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Abstract 
This paper analyzes coalition formation among 
self-interested agents that need to solve combi­
natorial optimization problems to operate effi­
ciently in the world. By colluding (coordinat­
ing their actions by solving a joint optimization 
problem), the agents can sometimes save costs 
compared to operating individually. A model 
of bounded rationality is adopted, where com­
putation resources are costly. It is not worth 
solving the problems optimally: solution qual­
ity is decision-theoretically traded off against 
computation cost. A normative theory of coali­
tions among bounded rational (BR) agents is 
devised. The optimal coalition structure and 
its stability are significantly affected by the 
agents' algorithms' performance profiles (PPs) 
and the cost of computation. This relationship 
is first analyzed theoretically. A domain classi­
fication including rational and BR agents is in­
troduced. Experimental results are presented 
in the distributed vehicle routing domain us­
ing real data from 5 dispatch centers; the op­
timal coalition structure for BR agents differs 
significantly from the one for rational agents. 
These problems are NP-complete and the in­
stances are so large that, with current tech­
nology, any agent's rationality is bounded by 
computational complexity. 

1 Introduct ion 
In many domains, self-interested real world parties (e.g. 
companies) need to solve combinatorial optimization 
problems to operate efficiently. Often they can save costs 
by coordinating their activities with other parties. Such 
settings occur for example in distributed manufactur­
ing among multiple companies and in distributed vehicle 
routing among dispatch centers. When the planning ac­
tivities are automated, it is useful to also automate the 
coordination activities via a negotiating software agent 
representing each party. In such automated negotiations 
among self-interested agents, the question of coordina­
tion arises: what coalitions should the agents form, are 
they stable, and how should costs be divided within each 
coalition? Coalition formation includes three activities. 
One is coalition structure generation: formation of coali­
tions by the agents such that agents within each coali­
tion coordinate their activities, but agents do not coor-

'Supported by ARPA contract N00014-92-J-1698. 

dinate between coalitions. The second is the solving of 
the combinatorial optimization problem of each coalition. 
Conceptually this involves distributing the tasks of the 
coalition among the member agents and solving the op­
timization problem of each agent given its resources and 
the tasks it was distributed. The coalition's objective is 
to maximize monetary value: money received from but-
side the system for accomplishing tasks minus the cost 
of using resources.1 Third, agents within each coalition 
have to agree on how to divide this value of the gener­
ated solution. These activities interact. For example, 
the coalition that an agent wants to join depends on the 
portion of the value that the agent would be allocated 
in each potential coalition. 

Coalition formation has been widely studied [Kahan 
and Rapoport, 1984; van der Linden and Verbeek, 1985; 
Raiffa, 1982; Shechory and Kraus, 1995; Zlotkin and 
Rosenschein, 1994; Ketchpel, 1994], but to our knowl-
edge, only among rational agents. Let us call the entire 
set of agents A. Say, that the lowest cost achievable 
by agents 5 C A working together, but without any 
other agents, is cR

S. This is the minimum cost to handle 
the tasks of agents 5 with the resources of agents S. A 
coalition game is defined by a characteristic function vR

S, 
which defines the value of each coalition S: 

vR
b = -CR

S. (1) 
The superscript R emphasizes that we mean the ra­
tional value of the coalition, i.e. the maximum value 
that is reachable by the coalition given its optimization 
problem. A rational agent can solve this combinatorial 
problem optimally without any deliberation costs such 
as CPU time costs or time delay costs. 

If the problem is hard and the instance is large, it is 
unrealistic to assume that it can be solved without de­
liberation costs. This paper adopts a model of bounded 
rationality [Simon, 1982; Good, 197l], where each agent 
has to pay for the computational resources (CPU cy­
cles) that it uses for deliberation. A fixed computation 
cost cComp > 0 per CPU time unit is assumed.2 The 
domain cost associated with coalition 5 is denoted by 

1 In some problems, not all tasks have to be handled. This 
can be incorporated by associating a cost with each omitted 
task. Then problem solving also involves the selection of tasks 
to handle. The theory of this paper applies to such cases but 
in our example application, all tasks have to be handled, and 
no payments from outside the system are received for them. 

2 In practice, CPU time can already be bought on super­
computers. The market for CPU time is assumed to be so 
large that the demand of the agents we are studying does not 
impact the price of a CPU time unit. It is also assumed that 
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cs{rs) > 0> i-e. it depends on (decreases with) the al­
located computation resources rs, Fig. 1. The functions 
cs(rs) can be viewed as performance profiles (PPs) of 
the problem solving algorithm. They are used to decide 
how much CPU time to allocate to each computation. 
With this model of bounded rationality, the value of a 
coalition with BR agents can be defined. Each coalition 
minimizes the sum of solution cost and computation cost: 

the problem instance, and computing the mapping from, 
the instance to the PP [Sandholm and Lesser, 1994] may 
take considerable time, thus making the meta-level itself 
costly. In the limit, the base algorithm would be run at 
the meta-level to determine what it would achieve for 
a given time setting. Assuming an optimal meta-level 
enables analyzing bounded rationality at the base level 
in isolation from uncertainty of the PPs. It also allows 
us to sidestep the problem of having a meta-meta-level 
controlling the meta-level, a meta-meta-meta-level con­
trolling the meta-meta-level, and so on ad infinitum. 

We assume that the problem instances (tasks and re­
sources) of all agents are common knowledge. This is 
somewhat unrealistic in open environments with a large 
number of agents. In practice it is often necessary to 
learn the other agents' characteristics from previous en­
counters. Alternatively, the agents can be made to ex­
plicitly declare their tasks and resources, but they may 
lie in order to gain monetarily. [Rosenschein and Zlotkin, 
1994] analyze when rational agents are motivated to de­
clare truthfully. Unfortunately that work assumes only 
two agents and that they can optimally solve exponen­
tially many NP-complete problems without computation 
costs. Even under these assumptions, in most cases, 
truth-telling is not achieved. The effect of bounded ra­
tionality on truthful revelation is unknown. 

For now—this is relaxed in Section 5—we assume that 
the agents solve the combinatorial optimization prob­
lems equally well and that this is common knowledge. 
For any coalition's problem and for any setting of CPU 
time, the cost of the solution potentially generated by 
each agent is the same. The agents need not generate 
the same solutions, only the same quality. 

With such shared deterministic PPs, each agent knows 
the value vs(ccomp) of each potential coalition S upfront. 
Therefore coalition formation will take place before any 
computation. After collusion, each coalition computes 
its solution using the optimal amount of CPU time rs 
as defined by Equation 2. Because in our model, ratio­
nality is bounded by CPU time cost, it costs the same 
for one agent to use nt CPU time units as it costs n 
agents to use t units. Therefore, it is best if a coalition's 
optimization problem is solved by a single agent. This is 
trivially true since an agent could simulate distributed 
problem solving among n agents for time t by using a 
local algorithm for nt. Conversely, it is not always pos­
sible (due to redundancy etc.) for n agents solving the 
problem for time t to reach a solution of the same quality 
as one agent using nt can reach. The computing agent 
can be arbitrarily chosen from within the coalition, and 
the coalition pays that agent its true cost for computing. 
This cost along with the domain solution cost contribute 
to vs(ccomp), which is divided among the agents in the 

termination time. In general, for optimal meta-reasoning, the 
remaining part of a probabilistic PP should be conditioned 
on the algorithm's performance on that problem instance 
on previous CPU time steps [Sandholm and Lesser, 1994; 
Zilberstein, 1993]. Such conditioning, anytime algorithms, 
and their integration to coalition formation are part of our 
current research and are too long to be presented here [Sand-
holm and Lesser, 1995]. 
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profitable refinements. If ccomp is high, less time is allo­
cated, and all coalitions will have profitable refinements, 
though the larger coalition will have time to make fewer 
of them. Thus it was not surprising that in games where 
the grand coalition was optimal, it was optimal for very 
small computation costs only. Surprisingly, two agents 
colluding was often better than all agents working sep­
arately even for large ccomp's. The result that higher 
computation costs promote smaller coalitions is some­
what deemphasized by our choice of not including the 
initial solution construction phase in the PPs. Shifting 
the PPs right to begin at the time when the initial so­
lution was finished (instead of 0) would shift the PPs of 
small coalitions less than the PPs of large coalitions be­
cause the initial solution construction is superlinear both 
in tasks and vehicles. Thus small coalitions would gain 
an advantage—that is most significant for large ccomp. 
If the time of initial solution generation is discarded, 
the best coalition structure for the greatest computation 
costs depends only on the quality of the initial solutions 
of the different coalitions because no refinement steps are 
beneficial. For example, coalitions {1,3} (Fig. 1), {1,5} 
and {2,5} achieved a better initial solution cost than the 
sum of the initial solution costs of the two agents sepa­
rately, Fig. 3. 

5 Different performance profiles 
So far games where each agent has the same PP for 
a given coalition were presented. In general, domains 
where the agents have different PPs—due to different 
algorithms—are not characteristic function games for 
BR agents (BRCFGs), because the value of a coalition 
sometimes depends on the actions of non-members. The 
value of a coalition can depend on whether an outside 
agent is willing to compute the solution for the coali­
tion (for a payment) if its algorithm is better than any 
of the algorithms of the agents in the coalition. Also, 
interactions between domain solutions of different coali­
tions may exclude some problems from the class BR-
CFG. In non-BRCFGs, BR superadditivity, BR sub-
additivity, and the BRC are undefined, Fig. 2. In­
stead, the Nash equilibrium may be a reasonable solution 
concept—although only individual agents are motivated 
to pertain to it: coalitions may prefer to deviate. These 
issues are discussed in [Sandholm and Lesser, 1995]. 

6 Related D A I research on collusion 
Coalition formation has been widely studied in game the­
ory [Kahan and Rapoport, 1984; van der Linden and 
Verbeek, 1985; Raiffa, 1982]; only the most relevant con­
cepts were presented here. This section compares our 
work to other recent DAI work on coalition formation. 

[Zlotkin and Rosenschein, 1994] analyze rational 
agents that cannot make side payments, while our agents 
do. Their analysis is limited to "Subadditive Task Ori­
ented Domains" (STODs), which are a strict subset of 
CFGs, Fig. 2. In their solution concept, one agent han­
dles all the tasks, because STODs never exhibit disec­
onomies of scale. We do not assume that one agent 
can take care of all the agents' tasks. Unlike our work, 

they also assume that all agents have the same capa­
bilities. With exponential computation they guarantee 
each agent an expected value that equals its Shapley 
value [Kahan and Rapoport, 1984; Raiffa, 1982]. In a 
subset of STODs, "Concave Task Oriented Domains" 
(Fig. 2), the computational complexity is reduced to 
linear (in agents) using an encryption scheme. Yet at 
least one (intractable) combinatorial problem involving 
all tasks of all agents needs to be solved optimally. 

[Ketchpel, 1994] presents a coalition formation method 
for rational agents which have different expectations of 
coalition values. The (computational) origin of these ex­
pectations is not addressed. His assumption of imperfect 
information differs from our setting, where the agents 
have perfect information, but cannot perfectly deduce. 
Ketchpel's coalition formation algorithm runs in cubic 
time in the number of agents, but does not guarantee 
stability. His protocol is based on mutual offers. , In 
practice it is hard to prevent out-of-protocol offers such 
as multiagent offers. In our approach, if the agents' pay­
off vector is chosen from within the BRC, the coalition 
structure is stable against all offers. Finally, his 2-agent 
auction is manipulable and computationally inefficient. 
He approaches the coalition formation and the payoff 
division problems simultaneously. 

This is closely related to the contracting protocol 
of Sandholm [Sandholm, 1993] (TRACONET), where 
agents construct the global solution by contracting a 
small number of tasks at a time, and payments are made 
regarding each contract before new contracts take place. 
An agent updates its approximate solution after each 
task transfer. In general equilibrium approaches such 
as WALRAS [Wellman, 1992], non-manipulative agents 
iterate over the allocation of resources and tasks, and 
payments are made only after a final solution is reached. 

[Shechory and Kraus, 1995] analyze coalition forma­
tion among rational agents with perfect information in 
domains that are not necessarily superadditive. Their 
protocol guarantees that if agents follow it, a certain 
stability criterion (K-stability) is met. This requires 
the solution of an exponential number of optimization 
problems. Their other protocol guarantees a weaker 
form of stability (polynomial K-stability), but only re­
quires the solution of a polynomial number of optimiza­
tion problems. Unfortunately, each one of these may 
be intractable. Their algorithm switches from one coali­
tion structure to another guaranteeing improvements at 
each step: coalition structure formation is an anytime 
algorithm, although each domain problem is solved op­
timally. In our approach, each domain problem is solved 
using an approximation (design-to-time) algorithm. 

7 Conclusions and future research 
A normative theory of coalitions in combinatorial do­
mains was presented, where the rationality of self-
interested agents is bounded by computational complex­
ity. A domain classification was presented for rational 
and BR agents. The algorithms used by the agents 
significantly impact the coalition structure that should 
form as well as its stability. Theorems were presented 
on the PPs guaranteeing BR superadditivity, BR sub-
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additivity, and existence of the BRC. Although almost 
all domains are superadditive, BR superadditivity is 
surprisingly all but obvious in practice. None of the 
vehicle routing games of our experiments—using real 
data and a reasonable iterative refinement algorithm— 
exhibited BR superadditivity. Thus, the optimal CS for 
BR agents varied, although rational agents should always 
form the grand coalition. Section 2 developed conditions 
on the PPs that guarantee BR superadditivity, and it 
discussed a separate solving approach—based on a non-
deterministic splitting step—that guarantees that the 
base algorithm fulfills those conditions. We are currently 
developing methods of constructing algorithms that sat­
isfy the conditions without such splitting. The observed 
BR subadditivity of some of the games implies a non-
empty BRC: the best CS in those games is stable. Even 
when BR subadditivity did not hold, the BRC was often 
non-empty—especially for large ccomp. Often with su-
perlinear iterative refinement steps, low ccomp promotes 
large coalitions while high ccomp suggests smaller ones. 
The best BR CSs mostly agreed with our intuitions of 
what coalitions should form based on strategic domain 
specific considerations such as adjacency of the dispatch 
centers and the combinability of their loads. 

Our model of bounded rationality is based on costly 
computation resources. Future work includes analyzing 
another model, where each agent has a fixed free CPU 
and no more CPU time can be bought. If the domain 
cost increases with real time due to a dynamic environ­
ment, such agents with bounded computational capabili­
ties are often best off by distributing the computation. 
In the costly computation model of this paper, it is best 
to allocate each coalition's computation to a single agent. 
The models are equivalent if the domain cost increases 
linearly with real time and distribution does not speed 
up computation. 

Extensions include generalizing these methods to 
agents with different PPs, probabilistic PPs, and any­
time algorithms where PPs are conditioned on execu­
tion so far [Sandholm and Lesser, 1995; 1994; Zilber­
stein, 1993]. Agents with probabilistic PPs may want 
to reselect a coalition if the value of their original coali­
tion is lower than expected—but sunk computation cost 
has already been incurred. Future research also includes 
agents that can refine solutions generated by others. 
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