
K n o w l e d g e R e p r e s e n t a t i o n i n t h e L a r g e 

Peter D. Ka rp Suzanne M. Paley 
Artificial Intelligence Center 

SRI International 
333 Ravenswood Ave. 

Menlo Park, CA 94025 
Phone: 415-859-6375 Fax: 415-859-3735 
pkarp@ai.sri.com paley@ai.sri.com 

Abst ract 

Frame knowledge representation systems lack 
two important capabilities that prevent them 
from scaling up to large applications: they 
do not support fast access to large knowledge 
bases (KBs), nor do they provide concurrent 
multiuser access to shared KBs. We describe 
the design and implementation of a storage 
subsystem that submerges a database manage­
ment system (DBMS) within a knowledge rep­
resentation system. The storage subsystem in­
crementally loads referenced frames from the 
DBMS, and can save to the DBMS only those 
frames that have been updated in a given ses­
sion. We present experimental results that 
show our approach to be an improvement over 
the use of flat files, and that evaluate several 
variations of our approach. 

1 In t roduc t i on 
The negligible impact of frame knowledge representation 
systems (FRSs) on the general practice of computing is 
an embarrassment to the field of artificial intelligence 
(AI). Knowledge representation (KR) researchers have 
investigated this style of information management for 
roughly 20 years. Although there is a rich history of 
theory and practice, a plethora of good ideas, and a large 
number of implemented systems (more than 50 by one 
count [4]), KR systems have not seen widespread use —-
either within the AI community, or within the broader 
computing world (such as the commercial sector). 

This situation is a pity because FRSs are superior to 
conventional database-management systems (DBMSs) in 
a number of respects. They include inference capabili­
ties based on production rules (which have been adopted 
in DBMSs of late), classification, and inheritance. Yet 
superior inference capabilities are not their only advan­
tage, despite the focus of the KR community on in­
ference. Some FRSs support run-time schema alter­
ation, which facilitates the evolution of complex knowl­
edge base (KB) schemas. Furthermore, whereas the 
database community discovered the conceptual benefits 
of the object-oriented data model only within the past 
5 years, FRSs have used an object-oriented data model 

since their inception, and the FRS object model is richer 
than that used in object-oriented DBs (consider facets 
and concept-definition languages). 

Our hypothesis is that inattention to engineering is 
one of the principal reasons for the failure of FRSs from 
a practical perspective. The architecture of FRSs does 
not scale up to support rapid storage and retrieval of 
large KBs, nor does it provide concurrent development 
of shared KBs by multiple users. Nor do FRSs support 
the distributed, networked architecture that is the foun­
dation of modern computing. Without these capabili­
ties, FRSs are doomed to remain applicable to building 
only small systems of at most a few thousand objects. 

Our group is reengineering two FRSs — LOOM and 
THEO — to contain an underlying storage subsystem 
that provides fast, distributed, multiuser access to large 
KBs. The storage subsystem is implemented using a 
DBMS, but is invisible to the user. We therefore combine 
the advantageous knowledge-level capabilities of FRSs 
with the powerful symbol-level capabilities of DBMSs to 
obtain the best of both worlds. 

Successful engineering relies on both design and exper­
imentation. This paper presents our design of an FRS 
storage subsystem and the results of experiments with a 
number of variations of that design to assess their rel­
ative merits.1 Our results show that our architecture 
is an advance over current systems in several respects. 
We also present a prefetching strategy that can further 
improve storage-subsystem performance. 

2 Design of the Storage Subsystem 
All existing FRSs process their KBs in data structures 
that exist entirely in memory, forcing users to read the 
whole KB into memory from disk before its use. To pro-
vide persistence, KBs are written to disk files in their 
entirety. Saving or loading a KB can therefore be an ex­
pensive operation, taking time proportional to the size of 
the KB. An effective cap is placed on the size of a KB by 
the amount of time that users are willing to wait for save 
and load operations, with an absolute cap based on the 

1A lack of experimentation within the KR community is 
another factor behind the limited success of these systems. 
Few publications provide us with any empirical understand­
ing of how FRSs perform in practice, or of the practical trade­
offs among different FRS features. 

KARP AND PALEY 751 



size of virtual memory. In a more scalable arrangement, 
load time and memory usage would be proportional to 
the number of frames referenced; save time would be 
proportional to the number of frames updated. 

Our storage subsystem submerges a DBMS within an 
FRS. The FRS retrieves frames incrementally, on de­
mand, from the DBMS. The FRS tracks which frames 
have been modified and transmits those frames back to 
the DBMS during a KB-save operation. Given this basic 
architecture, other choices must be made: How should 
FRS information be organized in the DBMS? One of our 
goals is that the DBMS should be invisible to the end 
user. The user should not be obliged to understand the 
DBMS schema, nor to design a new DBMS schema for 
every new KB. Instead, we, as designers of the storage 
system, must create a generic schema that accommo­
dates all potential FRS information. In fact, we have 
designed and evaluated several such schemas empirically 
(results omitted here because of space limitations). 

Another choice concerns the granularity at which in­
formation is transferred between the DBMS and the 
FRS. Our goals are for KB loading to take time pro-
portional to the amount of information the application 
actually references; KB saving should take time propor­
tional to the number of frames updated. The simplest 
mechanism that satisfies these constraints is to transfer 
a single frame from the DBMS to the FRS when the 
user application references a frame that is not currently 
in memory (analogous to page faulting in operating sys­
tems). We have also explored the transferring of several 
frames together. 

Which type of DBMS is best suited to the role of 
a frame storage system? Our storage-subsystem de­
sign does not place many requirements on the underly­
ing DBMS. The requirements are that frame definitions 
must be stored as uninterpreted collections of bytes, that 
frame definitions be saved and fetched in their entirety, 
and that only a few interframe relationships are stored 
explicitly in the DBMS, such as the class-instance re­
lationship. Given the maturity of relational technology, 
it was logical to consider using a commercial relational 
DBMS (RDBMS) for persistent storage. However, the 
simple nature of our storage requirements led us to also 
consider using a low-level object manager. Our reason­
ing is that a low-level storage manager might be more 
efficient than a sophisticated commercial RDBMS. By 
using a small group of pertinent features, we might be 
able to avoid the overhead of a general-purpose system. 
We have experimented with both a commercial RDBMS, 
and an extensible storage management system, EXODUS, 
from the University of Wisconsin [3]. Here, we compare 
the performance results for EXODUS with previous re­
sults obtained using the RDBMS [5]. 

The EXODUS storage manager is a flexible, low-level 
system intended for use as the foundation for domain-
specific information management systems. Unlike a full 
database system, it does not provide advanced features 
such as high-level schema creation and manipulation op­
erations, or query specification and optimization. It is 
accessed directly through a library of client interface rou­
tines, rather than through a declarative query language 

such as SQL. We thought that its simplicity, and con­
sequent efficiency, might be well-suited for our project, 
where there is only one application (the FRS), and the 
objects to be stored are relatively straightforward. 

3 Storage Subsystem Imp lementa t ion 
This section first provides an overview of the frame struc­
tures that LOOM and THEO employ, and then discusses 
the architecture of the storage subsystem, and its inter­
actions with LOOM and THEO. 

3.1 LOOM Structures and Operation 
A LOOM KB contains three types of frames: concepts, 
instances, and relations (we have simplified the descrip­
tion of LOOM for expository purposes). A concept (or 
class) consists of a name and a definition. The concept 
definition is a set of necessary and sufficient conditions 
that an instance must meet to be an instance of the con­
cept. Given this information, the LOOM classifier ar­
ranges all concepts into a subsumption (generalization) 
hierarchy. A LOOM relation (not to be confused with 
the database definition of a relation) is a KB-wide spec­
ification of the properties of a slot, such as its domain 
and range. 

Instances have one or more parent concepts and some 
set of slot (attribute) values. Based on these charac­
teristics, the LOOM classifier can infer the concepts to 
which the instance belongs. LOOM can perform both 
forward- and backward-chaining classification-based in­
ference. All our tests and experiments have used 
LOOM's backward-chaining mode. We believe our sys­
tem would also work with the forward-chaining mode. 
However, to make the required inferences, creation or 
modification of a single frame could trigger a large num­
ber of frame faults by LOOM's classifier, which could 
hurt performance. We do not currently support LOOM's 
production-rule inference. 

3.2 THEO Structures and Operation 
THEO shares many characteristics with LOOM. THEO 
frames are arranged in a generalization hierarchy, and 
THEO frames consist of slots that contain values. How­
ever, THEO classes do not have associated definitions, 
and THEO does not perform classification. Given the 
basic structural similarity of LOOM and THEO, it is 
natural to develop a storage system that can serve both 
FRSs. 

For simplicity, the remainder of our discussion usually 
mentions LOOM only. Statements we make about the 
interaction of LOOM with our storage system also apply 
to THEO except where we state otherwise. 

3.3 EXODUS Schema 
We have designed an organization of EXODUS storage 
structures that can simultaneously store multiple frame 
KBs. The organization for a sample KB is shown in Fig­
ure 1. Each KB is represented by two EXODUS files and 
six EXODUS indexes. An EXODUS file is a collection of 
objects; any object can be retrieved quickly given its ob­
ject id (OID) — an integer. An EXODUS index allows 
fast retrieval of a datum given a key. For example, the 

752 KNOWLEDGE BASE TECHNOLOGY 



Frames index in Figure 1 allows us to map a symbolic 
frame name to its OID. Each frame is stored as a single 
object in the frames file. A frame object contains the 
frame's body (an ASCII string that encodes all informa­
tion required to recreate the frame) and type. Two types 
of frame are supported: classes and instances. LOOM re­
lations are stored in a separate relations file. 

The frames and relations indexes relate frame names 
to their corresponding OIDs. Relationships among 
classes and instances are maintained in the other four 
indexes. The supers and subs indexes relate class names 
to their superclasses and subclasses, respectively. The 
instances and classes indexes relate classes to their in­
stances and instances to their parent classes. Our ap­
proach therefore stores the taxonomic hierarchy for a 
KB persistently. When the hierarchy changes, our stor­
age system will store these changes persistently. This 
storage organization allows fast retrieval of individual 
frames by name, as well as retrieval of portions of the 
taxonomic hierarchy. 

Each EXODUS volume has a special root entry area, 
in which meta-information about a KB is stored. This 
information consists of handles for the two EXODUS files 
and six indexes, and meta-information about the KB 
that is used by the application. An application can have 
several KBs open simultaneously. The EXODUS client 
interface (ECI) maintains a table of open KBs. 

3.4 Frame Faulting 
Users employ both function-call interfaces and declar­
ative languages to manipulate LOOM KBs. These op­
erations (such as retrieving or altering the value of a 
slot within a particular frame) generate frame references. 
LOOM resolves these references by searching internal ta­
bles that associate frame names with the data structures 
that implement frames. A frame fault occurs when an 
application (or LOOM itself) references a frame F that 
is not in memory. We have modified LOOM to call our 
storage system when a frame fault occurs. The storage 
subsystem faults a frame into memory by retrieving its 
body from the DBMS server. Because the ECI is net-
worked, multiple users can access and update the same 
KB in a distributed (but uncoordinated) fashion. (Our 
future work will investigate methods of controlling mul­
tiple updates to a shared KB.) 

After retrieving the body of F from the DBMS, the 
storage subsystem calls standard LOOM functions to cre­
ate F within the LOOM KB. This process is complicated 
by the fact that most frames are related (connected) to 
other frames in the KB. For example, a concept is related 
to its superconcepts, subconcepts, and instances. An in­
stance will contain references to its parent concepts, and 
possibly to other instances serving as fillers of its slots. 
LOOM normally expects all of these other frames (called 
the context of F) to be present in memory. Because it 
can be expensive to fault in the entire context of F, we 
load in as small a portion of the context as possible. 

Part of the context is the ancestor frames of F. When 
processing a fault to frame F, we first fault in every 
direct parent of F that is not currently in memory (ref­
erences to the parents of these parents are generated re­

cursively). Therefore, all parents of F are loaded before 
F is defined. 

The second part of the context is those frames referred 
to by F. The LOOM frame data structures implement 
such interframe references as LISP pointers. Imagine 
that F refers to a frame G that has not yet been faulted 
into memory; therefore no pointer to G can be defined. 
One solution to this problem is to fault G into memory 
— a solution we reject because when applied recursively 
it could conceivably cause the entire KB to be faulted 
in. The solution we chose is to create a stub object (a 
placeholder for G), to which a pointer can be created. 
If G is later faulted in, the storage subsystem replaces 
the stub in a manner that retains the validity of existing 
pointers. See [5] for more details on frame faulting and 
stub management. 

4 Performance Exper iments 
The goal of the experiments discussed herein was to 
measure storage system performance as a function of 
knowledge base size. We therefore generated a series 
of random KBs, identical in every respect except num­
ber of instances. Each KB had 100 concepts, all prim­
itive, with just one super each. Instances averaged five 
slots apiece, with an average of two fillers per slot. Half 
the slots were filled by integers, and the other half were 
filled by symbols. These parameters were chosen be­
cause they approximate the characteristics of SOCAP, 
the transportation-planning KB that is driving our work 
with LOOM [8]. Knowledge bases were generated with 
500, 1000, 2000, 4000, and 5000 instances. For compar­
ison, the same set of KBs was generated and saved to 
native LOOM flat files, to native THEO flat files, to the 
DBMS (both LOOM and THEO versions), and to Exo-
DUS (both LOOM and THEO versions). These variations 
of five KBs form the basis for our experiments. 

Experiments were run using LOOM 2.1 and the Febru­
ary 1993 version of THEO, running on Lucid Common 
Lisp 4.1.1. Both the FRS and the DBMS server were 
running on the same workstation, a SPARCstation2 10 
model 41 with 64 MB of physical memory. LISP was 
restarted before every trial, to avoid caching effects, and 
a garbage collection was executed immediately before 
timing. Each trial was repeated three times, and the re­
sults averaged (repetitions typically varied by less than 
10%). Overall elapsed times were measured using the 
LISP time function. We measured the time spent in 
LOOM, THEO, the ECI, and the storage subsystem by 
monitoring key procedures using the CMU monitoring 
package. The CPU time spent in the DBMS server pro­
cess was measured using the UNIX ps utility to observe 
total CPU time before and after each experiment. 

Figure 2 shows the time required to reference some 
number of randomly chosen instances from KBs of dif­
ferent sizes for both LOOM and THEO. Each reference 
faults in at least one frame from the DBMS (when the 
parent classes of an instance are not memory resident, 
they are also faulted in). Each dashed line in these 

2 All product names mentioned in this paper are the trade­
marks of their respective holders. 

KARP AND PALEY 753 



Figure 2: Comparison of KB loading times for THEO and for LOOM. The solid line shows the time required to load entire 
KBs of various sizes from flat files. The dashed lines show times required to fault frames from EXODUS in response to 
references to instances in KBs of various sizes. 

graphs shows the time required to reference N instances 
in KBs of different sizes. For example, the highest line 
in each graph shows the time required to reference 2000 
instances from KBs containing a total of 2000, 4000, and 
5000 instances. Figure 2(a) shows that for THEO, the 
time required to reference 1000 instances from a KB con­
taining 5000 total instances is about the same as the time 
required to load that KB in its entirety from a flat file. 

Figure 3 breaks down the total time spent processing 
frame faults into several components: the time spent in 
the EXODUS server, the ECI, our storage system, the 
FRS (LOOM or THEO), and other processing (presum­
ably I/O), as a function of the number of instances ref­
erenced for a fixed KB of 5000 instances. 

The next experiment measured the time required to 
save updates to some number of randomly chosen in­
stances from KBs of various sizes. To be consistent with 
traditional LOOM behavior, updates are not written as 
they occur. Rather, we wait until the user issues a com­

mand to save updates, and then all are written at once 
in a single transaction. Selected results for LOOM are 
shown in Figure 4. For comparison, we include the time 
to save KBs of varying sizes to LOOM flat files (the time 
is constant for a given KB regardless of the number of 
frames updated in that KB). KB save times for THEO 
(not shown) are similar. 

4.1 Discussion 
Our experiments answer several questions: Does the per­
formance of our DBMS-based storage subsystem meet 
the goal of linear time as a function of number of frames 
referenced and number of updates stored? If so, is its 
speed fast enough to make the storage system usable in 
practice? And how do the different components of the 
storage subsystem such as the DBMS server contribute 
to its overall performance? 

Figure 3 demonstrates that our architecture achieves 
the linearity goal: the time spent loading frames is a lin­
ear function of the number of frames referenced. Figure 2 

754 KNOWLEDGE BASE TECHNOLOGY 



Figure 3: The total elapsed time for referencing and faulting N instances into memory from an EXODUS KB of 5000 instances 
is broken down into several components. The vertical distances between lines represent (starting at the bottom) time spent 
in the FRS, in our storage subsystem (SSS), in the ECI, and in the EXODUS server. 

shows that frame loading time also depends to a small 
extent on KB size when a fixed number of instances are 
referenced. This dependency most likely occurs because 
(a) the parents of any referenced instance are faulted in 
along with the instance (if not already in memory), and 
(b) when a class is faulted in, the names of all its in­
stances are also retrieved from the database. Since our 
experimental KBs contained a fixed number of classes, 
the number of instances per class increases in propor­
tion to KB size, requiring a greater amount of data to 
be retrieved per class for large KBs. 

Figure 2 lets us evaluate the relative merits of load­
ing frames from the DBMS versus loading from fiat files. 
For THEO, loading N instances from the DBMS is 5 to 
8 times slower than loading an entire KB of N instances 
from a flat file.3 For LOOM, which must perform expen­
sive classification operations on newly loaded frames, 
loading N instances from the DBMS is 3-4 times slower 
than loading that KB from a flat file. Therefore, the 
performance of the DBMS storage subsystem is on a par 
with a flat file when a user references up to 15% of the 
frames in a THEO KB or 30% of the frames in a LOOM 
KB in a given session. We believe that the performance 
of the storage subsystem is acceptable in practice, given 
our assumption that as KB size grows, users will refer­
ence only a fraction of its frames in a given session. 

Our experiments (data not included) show that our 
3Retrieving N bytes from the DBMS incurs a much higher 

overhead than retrieving N bytes from a disk file due to fac­
tors such as query processing, network delays, buffer man­
agement, etc. 

4In fact these classification operations are unnecessary 
since the DBMS already stores the results of previous clas­
sifications of these frames. We will consult with the LOOM 
developers about how to quickly insert into a KB frames with 
known subsumption relationships. 

ExODUS-based architecture achieves the goal of saving 
KB changes in time linear in the number of updates. 
Saving N updated frames to the EXODUS storage man­
ager is roughly 7 times slower than saving an entire KB 
of N frames to a flat file. Therefore, our storage sub­
system for EXODUS is faster than the flat file for sav­
ing information when less than 15% of the KB has been 
changed. 

An earlier paper [5] describes the results of timing ex­
periments using a relational DBMS in place of EXODUS. 
The outcome of the timing experiments with EXODUS 
reinforces the earlier results. In fact, not only are the 
shapes of the graphs similar, but so are the absolute 
values of the data points. Although there are minor dif­
ferences, the bottom line is that we found the difference 
in performance between EXODUS and the RDBMS to be 
minimal. However, the RDBMS is much easier to work 
with from a practical point of view, because SQL pro­
vides a much higher level of interaction than does the 
extensive C++ programming necessary to interact with 
EXODUS. Therefore, we have chosen to use the RDBMS 
for our future work.5 

Another advantage of the RDBMS declarative query 
language is its potential for evaluating complex KB 
queries within the DBMS. The RDBMS schema pre­
sented in [5] precludes such an approach because, like the 
schema presented in Figure 1, every frame is an uninter­
preted blob within the DBMS. In subsequent work we 
have designed a more complex schema that makes indi­
vidual slot values accessible to SQL. Using that schema 
we are able to index KB slots to support fast answers 

5 Note added in proof: recent optimizations to the RDBMS 
storage subsystem have improved its performance substan­
tially; the RDBMS is now faster than flat files when up to 
70% (rather than 30%) of the KB is referenced in a session. 

KARP AND PALEY 755 



to declarative KB queries. The problem with this slot-
based schema is that frame faulting is much slower be­
cause a number of DBMS queries are required to retrieve 
all the slots of each frame. By combining the frame-
based schema with the slot-based schema we get the best 
of both worlds: we use the frame-based schema for fault­
ing frames, and the slot-based schema for query process­
ing. This approach does require redundant storage, and 
slows down the save operation. But if it is known in ad­
vance which slots will be queried, only those slots need be 
stored in the slot-based schema. Note that many FRSs 
support no indexing whatsoever of their virtual memory 
data structures, except that provided by the taxonomic 
hierarchy (LOOM does support such indexing). 

5 Prefetching 
Can the delays imposed by demand faulting of frames 
be decreased by prefetching frames that are likely to be 
referenced in the future? Our current system does not 
consider memory to be the limiting resource — we as­
sume that all KBs can fit entirely in virtual memory. 
Our main concern is decreasing the time spent faulting 
frames. Since we never discard a frame once it is faulted 
into memory,6 if a prefetched frame is ever referenced, 
then the prefetch did eliminate a demand fetch. Thus, 
prefetching has a much greater chance of success in our 
system than it does in, for example, page management 
by an operating system, in which a page must be dis­
carded for every page prefetched. 

Prefetching might improve performance in three differ­
ent ways. If the application has idle time (e.g., waiting 
for user input or disk I/O), any useful work that the stor­
age subsystem can do during these periods will eliminate 
demand fetches. Making effective use of idle time offers 
great potential for performance speedups, particularly 

6We expect to remove this restriction in future work so 
that KB size is not limited by virtual memory. 

in the situation in which a user is interactively brows­
ing or editing a KB. However, such speedups will vary 
from application to application, making them difficult to 
evaluate experimentally. 

Second, if we can bundle a request for several frames 
into a single DBMS query, we might decrease the over­
head involved in query processing and data transmission, 
compared to that of fetching each frame individually. We 
performed experiments to determine the cost of fetching 
frames from the database as a function of the number 
of frames fetched at a time. We retrieved 639 SOCAP 
frames (161 concepts and 478 instances) and 1073 ran­
dom KB frames (98 concepts and 975 instances), varying 
the fetch granularity from one frame at a time to 100 
frames at a time. The average elapsed times per concept 
and per instance are shown as a function of the number 
of frames fetched at a time in Figure 5. Each value is an 
average of five trials. 

For both KBs, and for both concepts and instances, 
as the number of frames fetched at a time increases, the 
time per frame drops sharply. At its minimum, the time 
per frame is one half that required to fetch frames indi­
vidually. These results suggest that so long as 10 to 40 
frames are fetched at a time, and more than half of the 
prefetched frames are actually referenced by the appli­
cation, there will be a net gain in performance. 

Finally, if the DBMS server is on a different machine 
than is LOOM, we might find an arrangement where both 
machines work in parallel. (Parallelism cannot be ob-
tained with demand fetching, since we can't continue 
with processing until the query has completed.) 

The prefetching scheme uses all three of the above 
strategies. The first two strategies are implemented for 
LOOM in conjunction with the RDBMS. 

5.1 Implementation of Prefetching 
One problem with prefetching is that fetching and load­
ing a frame into LOOM requires a significant amount of 

756 KNOWLEDGE BASE TECHNOLOGY 



computation on the local machine, for example, for clas­
sification. To allow this local processing and other user 
computation to occur in parallel with processing by the 
DBMS server, we divide frame fetching into two com­
ponents: that part associated with retrieving data from 
the database and that part spent inserting the frame into 
the LOOM KB. The majority of the time involved in re­
trieving data from the database is spent on the DBMS 
server or in communication. Thus, we can perform data 
retrieval (DR) in parallel with local processing without 
significantly impacting local performance. The frame-
defining (FD) task is performed locally, so we invoke it 
only when a frame is demanded or when the user process 
is idle. The DR component can obtain multiple frames 
with a single query, even though the FD component must 
define them one at a time. Thus, this scheme allows us to 
maximize parallelism at minimal cost to the main (user) 
process, to retrieve data for multiple frames in a single 
query, and to use extra local CPU cycles when the main 
process is idle. 

Our implementation uses the Lucid Common Lisp 
multitasking facility to define two processes, a DR pro-
cess and an FD process, in addition to the main process. 
The DR process runs with the same priority as the main 
process (i.e., they time-share). It chooses a frame or 
set of frames to retrieve (either a demanded frame or 
frames from a prefetch queue), initiates the appropriate 
DBMS queries, organizes the resulting bodies, and either 
returns them (if required as part of a demand fetch) or 
adds the body of each frame to a hash table for storage 
until needed (if a prefetch operation). The FD process 
runs at a lower priority, so it runs only when the other 
processes block, as in the case of a demand fetch, or are 
idle. It chooses a frame to define (either one that has 
been demanded, or one from the prefetch queue), gets 
the frame body either from the above hash table or by 

requesting that DR process fetch it, and invokes proce­
dures to define the LOOM frame. 

Figure 6 shows the interaction of the three processes 
and associated data structures. On a frame fault, the 
main process issues a request to the FD process to cre­
ate the frame. The FD process first looks for the body in 
the hash table, and, if unsuccessful, asks the DR process 
to query the database. As the frame is being created, 
any unloaded frames that it references are added to the 
DR prefetch queue. When the DR process runs, it checks 
the DR prefetch queue for frames to prefetch, fetches and 
adds them to the hash table, and moves the frame refer­
ences to the FD prefetch queue. When both other pro­
cesses are idle or blocked, the FD process checks the FD 
prefetch queue for frames to define, obtains their bodies 
from the hash table, and creates the LOOM frames. 

5.2 Prefetching Strategy 
An important decision concerns which frames to 
prefetch. In most cases, there is no way of knowing which 
frames will be referenced in the future. (There exist sit­
uations in which frame references are known in advance, 
in which case the application may inform the system of 
which frames to prefetch.) The principle of locality sug­
gests that the frames most likely to be referenced in the 
future will be related to those referenced most recently. 
We consider three types of frame relationships: a frame 
can fill a slot in another frame, a frame can be a subcon-
cept of another concept, and a frame can be an instance 
of a concept. 

We decided against prefetching all instances of a ref­
erenced concept because in large KBs we expect many 
concepts to have large numbers of instances. In this case, 
the probability of prefetching the right instances is small. 
Our first choice is to prefetch subconcepts of recently 

KARP AND PALEY 757 



retrieved concepts.7 The reason for this choice goes be­
yond the principle of locality to our intuition that con­
cept frames are more likely to be needed than instance 
frames, because any reference to an instance frame also 
requires that its parent concepts be in memory. The 
probability of referencing a concept frame is the sum of 
the probabilities of referencing each of its subconcepts 
and instances. Therefore, any concept frame in the cur­
rent region of interest of the KB hierarchy is a good 
candidate for prefetching. When there are no more sub-
concept frames to prefetch, we prefetch slot-filler frames. 

Our initial experiments indicate that prefetching does 
improve performance in some cases, but our evaluation 
of prefetching is not yet complete. 

6 Related Work 
KEEconnection couples the KEE FRS with a relational 
DBMS [l] and the Intelligent Database Interface (IDI) 
couples LOOM with a relational DBMS [7]. In both sys­
tems the DBMS and FRS are loosely coupled peers. The 
advantage of this architecture is that it allows existing in­
formation from a database to be imported into an AI en­
vironment. Its drawback is that the storage capabilities 
of LOOM are not enhanced transparently, as in our ap­
proach. Users of KEEconnection (and of the IDI) must 
define mappings between class frames and tables in the 
RDBMS; KEEconnection creates frame instances from 
analogously structured tuples stored in the RDBMS, and 
can store instance frames out to the DBMS. However, 
only slot values in instance frames can be transferred 
to the database — class frames cannot be persistently 
stored using database techniques and cannot be accessed 
by multiple users. Our approach allows all information 
in a LOOM KB to be permanently stored in the DBMS. 

Groups at IBM and at MCC have coupled FRSs to 
object-oriented DBMSs [6; 2]. The IBM effort differs 
from our approach in that a KB is read from the DBMS 
in its entirety when it is opened by a K-REP user, which 
we believe will be unacceptably slow for large KBs. 

None of these researchers have published experimental 
investigations of alternative implementations, as we are 
doing. Without systematic experiments it is impossible 
to evaluate the relative merits of their architectures. 

7 Summary 
An FRS that performs demand loading of referenced 
frames, combined with incremental saving of updated 
frames, will scale to large KBs much more gracefully 
than the current generation of FRSs. We presented an 
architecture for an FRS storage subsystem that sub­
merges a DBMS within the FRS in a manner that is 
transparent to the FRS user. Our experimental results 
with a prototype implementation show that this coupling 
performs well in practice, and that its performance is lin­
ear in the number of frames referenced or updated, as re-

7 Note that although the principle of locality applies to re­
cently referenced frames, we are using it only for recently 
fetched frames because the overhead of recording related 
frames is too high to invoke on every frame reference. 

quired. We have also presented a prefetching mechanism 
that will improve performance in certain situations. 

Our future work will investigate means of controlling 
multiuser access to shared KBs. 

Acknowledgments 
Ira Greenberg implemented the ExoDUS-based stor­

age subsystem. We are grateful to Bob MacGregor and 
other members of the LOOM group at ISI for discussions 
of LOOM internals, answers to questions, and prompt 
bug fixes. We are also grateful to Tom Mitchell for sup­
plying THEO. This work was supported by Rome Lab­
oratory Contract No. F30602-92-C-0115, and by grant 
R29-LM-05413-01A1 from NIH. The contents of this ar­
ticle are solely the responsibility of the authors and do 
not necessarily represent the official views of the Ad­
vanced Research Projects Agency or of the National-
stitutes of Health. 

References 
[1] R. Abarbanel and M. Williams. A relational rep­

resentation for knowledge bases. Technical report, 
IntelliCorp, 1986. 

[2] N. Ballou, H.T. Chou, J.F. Garza, W. Kim, C. Petrie, 
D. Russinoff, D. Steiner, and D. Woelk. Coupling an 
expert system shell with an object-oriented database 
system. Journal of Object-Oriented Programming, 
pages 12-21, June/July 1988. 

[3] M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. 
Shekita. Storage management for objects in EXO­
DUS. In Object-oriented concepts, databases, and 
applications, pages 341-369. ACM Press, 1989. 

[4] P.D. Karp. The design space of frame knowledge 
representation systems. Technical Report 520, SRI 
International AI Center, 
1992. URL ftp://www.ai.sri.com/pub/papers/ 
karp-freview.ps.Z. 

[5] P.D. Karp, S.M. Paley, and I. Greenberg. A stor­
age system for scalable knowledge representation. In 
N. Adam, editor, Proceedings of the Third Inter­
national Conference on Information and Knowledge 
Management, New York, NY, 1994. Association for 
Computing Machinery, also available as SRI Inter­
national AI Center technical report 547. 

[6] E. Mays, S. Lanka, B. Dionne, and R. Weida. A 
persistent store for large shared knowledge bases. 
IEEE Trans, on Knowledge and Data Eng., 3(1):33-
41, 1991. 

[7] D.P. McKay, T.W. Finin, and A. O'Hare. The intelli­
gent database interface: Integrating AI and database 
systems. In Proceedings of the 1990 National Confer­
ence on Artificial Intelligence, pages 677-684. Mor­
gan Kaufmann Publishers, 1990. 

[8] D. E. Wilkins and R.V. Desimone. Applying an AI 
planner to military operations planning. In M. Fox 
and M. Zweben, editors, Intelligent Scheduling. Mor­
gan Kaufmann Publishers, 1992. 

768 KNOWLEDGE BASE TECHNOLOGY 


