relation 7v C
2 WHYP , yYWHYP . , relation among sets of working

hypotheses.

In the next example we show how a diagnostic process
can be encoded by a state transition relation:

Example 4.2 Dhagnostic Frocess

A Y Z
Cr‘ 1 = r._"j . ]

e

Suppose we have two components ¢4 and C,, each hav-
ing a structure as used in example 2.2. For this sys-
tem we use strategies for structural refinement, and a
measurement strategy that proposes Y as a measurement
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point if its value t$ unknown. Having made some obser-
vation we start the diagnosis in the most abstract model
without assuming any hypotheses. A look at the result-
ing diagnoses reveals that we do not know the value of
Y and so we cannot say whether C\ or C2 ' faulty. So
we measure the value of Y, i.e. we adopt the hypothesis
measure(Y) and compute the diagnoses again. Now we
identify C, as the faulty component. Therefore we look
at a more detailed model of ¢, to find out which subcom-
ponent of C, caused the error. So we additionally adopt
the hypothesis refine{C>2)- After recomputing the diag-
noses we know that C,, is the faulty component. This
diagnostic process can be characterized by the following
state transition relation R:

R = {(0, {measure(Y)}), .
({measure(Y )}, {measure(Y), refine(C2)}),
({measure(Y ), refine(C:)},

{measure(Y), refine(C3)})}

The first element of R denotes that in the state
described by the empty set of working hypotheses we
adopted the hypothesis measure(Y) which caused a mea-
surement. After measuring we additionally considered
the hypothesis refine(G2)- The termination of the diag-
nostic process in the state {measure(Y), refine{C2)} is
modeled by the cycle in that state.

The course of the diagnostic process need not be linear.
If we had also considered refining component C; instead
of making the measurement, we would characterize the
diagnostic process by

R = RU {(B, {refine(C))}),
({refine(C1)}, {refine(Ci)})}

So, the state transition relation is just an encod-
ing of the working hypotheses we used in each step of
the diagnostic process and is influenced by the diag-
noses found and the strategies given. In the declar-
ative semantics we judge whether or not a diagnos-
tic process (represented by a state transition relation)
is correct wrt a diagnosis problem characterized by
(SD, ST RAT,COMPS, OBS).

The procedural semantics which is only briefly dis-
cussed in this paper computes correct diagnostic pro-
cesses based on this semantics. The user of the diagnosis
system only has to provide the system description and
the strategies.

In order to check if the decisions made during the di-
agnostic process are consistent with the given diagnosis
problem, we define how strategies can be interpreted as
statements about the diagnostic process. First, we de-
fine logical structures which provide the interpretation
for the strategies.

Definition 4.3 Lstrat~Model

A model for Cstrat is a structure M — (W, D, R4, Ry, F),
where W is a set of individuals (called worlds), D is a
domain of individuals, R; and R, are accessibility rela-
tions on the worlds, i.e. subsets of W x W and F is an
interpretation function.

F provides the interpretation for predicates and
ground terms (in our case all ground terms are con-
stants). The values of the variables are given by an
assignment:
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Definition 4.4 Assignment

Given a domein D an Assignment is a mapping from the
set of variables into D. By a(z|q) we denole the assign-
ment that maps variable x to an element d € D and is
defined i the same way as a on the other variables.

The semantics of an Ls5irac~Model is defined as fol-
lows:

Definition 4.5 Semanlics of Lsirar

Let M = (W, D, R1, Ry, F) be an Lgerae—tnodel, S, 51, 5
Ls5icas—Formulas, L an L-Formula, a an assignment
and w e W, Let

aft), tff t is a variable
Val{t,a, w) := { F(t(u,)t), tff t 1s a constant
Then
MEva Plth, .. .tn) iff (Vai(ty,a,w),.. Val(t,,a, w))
€ Fw, P)
MEwet =t ff Val(t;,a,w) = Val{i;, a,w)
MEwa S1AS: ff M Ega S and M g o 52
M Euya S tf M FuwaS
My 8BS iff for all wy € W s.th. wRjw,:
MEw oS
MEwa $5 iff at least one w; € W exists
s.th. wRyuwy and M =y, o §
M Ew o OL tff for all wy € W s.th. wRywy:
MEuw ol
MEwa QL iff at least one wy € W ex-
ists such that wRyw; and
MEw ol
M Ew o ¥e.S iff forallde D . M }:wlamd) S

We will use the following abbreviations:

ME, S iff M .o S for every assignment o

MES iff M Ew S for cveryw € W

M | STRAT ff M E S for every § € STRAT

The connection between the state transition relation
and the L girar—model 1s established 1n the following way:
The possible diagnoses are interpreted as possible worlds,
where all the diagnoses under one set of working hy-
potheses are connected wrt. the [OJ-operator (relation
Ry). The accessibility relation for the M-Operator (re-
lation R;) i1s given by the state transition relation 7,
i.e. diagnoses under different working hypotheses are
connected by R; iff the underlying sets of working hy-
potheses are connected by R.

Definition 4.6 nduced £s.pq -Model Mg

Let R be a stale transition relation. For WH C WHY P
let {Mwr1,...Mwi m. .| be the set of models oblained
Jrom the system descriplion, the observations and the
diagnoses i diagw x (SD U OBS), where mwy 13 the
number of diagnoses. If diagw y(SD UOBS) = 8, then
mwy = 0. The Induced Lg4par-Model My is defined as
Mz = (Wg,Dgr, Ry, R, Fr), where

W ={(WH,i) | WHCWHYPic{l,.. mwu},
mwg > 1}

U {L}, e for every diagnosis under a set of
working hypotheses WH C WHY P there is a
world, There ts one world L representing the
inconswstent states (an inconsistent stale is a
state, where diagwy(SDUOBS) = 0).

Dr = CONST(L), the set of constants of the lan-
guage L.



Rh = {((WH,i),(WH' ;) )IWHRWH Amwg > 1}
{({{(WH,?), L)|GWH' : WHRWH'
Amw g = 0}
{{(L. 1)}
That means the accessibility relation on the di-
agnoses under different sets of workmg hypothe-
ses 18 given by the stale transttion relation R.
Note, that the inconsistent world 15 a dead end,
1.€. no other world 1s accessible from L
Ry ={((WH,i),(WH,j)) | WH C WHYPij €
1...mwy}}
U {{L, L)}, that is, all diagnoses under the same
set of working hypotheses are connected.
Fr : Inierpretation of predwcate P of arity n:

Fr(l,P)= Dg"
Fr((WH, j), P)={Z € Dr"|P(%) € Mwn,;)}

Interpretation of a € CONST(L):
FrUWH,i),a) = a

Mr Ewn S ff forallie {1, ..mwg}:Mg t___(WH,I) 5

The semantics just defined is a correct formalization of
the concepls we introduced in section 3 as is summarized
by the following proposition.

Proposition 4.7 Properties of the semantics
Let L € L be a formuia, wh € WHY P a working hiypoth-
ests, R a state transition relation and WH C WHY P a
sel of working hypotheses. Then
My Ewn OL, tff L s true under all dragnoses in
diagw g(SDUOBS)
Mz Ews OL, ff L 1s true m at least one diug-
noses i diagw p(SD U OBS)

Mr Ewy BOwh, f For all WH' C WHY P unth
WHRWH - wh s true under
all diagnoses i diagw g (S DU
(O BS5)

Mz Ewn 0wh, off There is at least one WH' C
WHYP, s. th WHRWH'
and wh s true under all diag-
noses tn diagw g {(SDUOBRS).

If a working hypothesis wh is known to be derivable
under any diagnosis, then we want to conclude that wh
has to be part of the current state. Formally, we want
to garantee that M_, Ew gy Dwh implies wh € WH.

Problems occur if working hypotheses influence each
other on the level of the system description. Assum-
ing the systern description contains a rule wh’ — wh,
the strategy formula Owh is satisfied if either wh’ or
wh s part of the current state. This is a disadvan-
tage as the different levels of the system description
and the strategies are mixed. The strategy formula
Ohwh’ — Owh expresses the same an the strategy level as
wh' — wh does on the levle of the system description.
The advantage of the strategy formula is that the for-
mula Owh A (Ckeh’ — Owh) can only be satisfied if wh
is part of the current state. In the remainder we assume
that working hypotheses do not interfere.

Definition 4.8 No inlerference
Let — be a transition relalion. Working hypotheses do

not mlerfere each other, if
M., Ewg Quwh Fuhc WH

To conclude the definition of the semantics we answer
the first question posed at the heginning of this section.
We can now characterize the diagnostic processes: A di-
agnostic process is consistent with the underlying strate-
gies if its transition relation satisfies the semantics.

Definition 4.9 Consistent Transstion Relation

Let (SD,STRAT,COMPS,OBS) be the description of
a dwagnosis problem. Let the transition relation R be
the encoding of the diagnosiic process. R s a Con-
sistent Transition Relation for the qiven problem, iff
Mp = STRAT.

Example 4.10 Conststent State Transition Relation
The state transition relalion | mn example {.2 is con-
sistent wri.  the gren problem.  Consider for ex-
ample the transiion from the state {measure(Y)} lo
{measure(Y ), refine{Cy)}: In the strategy for struc-
tural refinement we say that a component should be re-
fined, if it s knoun to be alnormal:

Ye : (Qrefinable(e) A Oab(c) — BOre fine(c))

Since Cy 15 refinable and known to be abnormal, this
strateqy formula postulntes that it 15 refined wn all states
reachable from the current state. This strategy formula
18 salisfied by R, beenuse the only transition we consider
1s to the state {measure(Y'), refine(Ca)}. The measure-
ment strateqy

Qual{Y, 1} A Qual(Y,2) — #UTmeasure(Y)

s tlso sabisfied by R becanuse we know the value of Y and
consequently the left side of this rule 1 not true.

4.2 Results of the Diagnostic Process

So far we characterized which state transitions are al-
lowed during the diagnostic process. In example 4.2 the
diagnostic process terminated after a unique diagnosis
was identified. In general this would be a too restrictive
criterion for terminating the diagnostic process because
we might not have enough knowledge to discriminate
among all the diagnoses. Thercfore we define, that the
diagnostic process terminates in a state where we already
assume all the hypotheses supported by the strategy for-
mulas, because 1n that situation we cannot reach a more
preferred state by applying another strategy.

Definition 4.11 Stable Stale
Let WH C WHY P be a set of working hypotheses, R
a consistent state transition relatton and STRAT a set

of strategy forinulas. The state characterized by WH
[diagw g (SD U OBS)) ts a stable state wrt. R, off

1. diagwu(SD,OBS) #0
2 WH = {uwh | Mz Ewy ¢0wh}

Note, that the underlying transition relation is consis-
tent. The first condition states that SDUOBS U WH
is consistent and the second condition is a fixpoint con-
dition: W H is already the set of all working hypotheses
suitable for the state described by W H. For complexity
reasons we want the set WH to be as small as possible.
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This will be discussed in section 4.4. The result of the di-
agnostic process is given by the diagnoses corresponding
to the stable states:

Definition 4.12 Result of the Diagnostic Process

Let {(SD,STRAT,OBS,COMP) be a diagnosis prob-
lem. Let R be a consistent stale transition relation for
this problem. Then

¥ diagw 1 (SD UOBS)
W H 1s a stable state wrt. R

1s the result of the diagnostic process described by R.

Now we are going to show that for a big subclass of the
strategies that is suitable for specifying all the strategies
presented in this paper, we can guarantee that the di-
agnostic process will reach a stable state if the system
description is not contradictory in itself.

4.3 Monotonicity

By monotonicity, we mean that on each transition in
the diagnostic process we only add some new working
hypotheses to the set of hypotheses we already assume.

Definition 4.13 Monotonicity of a State Transition
Relation

A state transition relation 7v is monotonic, iff
WHRWH' implies WH C WW

We want the effect of strategies to be persistent, un-
less this leads to inconsistency. When applying struc-
tural refinement, we do not want to switch back to the
abstract model we already used. When applying a focus-
ing assumption we want to keep this assumption until we
have either found a diagnosis, or we know that this as-
sumption leads to inconsistency. Even actions like mea-
surements can be described in a monotonic way by a
hypothesis which has the effect that we know the mea-
sured value of a component ¢. Our meta-language is
powerful enough to express the monotonicity of a set of
strategies by adding additional formulas.

Definition 4.14 Moenotonic Eztension of a Set of
Strateqies
Let STRAT be a set of strateques. The monotonic er-

tenston Mon(STRATY) of STRAT s defined as follows:

Mon(STRAT) := STRATU | J
wheWHY P

Lemma 4.15 Let STRAT be « set of strategy for-
mulas, R a state transition relation. Then Mp [
Mon{(STRAT) implies R monotonic

Proof: (by contradiction} Suppose we have Mpr E
Mon(STRAT), but for some WH, WH’ we have
WHRWH' and WH' is no superset of WH, ie,
Juwh : wh € WH\WH'. As wh € WH, we have
Mz Ewy OQwh. As Mon(STRAT) is satisfied we con-
clude that Mr Ewg MOwh andas WHRW H' we know
Me FEwss Owh. Because working hypothesis do not
interfere each other we have wh € WH’. This is a con-
tradiction to the choice of wh.

For monotonic strategies we have the property that
every path of the diagnostic process terminates, i.e. it
leads to a stable or inconsistent state;

{Owh — @Owh}
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Theorem 4.16 Termination of the Diagnostic Process
Let STRAT be a set of stralegy formuias and R a tran-
sition relation, such that Mg | Mon(STRAT). Then
every transition sequence guided by R leads into a stable
or tnconsisten! state.

Proof: WHY P is finite and ‘R 1s monotonic. So if we
only add hypotheses in each step we will reach a fixpoint
(WHY P in the worst case}.

4.4 Minimality

The diagnostic process shall be guided by the strategies.
Only the hypotheses necessary to satisfy the strategies
shall be assumed in each step. This is captured by the
concept of local mamality. We first define a notation
for the working hypotheses entailed by the strategies wrt.
our declaralive sernantics.

Definition 4.17 Supporied
Let R be a state transstion relalion and WH C WHY P.

supportcd(WH,R) := {wh | Mg =wn ¢0wh)}

The set supporied(W H, R) denotes the hypotheses as-
sumed in at least one of the successor states.

Proposition 4.18 wh € supported{W H, R}, off for at
feast one WH' - WHRWH Awhec WH'.

Definition 4.19 Locally Minumnal
A state transition relation R ts locally minimal, iff

1. R s consistent.
2. For  every  set of working  hypotheses
WH, supported(W I, R) 1s a mwmimal sel of hy-

polheses, 1.e. there 15 no consistent R, such that
supported( W H , R') C supported( WH R).

5 Examples of Strategies

First we give the formalization of some additional strate-
gies introduced by Boettcher and Dressler [2].

5.1 Behavioral Refinement

Behavioral Refinement 1s useful if we have behavioral
models at different levels of detail for a component C.
For complexity reasons we initially use the simplest
rodel available. But when different diagnoses predict
different behavioral modes for (7, we activate a more de-
tailed model for C’s behavior 1n order to discriminate
beitween these diagnoses. This can be expressed by

Ye o {3my: 3ma : (Omode(my,c) A Qmeode(maz, ¢)))
— #Q0ref_fm(c)

In the system description, ref_fm(C) activates the de-
tailed behavioral model for a component C.

5.2 Physical Negation

If a behavioral madel other than the unknown mode can
be assigned to a component C, we do not consider the
unknown mode {i.e. we assuine the specified fault models
are complete).

Ye @ (3m: (Omode(m,c) A m # unknouwn))
— $0fm_complete(c)



If fm-complete 1s active for a component (/, we can
assure that € is assigned a known fault mode by adding
the following rule to the system description:

Ye : fm_complete(c)
— (ok({c) V Im : (mode(m, c) A m # unknown))

Our approach allows to formalize all other strategies
presented by Boettcher and Dressier as well. However in
some cases we find it more appropriate to express them
by preferences on diagnoses (see [6] for a discussion of
this issue). The next strategies are completely new ones.
5.3 Integrating Heuristic Knowledge into
Model—Based Diagnosis

Consider an electronic device, where a single chip con-
tains a number of gates (e.g. and-gates). Assume we
have n such chips. From experience we know that a diag-
nosis containing two and-gates on different chips is much
less likely than a diagnosis containing two and-gates on
the same chip, as the latter can be explained by a sin-
gle cause that damaged the whole chip. Such heuristic
knowledge if. easy to describe in our strategy language.
We use loeation{A, C) to denote that component A is
located on chip C. The heuristic assumption expressing
our belief that all faulty and-gates are on one chip is
represented by the working hypothesis focus.chip. The
effect of this assumption is expressed in the system de-
scription as follows:

focus_chip — 3 : Va : ({type(a, And_gate) A abfa))

= location{a,l})

The following strategy specifies that the hypothesis
focus_chip should be assumed if consistent:
(3 Ve : Q({typel(c, And_gute) A ab(c))
— location{a,!l)))
— #0focus_chip

Using #0focus_chip instead of BO focus_chip allows
us to explore states not containing O fecus_chip.

5.4 Measurements and Dependent Actions
If different consistent models of the system predict, dif-
ferent values for some measure point -V we can discrimi-
nate between these values by making a measurement, as
represented by the following strategy rule

Yo : Qual(z, 1) A Qual{z,0) = #0measure(z)

Since measurements require interaction with the user,
we want to express that measurements should only be
made when no other strategies are available.

In some situations, more than one assumption is sup-
ported at the same time. | strat allows to explicitly spec-
ify that a working hypotheses wh should only be consid-
ered, if wh' is not supported. For example the follow-
ing formulas specify the strategies structural refinement
and measurements so that measurements are only per-
formed, if all useful structural refinements have already
been considered.

Ve : (Orefinable{c) A Dab(c) — WQrc finc(c))
Ye : (Orefinable(c) A O—ab{c) = —40re fine(c))
vz :(Qual(z, 0} A Qual(z, 1))

A(Ve : 40refine(c) — Orefine(c))

— BOmeasure(r)

Since we only consider minimal models of these formu-
las, measure(x) will only be assumed if all the conditions
on the left side of the last formula are satisfied.

6 Conclusion and Further Work

This paper defines the concept of diagnosis strategies us-
ing a modal logic language that makes strategic knowl-
edge explicit. Our approach allows not only to express
system models in a declarative way (which is one of
the main advantages of model-based diagnosis), but ex-
tends this declarativity to the meta level by allowing the
declarative description of diagnosis strategies.

We are currently working on an efficient implementa-
tion of the formal concepts introduced in this paper us-
ing transformations of our meta-language into first order
logic and minimal model semantics within our DRUM
diagnosis system.

Finally, we want to thank Carlos Damasio and Luis
Percira for their fruitful cooperation within the INIDA
project on the topics discussed in this paper and in a
companion paper ([3]).
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