
E x p e r i m e n t s w i t h 
A s s o c i a t i v e - C o m m u t a t i v e D i s c r i m i n a t i o n N e t s 

Leo Bachmair 
Ta Chen 

I .V. Ramakr ishnan 
Department of Computer Science 

SUNY at Stony Brook 
Stony Brook, NY 11794 (U.S.A) 

Siva Anantharaman 
Jacques Chabin 

Departement d'Informatique 
LIFO, Universite d'Orleans 

45067-Orleans Cedex 02 (France) 

Abst rac t 

We recently proposed a data structure, called 
associative-commutative discrimination nets, 
that supports efficient algorithms for (many-
to-one) term matching in the presence of 
associative-commutative functions. In this pa­
per we discuss the integration of such dis­
crimination nets into an actual equational 
theorem prover and report on correspond­
ing experiments. The general associative-
commutative matching problem is known to 
be NP-complete, but can be solved in polyno­
mial time if the given terms are linear, i.e., do 
not contain multiple occurrences of the same 
variable. We therefore have implemented a 
two-stage matching procedure. First we check 
whether a match exists for the linearized ver­
sions of the given terms (where different oc­
currences of the same variable are replaced by 
different new variables). If a match for the lin­
earized terms does exist, we then determine 
whether there is also a match for the origi­
nal, non-linear terms (i.e., whether the pro­
posed substitutions for different occurrences of 
the same variable are consistent). Our ex­
perimental results indicate that this approach 
works very well in theorem proving, where most 
matching attempts actually fail and are filtered 
out during the first stage, so that the second, 
more expensive stage of the algorithm is only 
needed in comparatively few cases. 

1 I n t roduc t i on 
Matching and unification are two fundamental opera­
tions in theorem proving. Unification is part of deduc­
tive inference rules such as resolution, whereas matching 
is needed for subsumption, normalization by rewriting, 
and other mechanisms for simplifying formulas and elim­
inating redundancies. Experimental evidence indicates 
that the efficiency of resolution-type provers mainly de­
pends on these simplification mechanisms. For instance, 
in rewrite-based equational theorem provers, most of the 
time (about 80 to 90%) is spent on term rewriting and 
normalization—operations that both require matching— 

and relatively little on deducing new formulas via unifi­
cation. In resolution-type theorem provers the deletion 
of subsumed clauses is critical for performance. In short, 
efficient implementations of matching are indispensable 
for such provers, cf. [McCune, 1992J. We should also 
point out that pattern matching algorithms are a key 
component in many other applications, including func­
tional and logic programming [Ramesh et a/., 1990] and 
rule-based expert systems [Forgy, 1982]. 

It is becoming increasingly clear that many applica­
tions of theorem proving require efficient methods for 
reasoning about associative-commutative functions. In 
this paper we discuss our work on extending the equa-
tional theorem prover REVEAL by efficient algorithms 
for matching in the presence of associative-commutative 
function symbols. 

2 Prel iminar ies 
We consider terms built from function symbols and vari­
ables. The letters s and t are used to denote terms, / and 
g to denote function symbols, and x, y, and z to denote 
variables. The expression denotes the subterm off at 
position p. Positions may, for instance, be represented 
in Dewey decimal notation. The top-most position is de­
noted by and hence The sequences 2 and 2.2 
denote positions in , with = 
and 

Let AC be a set of associativity and commutativity 
axioms 

for some function symbols /. We also write if 
/ is such an associative-commutative symbol and write 
s =AC t to indicate that s and t are equivalent under 
associativity and commutativity. A term t is said to AC-
match another term s (and s is called an AC-instance of 
t) if there exists a substitution , such that 

It is convenient to represent terms equivalent under 
AC by flattened terms. Let L be the set of all rewrite 
rules (called flattening rules) 

348 AUTOMATED REASONING 



BACHMAIR, ET AL 349 



350 AUTOMATED REASONING 



4 Imp lementa t ion of AC-Match ing 
The -AC-matching problem is an NP-complete problem, 
but can be solved in polynomial time if pattern terms are 
linear [Benanav et a/., 1987]. We have therefore designed 
AC-matching as a two-phase process. In the first phase, 
an AC-discrimination net for the linearized versions of 
patterns is used as a filter: if no AC-match exists for the 
linearized patterns, then there certainly exists none for 
the original patterns. If in the first phase some terms are 
identified as AC-matches, we need to check in a second 
phase whether any of these matching terms can be ex­
tended to AC-matches in the presence of non-linearity. 
A straightforward AC-matching algorithm is used in this 
second phase. Our experimental results provide strong 
evidence that in typical theorem proving problems most 
of the patterns can be eliminated during the first phase, 
so that the expensive second phase is invoked only spar­
ingly and the two-phase approach results in substantial 
performance gains. 

4.1 Term representation 
We adopt a variant of the data structure for flat terms 
used in HIPER, see [Christian, 1989] for details. Flat­
tened versions of terms equivalent under AC are unique 
only up to permutation congruence. For instance, the 
two terms /(a, b, c) and /(c, a, b) are AC-equivalent if 

. We define a unique representative for each AC-
equivalence class by using a total ordering on function 
symbols and variables and lexicographically extending 
it to a total ordering on terms. The minimal term in 
an equivalence class serves as the unique representative. 
For example, if then 

4.2 Standard Discrimination Nets 
Let us next discuss the design and implementation of dis­
crimination nets. We first consider standard discrimina­
tion nets, which provide the basis for AC-discrimination 
nets. In theorem proving, the set of (pattern) terms that 
need to be represented in a discrimination net change dy­
namically. We have chosen a non-deterministic variant 
of such nets in which insertion and deletion of patterns 
can be performed easily. (The main difference between 
deterministic and non-deterministic nets is that the lat­
ter require backtracking in order to identify all matches. 
Deterministic nets require no backtracking, but may use 
more space.) 

Pattern terms are stored at the root of the net. Each 
leaf maintains a list of pointers to the patterns in the 
matchset associated with the leaf node. With each 
node we maintain a linked-list representing the (labelled) 
edges from that node. This list is kept sorted (according 
to the edge labels), so that the traversal of the net can 
be implemented by a linear search through this list. 
Example 1 Figure 4 shows the discrimination net for 
the set {f(x, a, 6), /(b, a, a), /(x, a, y)}, where the under­
lying ordering on symbols is x<y<a<b<f. 

This variant of discrimination nets essentially corre­
sponds to the third variant described in [McCune, 1992]. 
In contrast to HIPER and also our earlier description of 
discrimination nets in [Bachmair et al., 1993], we distin­
guish between different (non-AC) variables. Although 

such a distinction may potentially result in more back­
tracking and consume more memory, it has the advan­
tage that checking for the consistency of substitutions 
for (non-AC) variables can be done during traversal of 
the net, so that failures caused by inconsistencies can 
be discovered earlier. To allow for consistency checking 
we maintain a global substitution table and, whenever 
descending to a branch corresponding to a (non-AC) 
variable x, compare the entry for x (if present) in the 
substitution table with the current subterm of the input 
term. 

4.3 AC-Discrimination Nets 
Recall that AC-nets require additional operations such 
as bipartite matching using secondary automata, inter­
section of matchsets produced by AC-subnets and re­
porting the result from one level of the net to the next 
higher level. We first describe data structures that are 
needed for these operations. With each AC-node v we 
associate a set of AC-subterms. These subterms are 
stored in a linked list; each element in the list is called a 
control block and corresponds to one AC-subterm. In the 
control block for a term we maintain information 
relevant to bipartite matching and secondary automata 
transitions. When a pattern term is deleted, all control 
blocks corresponding to its AC-subterms must also be 
deleted. To facilitate deletion, each pattern is assigned 
an unique ID number and all control blocks derived from 
the pattern inherit this ID, which is then used as a search 
key during deletion. The search is implemented as a sim­
ple linear search in the linked list associated with Lv. 

For each pattern, there is a pointer from the control 
block of each AC-subterm t at AC-nesting depth / to the 
control block of an AC-superterm2 of t at AC-nesting 
depth / — 1. Similarly, if a term t is in the matchset of a 
leaf, there is a pointer from the leaf to the control block 
of the closest AC-subterm enclosing this t. 

Example 2 Suppose k(a,c, f(y,c)) and k(a,c, f(a,b)), 
are two patterns. We have L2 — 

{/(y, c),/(a,b)} represented by the list of control blocks 
C and D. The enclosing AC-subterm of /(y, c) and 

2 An AC-superterm of t is a super term of t with AC-
function symbol at its root. 

BACHMAIR, ETAL 351 



4.4 Secondary Automata 
A secondary automaton is constructed for each desired 
rank and stored during initialization of the system. Each 
state of a secondary automaton is implemented as an ar­
ray of pointers. Recall that transition symbols are bit-
strings. We use the integers representing the bitstrings 
as indices with the arrays. For example, Figure 6 is the 
secondary automaton of rank 2 (also see Figure 3 for its 
abstract representation) where each state is represented 
as a four-element array. On bitstring 01, whose integer 
value is 1, the automaton changes from state 0 to state 
1. 4.5 Put t ing it all together 

We are now ready to explain the operation of an in-
discrimination net based upon the above representation. 
At each AC-node, we do the following steps. We check 
whether (i) the number of arguments in the pattern ex­
ceeds those in the subject; or (ii) if the pattern has no 
variable arguments and has fewer non-variable argument 
than the subject. In such cases, the pattern is marked 
unmatchable and no further action is done on behalf of 
it. For patterns which pass the above test, secondary 
automata are used to determine the existence of a maxi­
mum bipartite matching for the corresponding bipartite 
graph. Secondary automata are used for small bipar­
tite graphs (deriving from pattern terms with few non-
variable AC-arguments). If the number of non-variable 
arguments is large, we use a general bipartite matching 
algorithm [Papadimitriou and Steiglitz, 1982]. In the ex­
periments reported below, we never had to resort to a 
general bipartite matching algorithm. 

On successful completion of the above steps, we in­
clude the AC-subterm in the matchset for the AC-node. 
This matchset is intersected with those computed at 
other AC-nodes at the same level of the net. We use 
Stickel's algorithm [McCune, 1992] to do list intersec­
tion. Specifically, suppose L1, L2 and L3 are three lists. 

362 AUTOMATED REASONING 



We first mark the elements of L1 with 1. Then those 
elements of L2 that are marked with 1 are marked with 
2. Finally, elements of L3 that are marked with 2 are 
the results of L1 n L2 n L3. Since an intersection has 
to be done at each AC-node, we can use the number of 
AC-nodes visited for each level as the current value of 
the mark. Finally, when a leaf node r is reached, the 
matchset Mr associated with r is also intersected with 
the outcome of earlier intersections at this level. 
Example 3 With the AC-discrimination net in Fig­
ure 5, suppose the subject is k(f(a, c),c,/(a, 6)) and we 
have just entered node 2. Upon processing /(a, c) through 
the subnet at node 2, only B is marked with 1, since 
f(a,x) of the second pattern is matched, but not f(a,b) 
of the first pattern. Then, although both terms /(a, b) 
and /(a, b) in L3 are in the matchset computed at node 
3, only B gets marked with 2 because it is marked cur­
rently with 1. Therefore, the second pattern is selected 
by the net. 

5 Exper imenta l Results 
We next present experimental results we obtained with 
our implementation on a Sparc 10 with 32 MB of mem­
ory. We first compare AC-discrimination nets with 
straightforward AC-matching, and then show the ef­
fect of the resulting savings in the context of a the­
orem prover. Finally, we show that the use of AC-
discrimination nets does no compromise on the perfor­
mance of a theorem prover on problems without associa­
tivity and commutativity. 

5.1 AC-Matching 
The first data set provides an indication of the effec­
tiveness of AC-discrimination nets. We took a set of 
1,000 terms from a typical theorem proving application 
in OTTER [McCune, 1992], and built an AC-net for 
it. Then each one of these terms is used as a subject 
(resulting in a successful AC-match, of course). The re­
sulting times are compared with a straightforward AC-
matching algorithm that uses no discrimination net. We 
ran the algorithms in two different modes: (i) to identify 
the first matching term (and then stop), or (ii) to find 
all matching terms. We also repeated these tests for a 
smaller subset of 100 terms.3 The results are summa­
rized in Table 1. It can be seen that AC-discrimination 
nets result in a three- to four-fold speedup for finding 
the first matching term (which is the variant needed for 
rewriting). All times are in seconds. 

5.2 AC-Completion 
We then ran a number of experiments with our equa-
tional theorem prover REVEAL. All problems contained 
associative-commutative function symbols. They in­
clude the following: 

1. grobner: The Grobner base of a certain ideal in a poly­
nomial ring in two variables over integers is computed 
via completion; 

3 We should note that the terms in the original OTTER-
examples do not contain AC-symbols; but we declared one 
of the (binary) symbols to be AC. 

2. grpfini30: A canonical rewrite system is computed for 
an abelian group of order 30, specified with three gen­
erators; 

3. jacobson: Commutativity is proved for rings satisfying 
X* = X ; 

4. moufang: The sesquilinearity of the associator is proved 
for (non-associative) alternative rings; 

5. robbinh : It is proved that any Robbins algebra is a 
Huntington algebra (and hence a Boolean algebra) if 
there exists an element c, such that c + c = c ; 

6. robbinh2 : Similar to robbinh, but under the assumption 
that there exist elements c, d such that c -f d — c ; 

7. uqsl2 : Certain properties of some 'unitary quantum 
groups' are proved 

Table 2 summarizes timings for these and several 
other AC-problems. We compare the performance of 
the prover with AC-discrimination nets (under columns 
'ACN' in the table) with a more naive strategy 'NaT 
without AC-nets. One of the key components of our 
prover is the normalization of terms by rewriting, which 
requires (AC-)matching. Given a set T of rewrite rules 
and a term s to be normalized, the prover takes one rule 
from T and tries to match it at the root of s. In case of 
failure, the next rule in T is tried, and so on, until either 
a match is found or else all rules in T are exhausted. 
In the latter case, the process is restarted at the next 
position of s. We measured (a) the time to normalize 
terms with respect to the current rewrite system and 
(b) the total time leading to proofs. The speedups are 
given for both the normalization and for total comput­
ing times. The speedups for normalization, naturally, 
are significantly greater than those for total times. 

Since the prover needs to find only one matching pat­
tern, from Table 1 we may expect an average speedup 
of about 4 for finding the first matching pattern. Since 
in normalization about half the time is spent in find­
ing a match, we can expect to improve normalization 
by a factor of 2 on the average. This is consistent with 
the speedup figures for normalization in Table 2. Fi­
nally, about 70% of the total computing time is spent 
in normalization and the rest on other operations, such 
as unification (for deduction of so-called critical pairs), 
etc. So we can expect a speedup of about 35% on the 

BACHMAIR, ET AL 353 



many-to-one AC-matching in two phases. In the first 
phase only those patterns are selected that AC-match 
under the assumption that all (AC) variables are differ­
ent (i.e., linear). The consistency of the substitutions 
computed for (AC) variables are checked in the second 
phase. The experimental results show that a high per­
centage of patterns are filtered out in the first phase, 
leaving very few patterns for the more complex consis­
tency checking in the second phase. For instance, for 
our benchmark problem uqsl2, no more than one pat­
tern was selected by the AC-discrimination in 98% of 
the cases (no pattern was selected in 88% and one pat­
tern in 10% of the cases). We also ran experiments with 
different search strategies and obtained similar results. 
In particular, we want to mention that on robbhin2 we 
were able bring down the total time from 213.5 minutes 
to 175.5 minutes using AC-discrimination nets. All these* 
results and the speedups we obtained provide strong ev­
idence that AC-discrimination nets and secondary au­
tomata are indeed useful tools for significantly improving 
the performance of theorem provers for AC problems. 
Acknowledgements. We would like to thank the 
anonymous reviewers for their helpful comments. This 
research was supported in part by the NSF under grants 
CDA-9303181, INT-9314412 and CCR-9404921. 

References 
[Bachmair et al, 1993] L. Bachmair, T. Chen, and Iv Ra-

makrishnan. Associative-commutative discrimination nets. 
In Proceedings of the 4 th International Joint Confer­
ence on Theory and Practice of Software Development, 
CAPP/FASE, pages 61-74, Orsay, France, April 1993. 
Springer-Verlag LNCS 668. 

[Benanav et al., 1987] D. Benanav, D. Kapur, and P. Naren-
dran. Complexity of matching problems. Journal of Sym­
bolic Computation, 3:203-216, 1987. 

[Christian, 1989] J. Christian. High-Performance Permuta-
tive Completion. PhD thesis, The University of Texas at 
Austin, August 1989. 

[Forgy, 1982] C. Forgy. Rete, a fast algorithm for the many 
patterns many objects Match problem. Artificial Intelli­
gence, 19:17-37, 1982. 

[Graf, 1994] P. Graf. Extended path-indexing. In 12th Con­
ference on Automated Deduction, pages 514-528. Springer-
Verlag LNCS 814, 1994. 

[McCune, 1992] W. McCune. 
Experiments with discrimination-tree indexing and path 
indexing for term retrieval. Journal of Automated Reason­
ing, 9:147-167, 1992. 

[Ohlbach, 1990] H.J. Ohlbach. Abstraction tree indexing for 
terms. In Proceedings of the 9th European Conference 
on Artificial Intelligence, pages 479-484, London, August 
1990. Pitman Publishing. 

[Papadimitriou and Steiglitz, 1982] C. H. Papadimitriou 
and K. Steiglitz. Combinatorial Optimization: Algorithms 
and Complexity. Prentice Hall, 1982. 

[Ramesh et al, 1990] R. Ramesh, I.V. Ramakrishnan, and 
D.S. Warren. Automata-driven indexing of prolog clauses. 
In Seventh Annual A CM Symposium on Principles of Pro­
gramming Languages, pages 281-290, San Francisco, 1990. 

average for completion. This is again consistent with the 
speedups in Table 2 we obtained for our examples. 

Finally, we like to mention that memory consumption 
of the AC-discrimination nets for the problems in Ta­
ble 2 never exceeded the memory required for storing the 
patterns, i.e., the extra memory needed at most doubled. 

5.3 Non-AC Problems 
As mentioned earlier, standard discrimination nets have 
been used quite successfully to solve many-to-one non-
AC-matching problems. It is critical that the perfor­
mance of our AC-matching algorithm do not degrade 
when used for non-AC problems. Table 3 shows that 
this has been accomplished in our implementation. All 
the problems in there are non-AC The second col­
umn are the timings obtained by standard discrimi­
nation net while the third column pertains to AC-
discrimination nets. Observe that the overhead of using 
AC-discrimination net for non-AC problems is negligi­
ble. 

6 Summary 
In this paper, we have presented the design, implemen­
tation and experimental results of an AC-discrimination 
net based AC-matching algorithm. This algorithm has 
been integrated into the equational theorem prover RE­
VEAL, which we used for our experiments. Our imple­
mentation exploits the fact that although AC-matching 
is iVP-complete, it can be solved in polynomial time if 
patterns are restricted to linear terms. It solves the 

364 AUTOMATED REASONING 


