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A b s t r a c t 
Instance-based learning methods explicitly remem­
ber all the data that they receive They usually have 
no training phase and only at prediction time do 
they perform computation Then they take a query 
search the database for similar datapoints and build 
an on-line local model (such as a local average or 
local regression) with which to predict an output 
value In this paper we review the advantages of 
instance based methods for autonomous systems 
but we also note the ensuing cost hopelessly slow 
computation as the database grows large We 
present and evaluate a new way of structuring a 
database and a new algorithm for accessing it that 
maintains the advantages ot instance-based learn 
ing Earlier attempts to combat the cost of instance-
based learning have sacrificed the explicit retention 
of all data or been applicable only to instance-
based predictions based on a small number of near 
neighbors, or have had to re-,ntrodtice an exp}tctt 
training phase in the form ot an interpolative data 
structure Our approach builds a multiresolution 
data structure to summarize the database of experi­
ences at all resolutions of interest simultaneously 
This permits us to query the database with the same 
flexibility as a conventional linear search but at 
greatly reduced computational cost 

1 I n t r o d u c t i o n 
Instance-based learning methods [Stanhll et al 1986 
Atkeson, 1989 Ahaet al 1991 Moore 1990] are highly 
flexible general purpose techniques tor making predic­
tions from earlier data Instance based methods (also 
known as memory-based methods or lazy-learning 
methods and closely related to case-based' methods) 
explicitly remember all the data they are shown Only at 
prediction time do they perform non-tnvial amounts of 
computation This behavior differs from more conven­
tional machine learning algorithms in which training 
occurs between the reception of data and prediction 
Examples of instance based methods are nearest neighbor 
kernel regression and locally weighted linear regression 
Example of non-instance-based techniques (they have a 
training phase) are neural networks and decision trees 
Instance based methods can sometimes be a preferable 
form of function approximator There are three main rea 
sons for this 

Flexible Inductive Bias 
With very little data a method such as nearest neighbor 
gives sensible conservative predictions it does not wildlv 
extrapolate But as the amount of data increases so does 
the complexity of the function that nearest neighbor can 
approximate This contrasts with for example multi-layer 
neural networks that do not by default have this property 
of representative power increasing locally according to the 
amount of local data In the limit very local methods can 
learn any piecewise continuous function to arbitrary preci 
sion (although with high dimensional uniformly distrib­
uted input the amount of data to do this can be enormous) 
For practical use in function approximation, much better 
instance-based methods than nearest neighbor are avail­
able that form local linear models and compute weighted 
averages of data to remove the noise from predictions (e g 
see(Atkeson 1989 Grosse I989]) 

Learning parameters need not be fixed in advanc e 
There are many learning parameters in instance-based 
algorithms One ot the most important concerns the extent 
10 which the smoothing of noise is traded against goodness 
of fit Others include (1) the parameters of a distance metric 
for determining the similarity between an input point and 
the query and (II) the discrete decision of which attributes 
are relevant Instance based methods do not need to decide 
on these learning parameters in advance They can use 
whichever parameters they desire tor one prediction and 
then have the option of using an entirely different sel for 
another prediction This is of immense use in an autono 
mous system that is both making new predictions online 
and tuning its learning parameters online as new data is 
arriving |Moore el al 1992] In contrast a non instance-
based method must choose a parameter set and then train 
with it If a different parameter set is later needed then it is 
necessary for a non-instance-based method to retrain itself 
(and it is therefore also necessary for it to remember all 
previous data) 

Instance based can cover the global local spectrum 
Instance based methods do not necessarily have to be 
local predictors based on a small handful of local 
datapoints This is particularly important lor large num­
bers of attributes, highly noisy data and for small data 
bases Many of our own applications involve very noisy 
systems in which the underlying function is non linear but 
generally smooth In these cases the best instance-based 
function approximator might for example use the closest 
30% of all datapoints to the query to form its prediction In 
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some extreme cases for example if the underlying func­
tion were nearly linear and local linear regression was in 
use, this figure might increase to 80% of the datapoints— 
essentially a global not local function approximator 

The properties described above make instance-based 
methods particularly desirable for autonomous systems 
that spend their lives in environments that are not known 
in advance and in which the designers will not be able to 
manually tweak the learning parameters during operation 

Unfortunately instance-based methods have a serious 
problem As the database grows large it becomes increas­
ingly expensive to make predictions Each prediction 
involves searching the database to find similar earlier 
datapoints This can mean hopelessly slow performance 
after merely tens of thousands of predictions Various 
researchers have attempted to deal with this problem [Aha 
et at 1991 Grosse 1989 Moore 1990 Skalak 1994] 
but as we wil l see in Section 7, none in a manner that 
avoids sacrificing at least one of the benefits of instance-
based methods described above This paper describes a 
new solution based on a multiresolulion hierarchical 
structuring of data, which retains all the above properties 
of instance-based learning while providing fast instance-
based performance Asymptotically it reduces the cost of a 
query from linear to logarithmic in the number of 
datapoints 

2 K e r n e l Reg ress ion 
The approach taken in this paper can be applied to a wide 
variety of instance-based algorithms but here we wil l con­
centrate on one of the most well known examples Kernel 
Regression (see for example IFranke 1982J) Assume 
that datapoints consist of (input output) pairs such as 
(X1 y1) (x2 y2) (XNYN) where the inputs are d-element 
real-valued vectors and the outputs are scalars and to date 
we have observed N datapoints The prediction problem is 
given an input vector xq which is called the quer\ how to 
predict the output yCSL(xq 

The k.-nearest neighbor solution to this problem would be 
to find the k datapoints that have input vectors closest to 
the query and to take the average of the corresponding out­
put values as yest(xq) Kernel regression uses a similar idea 
except that a weighted average of all the points in the data­
base is used and the points closest to the query are 
assigned the largest weight Thus 

y w i 
* x > , 

where w( is the weight assigned to the *th datapoint in our 
memory and is large for points close to the query and 
almost zero for points far from tlie query It is calculated as 
a decreasing function of Euclidean distance for example 
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The bigger the parameter K is the flatter the weight func­
tion curve is which means that many memory pointi con­
tribute quite evenly to the regression As K tends to infinity 
the predictions approach the global average of all points in 
the database If the K is very small only closely neighbor­
ing datapoints make a significant contribution 

K" is an important smoothing parameter for kernel regres­
sion It the data is relatively noisy, we expect to obtain 
smaller prediction errors with a relatively large K If the 
data is noise free then a small K wi l l avoid smearing away 
fine details in the function This is illustrated in Figure 1 

Figure l For the noiseless data in the top example a 
small K gives lhe besL regression (in terms of future 
predictive accuracy) For the noisy daia in lhe bollom 
example a larger K is preferable 

The drawback of kernel regression is the expense of enu 
merating all the distances and weights from the memory 
points to the query Several methods have been proposed 
to address this problem reviewed in Section 7 

3 M u l t i r e s o l u t i o n s t r u c t u r i n g o f d a t a p o i n t s 
The main idea of multiresolution instance-based regres­
sion is grouping The following figure shows a 2-d input 
space case Given a query based on the distance from each 
point to the query we could calculate a weight for every 
point the input space 

Figure 2 Grouping data according to distance from 
query 
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tenon to satisfy both of these intuitions Cutoff only if 

where NB is the number of datapoints below the current 
node Simple algebra reveals that 
guarantees 

where G is the number of groups finally used in the search 
(and thus G < NT hopefully considerably less) Notice that 
this cutoff rule requires us to know Ew, in advance which 
of course we do not Fortunately the sum of weights 
obtained so far in the search can be used as a valid lower 
bound and so the real algorithm makes a cutoff if 

where i is a system constant 

6 E x p e r i m e n t s a n d resu l t s 
Let us review the performance of the multiresolution 
method in comparison to kernel regression In the hrst 
experiment we use a trigonometric function of two inputs 
with added noise x, = uniformly generated random vector 
with all components between 0 and 100 and v, = a function 
of x, (which ranges between 0 and 100 in height) with 
gaussian noise of standard deviation 10 

10 000 datapoints were generated Experiments were run 
for different values of kernel width K In all experiments 
the cutoff threshold T was 0 005 Figure 4a shows the test-
set error on 1000 test points for both regular kernel regres 
sion ( Regular KR ) and multiresolution kernel regression 
( Multires KR ) graphed for different values of K The 
values are very close indicating that multires KR is pro­
viding for a wide range of kernel widths a very close 
approximation to regular KR Figure 4b shows the compu­
tational cost (in terms of the summations that dominate the 
cost of KR) of the two methods Regular KR sums all 
points and so is a constant 10 000 in cost Multires KR is 
substantially cheaper for all values of K but particularly so 
for very small and very large values 

Figures 5a and 5b show corresponding figures for a similar 
trigonometric function of five inputs This still shows sim­
ilar prediction performance as regular KR The cost is still 
always less than regular KR but in the worst case the com­
putational saving is only a factor of three (when K = 40 
multires KR cost = 3 200) This is not an especially 
impressive result However for any fixed dimensionality 
and kernel width costs rise sub linearly (in principle loga-
nthmicallv) with the number of datapomts To check this 
we ran the same set of experiments for a datasel of ten 
times the size 100 000 points The results in Figure 6 
show that with this large increase in data the effectiveness 
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of multires KR becomes more apparent For example con­
sider the K = 40 case With 100 000 datapoints instead of 
10 000 the cost is only increased from 3 200 to 5 700 
while the cost of regular KR (of course) increased from 
10000 to 100 000 

!nvestigating the r threshold parameter 
Next we will examine the effect of the 1 parameter on the 
behavior of the algorithm As T is increased we expect the 
computational cost to be reduced but at the expense of the 
accuracy of the predictions in comparison to the regular 
KR The results in Figure 7 agree with this expectation the 
left hand graph shows that for 2-d 3-d 4-d and 5 d 
datasets Teach with 10 000 points) the proportional euor 
between multires and regular regression increases with x 
The right hand graph shows a corresponding decrease in 
computational cost 

rigun. 7 (Upper) the relative accuracy and (lower) the 
computational cost of multires KR againsl t the cutoff 
threshold 

Real datasets 
In another experiment we ran multires KR on data from 
several real-world and robot-learning datasets Further 
details of the datasets can be found in [Maron and Moore 
1994| Thev include an industrial packaging process tor 
which the slowness of prediction had been a reasonable 
cause for concern Encouragingly multires KR speeds up 
prediction by a factor of 100 with no discernible difference 
in prediction quality between multires and regular KR 
This and other results are tabulated below The costs and 
RMS values given are averages taken over an independent 
test set Nolabl> the datasets with the least savings were 
pool which had few datapoints and robot, which was 
high dimensional 

High dimensional non-uniform data 
Our final experiment concerned the question of how well 

the method performs it the number of input variables is rel­
atively large but if the attributes are not independent For 
example a common scenario in robot learning is for the 
input vectors to be embedded on a lower-dimensionaI 
manfold We performed two experiments, each with 9 
inputs and 10 000 datapoints In the first experiment the 
components of the input vectors were distributed uni-
formly randomly In the second experiment the input vec­
tors were distributed on a non-linear 2-d manifold of the 9 
d input space The results were 

The results indicate that as would be expected the cost 
advantage of multires KR is not Urge (a factor of 3) for 9-d 
uniform inputs but is far better if the inputs are distributed 
within a lower dimensional space 

7 R e l a t e d W o r k a n d D iscuss ion 
There has not been room in this paper to discuss a number 
of additional flexibilities that multires KR provides Once 
the kd-tree structure is built it is possible to make different 
queries with not only different kernel widths K but also 
different Euclidean distance metrics with subsets of 
attributes ignored or with some other distance metrics 
such as Manhattan It is also possible to apply the same 
technique with different weight functions and tor classifi-
cation instead of regression 

It should be remembered that although we have succeeded 
in reducing the cost of instance-based learning there are 
other methods (outlined below) in the literature for doing 
so Why might Multires be preferable'' This depends upon 
the extent to which the application needs the following 
advantages of instance based learning described in Section 
1 

• Flexibility to work throughout the local/global spec­
trum 

■ The ability to make predictions with different 
parameters without needing a retraining phase 

Multires provides for both No other software method to 
our knowledge does There is however the simple hard­
ware alternative of using a fast enough computer The stan­
dard kernel regression method can be parallelized with full 
efficiency 

kd-trees have frequently been used in instance-based 
learning methods for nearest neighbor searching or for 
range searching [Preparata el a l , 1985] The range-search 
solution to kernel regression is to find all points in the Ad-
tree that have a significant weight and then only sum 
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together the weighted components ot those points This is 
only practical if the kernel width K is small If it is large 
all the datapoints may have a significant weight but only a 
small local variation in weight Range searching would 
sum all the points individually Multires would visit only 
relatively large intermediate nodes (because the weight 
variation is locally low) and so would still be cheap Even 
in cases ot small kernel widths and large amounts of data 
the multiresolution method can be preferable lo the range 
search method because it may nol need to search all the 
way down to the leaf nodes 

Another solution lo the cost ot instance-based learning is 
editing (or prototypes) most datapoints are forgotten and 
only particularly representative ones are used (e g [Kibler 
and Aha 1988 Skalak 19941) Kibler and Aha extended 
this idea further by allowing datapoints to represent local 
averages ot sets of previous!) observed datapoints This 
can be effective and unlike range-searching can be appli 
cable even for wide kernel widths However the degree of 
local averaging must be decided in advance unlike Mul­
tires queries cannot occur with different kernel widths 
without rebuilding the proiotvpes A second occasional 
problem is that if we require very local predictions, the 
prototypes must either lose local detail by averaging or 
else all the datapoints are stored as proiotvpes 

There are interesting parallels between prototypes and 
Multires The intermediate nodes of the k.d tree can be 
thought ot as labncaled prototypes summarizing all the 
data below them 

Decision trees and A.d-trees have been previously used lo 
cache local mappings in the tree leaves [Grosse 1989 
Moore 1990 Omohundro 1991 Quinlan 1993 These 
algorithms provide fast access once the tree is built but a 
new structure needs to be built each time new learning 
parameters are required Furthermore unlike the multires­
olution method the resulting predictions from the tree 
have substantial discontinuities between boundaries Only 
in [Grosse 1989] is continuity enforced bul at the cost of 
tree-sire tree-building-cosi and prediction-cost all being 
exponential in the number of input variables 

Dimensionality is a weakness of Multires Diminishing 
returns set in above approximately 10 dimensions if the 
data is distributed uniformly This is an inherent problem 
for which no solution seems likely because uniform data in 
high dimensions will have almost all datapoints almost 
exactly the same distance apart and a useful notion of 
locality breaks down 

This paper discussed an efficient implementation of kernel 
regression We are applying exactly the same algorithm to 
locally weighted polynomial regression in which a predic­
tion fits a local polynomial to minimize the locally 
weighted sum squared error The only difference is that 
each node of the id-tree stores the regression design matn 

ces of all points below it in the tree This permits fast pre­
diction and also fasl compulation of confidence intervals 
and analysis of variance information 

Multires as described here is only applicable to numeric 
features An interesting avenue for future work would be 
ways to extend the method to binary or symbolic features 

8 C o n c l u s i o n 
Instance based methods make use ot a database of multidi 
mensional data Multiresolution instance based methods 
provide a means for performing queries quickly even 
when the amount ot data is enormous An important mes­
sage of this paper is that for efficient accessing ol large 
instance bases (or case bases or memory bases) it is not 
necessary to resort to throwing data away Intelligent 
structuring is an alternative 

A c k n o w l e d g e m e n t 
We wish to thank the IJCAI reviewers for insightful and 
useful comments This work was suppon bv a research gift 
from 3M corporation and an NSF Research Initiation 
Award 

References 
[Kibler and Aha I988| I) Kibler and D W Aha, Comparing Insiance 
Averaging and lnstance Filtering Learning Algonthms Procedings of 
3rd European Working Session on Learning Pilman I988 [Alkeson I989| C G alkeson Using Local Models to Control Move 

ment Proceedings of Neural Information Processing, Systems Confer 
ence 1989 
[Franke 1982] R franke Scattered Data lnicrpolmion TeMs ol Some 
Mclhods Matliemntii s of ( amputation Vol 1H No 1*57 January 1982 
[Grosse I9K9] E Grosse LOESS Multivanaic Smoothing by Moving 
Least Squares Appnixtmatton theory VI Edited by C K Chul L L 
Schumaker and J D Ward Academic Pre*;s 19K9 
[Maron and Moore 1944J O Maron and A W Moore. Hoellding Races 
Accelerating Model Selection Search Adiant es in Neural Information 
Prttctssi/n, Systems b 1994 
[Moon, l^DJ A Vv Moore AcLfUisilion of Dynamic ConLro) KnouJ 
edge for a Robotic Manipulator Proteedinqs of the 7th International 
Conference on Maihine learning Morgan Kjulmann |990 
[Moure via! 1992] A W Moore and D J Hill and M P Johnson An 
Empirical Investigation of Brule Force lo choose Features Smoothers 
and Function Approximators Computational Learmnf> Theory and Naiu 
ral I^arnuu, -lysterm Volume 1 edited bv S Hanson and S Judd and T 
1'clM.hc MIT Press 1992 
[Omohundro 1991] S M Omohundro Bumpirces for T fhcienl Function 
Constrain! and Classification Learning Ad\ames in Neural Infonmition 
PratFTVirn, Systems 1 1991 
[Prcparata ei at 19H5J F P Preparata and M Shamos Computational 
Geometry Sponger Verlag I9RS 
[Quirlan 1991] J R Quinlan Combining Instance Ha.scd and Model 
Based LtaminL, Mathtne Learning Prtneedmi,s of the Tenth Interna 
tiona! Conference 1991 
[Skalak 1994] D B Skolak Prototype and Feature Selection hy SJIII 
pling and Random Mutation Hill Climhing Algorithms Machine Learn 
inf; Proceedings of the Eleventh Inttrnational Lonfereni e 1994 
[Slanfill eta! 19ftfi] C Sianfill and D Wall/. Toward*, Mt.morv Based 
Reasoning Conuimnications of the ACM 29(12) 19H(i 

DENG AND M00HE 1239 


