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Abstract

We develop a formal tool for representing
and analyzing informational aspects of robotic
tasks, based on the formal concept of 'knowl-
edge.! Specifically, we adopt the notion of
knowledge-based protocols from distributed
systems, and define the notions of knowledge
complexity of a robotic task and knowledge ca-
pability of a robot. The resulting formalism
naturally captures previous work in the areas
of robot information management, but is suffi-
ciently rigorous and natural to allow many ex-
tensions. In this paper we show one novel appli-
cation - the automated distribution of robotic
tasks.

1 Introduction

The notion of computational complexity has had a pro-
found effect on the development of computer science.
While still crude, our ability to classify different compu-
tational problems in terms of their complexity allows us
to understand inherent difficulties in solving such prob-
lems. Some areas of robotics, such as motion planning,
have benefited from advances in computational complex-
ity (e.g.,[Canny, 1989]). However, the area of robotics as
a whole still lacks the analog of a Turing machine, a
formal device that faithfully quantifies the difficulty of a
robotic task or the capabilities of a robot. The reason for
this is that usually, space and time complexity of compu-
tation are not the dominating factors in a robotic task.
Instead, the physical embedding of robots brings to the
fore issues such as sloppy controllers, imprecise sensors,
and spatially separated components, all of which suggest
that a good model for robotics should revolve around the
notions of information and uncertainty.

We propose a framework that faithfully models the
information and lack thereof inherent in robotic tasks,
such as is brought about by spatial distribution and im-
precise sensors. In doing so we join a number of authors
who have recently attempted to quantify the sensing dif-
ficulty of robotic tasks. [Erdmann, 1994] attempts to as-
sess the sensing requirements of robotics tasks in terms
of what he calls abstract sensors. [Donald, 1994] devel-
ops formal tools that allow him, among other things,
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to compare and classify the sensing capabilities of dif-
ferent concrete sensor systems such as a radial sensor
and a beacon sensor. We find this recent work inspir-
ing, but believe that further progress can be made by
couching the analysis of informational considerations in
robotic tasks in a suitable abstract language. In particu-
lar, we believe that the formal notion of 'knowledge' that
has been proposed and studied in Al (e.g., [Moore, 1985;
Rosenschein, 1985]) and distributed systems (e.g., [Fagin
et al., 1995]) can serve as a basis for just such an abstrac-
tion. We recently showed a particular application of the
formal notion of knowledge to the task of robot motion
planning under uncertainty [Brafman et a/., 1994]; here
we propose a more ambitious application of the notion,
namely as a basis for the general model of informational
aspects of robots and robotic tasks. In our framework,
robotic tasks can be characterized in terms of the knowl-
edge required to perform them, and robots can be char-
acterized in terms of the knowledge they can acquire. We
can therefore assess the ability of a particular robot to
perform a task by comparing its knowledge capabilities
to the knowledge requirements of the task. One of the
benefits of this formal approach and its underlying se-
mantics is extensibility. In particular, we are able to ex-
ploit this feature in the analysis of multi-robot domains.
As a demonstration of this, we provide a provably comept
algorithm for distributing centralized robotic protocols;
roughly speaking, the algorithm accepts as input a de-
scription of a robotic task and a high-level description
of a centralized protocol for achieving the task, and out-
puts a high-level description of a decentralized protocol
that is guaranteed to achieve the same task.

To provide intuition, throughout the paper we will an-
chor the formal development in the following example.
Although simple, the example embodies two important
ingredients - imprecise sensing, and the need to coordi-
nate the action of spatially distributed actuators.
Example 1. Two horizontal, perpendicular, one-
dimensional robotic amms must coordinate as follows. The
first am is to push a hot object lengthwise acoss the table
until the the second am is able to push it sideways so that it
falls into a codling bin. The length of the table is marked in
feet, from 0O thru 10 (for simplicity we ignore the horizontal
coordinate). The second amn s able to push the object if it is

in the region [3,7]. The second am cannot hit the
object while the object is in motion, but on the other hand
the object cannot remain motionless for more than an instant



or it will bum a hde into the table. Thus the seoond am
must move when the first one stops. We consider
four variants of the problem:

la. The ams share a controller. The controller has aomess to

a sensor reporting the position of the object with error
no greater than 1, i.e., if the object's cument location is

q then the reading can be anywhere in [g -1, g + 1].
Sare as la, except the emor bound is 4 rather than 1.
Each am is controlled separately. Each controller

has aoess to a location sensor as in 1a; however these

are two i lent sensors whose readings may differ

(within the allowed bounds).

. The situation is as in Ic, except that only the first
controller has a sensor. However, in addition the first
controller can emit (e.g., infra-red) signals, and the sec-
ond controller can reliably detect them.

It is not hard to see that in cases Ib and Ic there does not

exist a protocol that will achieve the task whereas in cases
la and Id there do exist such protocols.’ |

There are three remaining sections in the article: (2)
the formal model and language, (3) an application to
the distribution of robotic tasks, and (A) discussion of
related work.

Ib.
lc.

2 The model

We start by presenting our model, which is based on the
notions of Abstract Robotic Domain (ARD) and Abstract
Robotic Unit (ARU). In the second section we present a
(by now standard) logic for talking about the model,
including the knowledge of ARUs. In the third section
we introduce the new notions of knowledge capability and
knowledge complexity, which we then relate to the notion
of knowledge-based protocols.

2.1 Abstract Robotic Units and Domains

We start by defining the notion of an Abstract Robotic
Domain, or ARD. An ARD consists of a set of possi-
ble states and the possible transformations among them.
Roughly, a state of the ARD corresponds to the notion
of configuration in robotics [Lozano-Perez, 1983]; it en-
codes everything that is not internal to robots, such as
the location of the robot and other objects. The informa-
tion and computation capabilities of a robot are captured
by an Abstract Robotic Unit (ARU) An ARU is a state
machine whose actions "cause” the ARD's transitions.
Different ARUs acting on a given ARD have identical
actuation capabilities, but their abilities to sense and
compute can vary.

Definition 1 An ARD is a pair (C, T) where C, the con
figuration space, is a set of states, and T, the transitions,
is a set of functions from C to 2C‘\0 containing the iden-
tity function.

1 For example, the centralized protocol in case la might
be as follows (r is the current reading): If r < 4 then
(Move(armi),Stop(arm?2));  else (Stop(armi), Move(arm2))
Similarly, a decentralized protocol in case Id might
Protocol for armq: If r < 4 then Move; If r E [46] then
signal and stop.

Protocol for army: If Signal has been detected then Move;
Ese stop.

An ARU over an ARD (C.7) is a triple
{Stales, Actions, Inil ), where States is the set of local
states of the ARU, Actions is a set of funclions from
('S = Cx Slates to 20°\Q, and Init is a function from C
1o 25101\ Q. G5 is called the sct of global states. We
say that f € Aclions implements the transition r € T if
for all 0. ¢' € C and state, state’ € Stales il is the case
that if (¢!, stale’) € f(c, state) then (I} ¢’ € T(c); (8) if
e” € 1(c) then there ezisls some stale” € States such
that (¢, state”) € f(v, state). Tke actions Actions
of an ARU over ARD (C,T) must all be implemente-
tions of transitions in T, and must implement all such
transitions.

Given a set of initial configuretions I C C the
set of reachable {giobal} states S[I] for an ARU
{States, Actions, Init) ts the smallest subset of GS that
contates {(c,)|c € I and | &€ Init{c)} snd is closed ur-
der Actions.

The projections of o global stete (¢, 1) € GS are defined

def de
as Trf:onjig(cs "} = ¢ and Trlof.ai'(':‘ ” éf L

We will sometimes refer to an ARU as a ‘robot,” but
there is no requitement that the sensors and effectors
make for a contiguous piece of equipment or that they
are otherwise related 1o one another. For this reason
il is often convenient to view an ARU as comprising
of ARU,, ... ARU,, where ARU; = (States;, Actions;)
has its own local states and actions. We refer to this
special type of ARU as a-ARU and (o its subcomponenis
as sub-ARU’s. The global states of the n-ARU are thus
C x Statesy x--- % Stales,, and its actions are the joint-
arlions of the sub-ARHs, 1.e., Actions; x -- - x Actions,, .

Throughout this paper we assume a discrete model;
speeifically, we assume all state spaces 1o be discrete,
and adopt a discrete model of time. We do so fo sim-
plify the exposition; the generalization to continuous do-
mains is for the most part atraightforward, though some
subtleties do arise (cf.[Bra.fma.n el al., 1994] for an ap-
plication of logics of knowledge in motion planning in
domnains that are continuous in both time and space).
Example 1 (cont.) Here are an ARD and an ARV that
mode] Lhe controller la:

ARDa = ([0,10] x {Table, Side}, {Move-length,Move-side })
where Move-length transforms (g, Table) 1o (g + 1, Table),
with no effect otherwise or when g > 9. Move-gide transforms
(g, T'able) to {g. Side}, and does nothing elsewhere. The ini-
tial configuration is {0, Table).

AR, ,=([0,10],{ Move(arm; },Stop{arm, )} x{ Move{armz},
Stop(armz )} xSense-position}, .}, where ¢' € lia{g) iff
la' — gl < L. That is, the possible configurations correspond to
positions of the hot object, transitions correspond to length-
wise or sidewise motions, and initial local states and posi-
tions differ by at most 1. The controller’s local state consists
of a position reading, and its actions are jeint motions of
both arms, combined with sensing. An example of an ac-
tion descripticn would be: (Move[arm; ),Stop{arm; ). Sense-
position)((g, Table), 1) = {{{q', Table), r')|(¢', Table) =
Move-lengih(g, Table) & |¢' — '] < 1}. This description is
consistenl with the fact that the position and position read-
ing of reachabie global states can differ by at most 1.

From now on we fix the physical characteristics of the
environment, i.e., we assume a given, fixed AI_{D (C_.T)',
this allows na to concentrate on epistemic considerations.
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Next, we define a number of straightforward notions.
A history over aset W is simply a sequence of elements of
W. We define a task to be a pair of sets of configurations,
which intuitively correspond to the set of initial and goal
configurations. (A task can be defined more generally as
an arbitrary set of kistories over C, but in this paper we
avoid this generality.) We say that an ARU can perform
a task if it can be equipped with a controller that will
lead it to a goal state from any initial configuration. To
describe controllers we use the notion of a protoce! {or
policy), an assignment of actions to local states. Each
protacol has a set of possible executions, i.e., sequences
of global states that can be obtained when this protocol
is followed.

Definition 2 A history pver ¢ sel W is a function

h N — W, where N are the integers,

A task is a pair Task(I,G), where I, G C C.

A protocol for en ARU i a functiorn P . States —
Actions.

A distributed protocol for n-ARU is a set of funchons
P; - Statesy — Actions; fori=1,... n.

A joint-protocol is a fcenlralized) protocel for an n-
ARU, i.e., a function from States, x ... x States, io
Actionsy x ... x Actions,.

An execution of the profocol P 1s a history h over GS
such that k{n + 1) € P(Tioea(R(n))){h(n)).

A protocel P performs Task{], G) if cvery ezecution of
‘P thal starts in {(¢,{)|c € I end! € Inilc)} pusses
through ¢ configuration in G

An ARU can perform Task(!, G} if there is ¢ protocol
Jor it that performs Task(I, G).

2.2 Talking about what ARUs know

The model given in the previcus section provides a sta-
ble basis, but the real power will come from the Janguage
with which we choose to speak about the model. The
following definitions are by now standard in the formal
Al and distributed computing communities (cf. [Rosen-
schein, 1985] and [Halpern and Moses, 1990]), but are
prcbably new 1o many robotics researchers. While we
include all definitions here, we will be able to provide
full intuition for those new to the area only in a long
version of this papet.

Assume a robotic system with a sel § of reachable
global states (i.e., configuration states as well as lo-
cal states). To be able Lo 1alk about the properties of
states in & we introduce a propositicnal language £, con-
structed from a collection P of primitive propositional
aytnbols and the boolean connectives — and A {we re-
strict the article to the propositional case). This lan-
guage describes properties of the system’s configuration,
such as the robot’s being in the goal. We then add an
interpretation function = that assigns a truth value wo
elements in P. Given £ and » we define the satisfiabil-
ily of a formula ¢ € £ in aslate 5 € §, written § 5 |= ¢,
as follows:

o S5 pforpe Pifl x(s,p) = true;

* 8.5 ~piff it is not the case that §, s =4 ;
e SskphpifS sk=pand 8,5k ¥Y;

o 8 piff for all s € & we have that S5 .
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We now augment the language with the notion of
knowledge. We say that an ARU in local state | knows
a wil ¢ if ¢ holds in all global states in which the ARU’s
local state is I, Formally:

¢ 55k Kap if 8,5 | ¢ for all & € 8 such that
sub-ARU a's local state is identical in 5 and 5.2

Example 1 (cont.) Cozsider vatiant la, and let the
proposition ¢ stand for the asscrtion “the object is in the
goal region, i.e., in the region [3,7)." When the controller has
the position reading of 4, it might in fact be in one of three
actual positions: 3.4 and 5. However, since all these positions
satisfy g, we can say that it knows g at this state.

As is well known in AT and distributed syatems, the
properties of this definition can be captured in a small
collection of axioms known as the S5 ariom system. Go-
ing into the properties of $5 is beyond the scope of the
paper, but we do remark that these properties bear onily
a crude similarity to the commensense notion of knowl-
edge. However, this less-than-perfect match will not
make the formal notion any less useful for our purposes.

2.3 Knowledge complexity

Having defined an implementation-independent notion
of knowledge, we are 1 a position 10 define a complex-
ity measure over robotics tasks and a capability measure
for robots. We first define the capability of a robot lo
attain knowledge. Intuitively, for a robot to know some-
thing it must eilther already possess the knowledge, or
else be able to take actions at. the conclusion of which
the knowledge is guaranteed. These actions may be sim-
ple sensing, running an internal routine, or navigating
around the environment to gather information. ln this
ariicle we allow only ‘non-destructive’ knowledge acqui-
sition; that is, we allow this to happen through actions
that culminate in additional knowledge (and thus change
in local state) to the robot, but in no change to the sys-
tem’s configuration.

Definition 3 An ARV is K-capable of {wpn,...,¥e} C
£ in a sel of global slales S if there exisis a protocol
P such thai for every s € 5. every execulion of P that
starts gl 5 reaches a state 5° such that (2] 5,8 F ApyV
-V Ky, fb) s and & differ at most in the local state
of the ARU, and (c} the ARU knows that (b} kolds.?

The knowledge-capability of a robot is characterized
by a set of proposilions, the interpretation of which is
that the robol can come to know at least one of those at
each configuration. This definitien embodies the notion
that sensing is nondeterministic. The robol may be able
1o guarantee that it come to know one of several facts,

2We use a subscripted K to distinguish between the
knowledge of different sub-ARUs. Tkis will also allow us to
make statements such as ‘sub-ARU a knows that sub-ARU &
knows @' HoKwp. When the the ARU is cbvious from the
context we will drop the subscript, as in K.

¥This is a subtle point which will be discussed in a longer
version of this paper. We briefly mention that (b) and (c)
always hold when we restrict P to purely sensory actions, i.e.,
actions that never change the configuration. Alternatively,
{c} can be handled by crafting a class of protocols with an
explicit termination condition.



but not any one of them in particular. For example,
given a position sensor with +1 error, sensing the posi-
tion when in location 4 will yield knowledge of one of the
following three facts: “the location is in the 2-4 region,”
“the location is in the 3-5 region,” and “the location is
in the 4-6 region.” Yet, knowledge of any one particular
statement is not guaranteed.

Definition 4 {pp,...,p¢} is an upper bound on the A-
complezily of a task Task(l, ), writlen Task(I,G) =
Owo,.--, o)), if (1) any ARU thal is R-cepable of
{¥e,.-..ox} tn 8{I] can perform Task(1,G); (2) Seme
ARU is K-capable of {po,...,pi} in S{I].

The notion of a lower bound can he defined similarly,
but it does not play a role in the sequel.

We make two observations about K-complexity. First,
it differs from the notions of time and space complex-
ity in that K-complexity values are not totally ordered.
Second, there appears to be an interaction between K-
complexily on Lthe one hand and time and space complex-
ity on the other, [ntuitively, while a robot with minimal
knowledge might be able to perform a task, with more
knowledge it might be akle (o perform the task more of-
ficiently in terms of computation time or space. We do
nol explore this interesting tradeoff here, buv we believe
it represents an important issue,

Example 1 (cont.) Consider varianis 1a and 1b. Recall
that in both variants a central controller is in charge of a two-
armed robot, which must perfarm two actions simoltaneously
when the obiject is in the goal region €= {3,4.5.8,7}.
K-complerity: It s casy to see that this task is O({g. -¢}).
Bowever, this is not a tight bound. If in positions 3
or 4 the rohot is nol sure where it is, it can still man-
age, as long as il is able to detecl the poal later, We
can therefore tighten ihe boundio O{{g.}]. where ¢ de-
notes being in {1,2,3,4,6,7,8,9, 10}, That is, in G\
{1.2,3,4,6,7.8,9,10} the robot musi know that it s in the
goal; in {1,2,3,4,6,7,8,9,10} | ¢ it must know w, and in
Gr{1,2,3,4,6,7,8.9,10} it should know either one.
K-capability in ta: The first controller’s semsor has an error
bound of 1. To verily that it s K-capable of {g, v} we must
see that it always satisfies A'g V A, This is easily verified.
For example, in position 3, its possible readings are 2,3, 4,
each of which makes it know g or p. We conclude that this
controller can perform this task.

K-capability in }b: The second controller’s sensor has an error
bound of 4. Given this error bound it cannot satisfy R'g at
any stale. g, or a stronger formula, must appear in any K-
complexity bound of this task, since any protocol that allows
Move(arms) al a point that does not satisfy g will fail. We
conclude that this controller cannot perform the task. ]

2.4 Knowledge-based protocols

Work in distributed systems has demonstrated that the
formal notion of knowledge is a powerful tool for analyz-
ing traditional protocols. However, it was recently noted
that the notion could be useful for design purposes 1oo; it
allows one to design high-level protocols that concentrate
on the informational aspects of the task without drown-
ing in implementation details. We define a slight variant
of an abstract notion of protocol - knowledge-based pro-

tecols (KBP), due lo [Fagin ei al., 1995]4 A KBP is
a (possibly partial) funetion from the set of knowledge-
states to the transitions of the given ARD. It can be
viewed as a big case statement, each condition of which
i a test on the knowledge of the ARU. The interpreta-
tion of this protocol is that ithe ARU always performs an
action that implements the traosition correaponding o
the earliest condition satisfied. A KBP can also be rep-
resented in disjoint form, in which this priority is made
explicit. Here are these two forms:

KB-protocol KB-protocol in digjoini form:

Case: Case:
Kay 7y Koy 1,
KNas 1 Kay A-Kaq T
Ko, w, Kay A Algi«(n Koy o

We refer lo Ka, ..., Kay, as the (knowledge) conditions
of this KBP. We say that an ARU raa run a KBP with
conditions Kog,....Key in 8, if SEV,_, Ko
Thus, a KBP specifies what to do and a class of ARUs
that are capable of following this specification. This last
point is an important difference hetween our definition
and that of [Fagin et ef., 1995]. Their KBPs contain a
final ELSE clause, and are thus executable by any ARU.

In principle, there is always a well-defined translation
from a starndard protocol to an eguivalent KBP. A stan-
dard prolocal can be viewed as a special case of a KBP,
since, by defimtion, an ARU always knows iis local state.
Conversely, a standard frunslation of a KBP P for an
ARU and a sel of global states § is obtained as follows:
Let K bie the earliest condition in P that is satisfied in
the local state !, and let r be the corresponding transi-
tion in P'. A standard translation assigns to { an action
that implements r. This transfation results in a com-
plete protocol {i.e., one in which an action is assigned to
every state) when the ARU can run the KBP in §. In
the sequel we are only interested in KBPs that can be
run by some AR in an appropriate set of global states.

Informally, we say that k is an execution of a KBP
if it is an execution of some standard translation of it.
Formally, the executions of a KBP P from initial con-
figurations I C C are those exsculions h of a standard
protocol P, by an ARU such that: (1) A{0) € {{c,f}jc €
Fand [ € Init(c)}, {2) the ARU can run P in 8[1], (3)
P, is a standard translation of P for this ARU and 8[7].
We say that KBP P performs Task(I, ) if all its ex-
ecutions from initial configurations in J pass through a
configuration in (5, and if the set of executions from [ is
not empty.

Notice that an assignment of the identity transition
by a KBP is redundant (excepl in goal states} since it
does not change the configuration. We therefore ignore
such KBPs in the sequel.

The following letnma requires an additional definition:
@ is aboud £ if for all 5,8 € 8! if Feongigls) = Teonpig(s')
then S5 & S8 Ep.

Lemma 1 Let ..., be about C in S[I] for any
ARU. Task(1,G) = O(lpi,....px}) iff there is

4The similarity in names between KBPs and knowledge-
based {or expert) systems in Al is coincidental.
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a KBP with conditions K,..., Ky thatperforins
Task(l,G).

This lemma suggests a method for analyzing a robot's
ability to perform a task in terms of two subproblems:
(1) finding a KBP V that perfoms the task, and (2)
showing that the robot is K-capable of {w1,...,@n},
where Ky,..., Ky, are the knowledge conditions of
P. This robot can then perform the task by running a
KBP derived from V by adding a final else dause which
(abstractly) states:

Else leam whether ¢, or ... or ¢,
Thus, the robot will alternately be making direct "phys-
ical" progress toward the goal state and attaining the
knowledge required to make such progress.

We conclude the section with two remarks on KBPs.
First, although, as we have just mentioned, a standard
protocol can always be viewed as a special case of a KBP,
it is a degenerate case. KBPs are powerful precisely be-
cause they allow us to abstract away the idiosyncrasies
of local state. Thus, for example, rather than discuss
the content of the frame buffer of a robot's vision sys-
tem, a KBP allows us to talk about the robot knowing
that there is an obstacle in front of it. Second, while in
principle well defined, in practice it can be quite difficult
to transform a KBP to a standard one. We believe, how-
ever, that, as has been the case in distributed systems,
starting with knowledge-oriented analysis and design is
a useful methodology.

Example 1 (cont.) Let g and alpha be as defined before.
Here is an example of a distributed KBP for the task, which
we derive algorithmically in Section 3:

Protocol for arm;.if K\g then Stop; if &'1¢ then Move.
Protocol for armkak:g then Move; if &2{ K1 A K1y}
then Stop.

As we will see, the use of nested operators is a
natural and condse way of capturing coordination. |

3 Automated distribution of robotic
tasks

So far we have provided a rigorous framework for rep-
resenting and reasoning about informational aspects of
robots and robotic tasks. Certainly, a minimal require-
ment from any formal framework is that one be able to
use it to reason about simple and intuitively well under-
stood examples; indeed, all along we have applied the
framework to such an example. However, for the frame-
work to be something other than an idle exercise, it must
ultimately be used for other than merely formalizing the
obvious. One direction to go would be to increase the
complexity of the robotic task until its solution or lack
thereof are no longer obvious. However, here we offer
a different novel contribution - a provably cormrect algo-
rithm for distributing robotic tasks; that is, an algorithm
that (roughly speaking) accepts a multi-robot task and a
central controller for the robots that achieves it, and out-
puts local controllers for each of the robots that jointly
achieve the same task.

Our approach to task distribution rests on capturing
the notion of centralization through the formal notion
of knowledge. With central control all knowledge of the
various components resides at one place, the controller.
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This has far-reaching consequences. For example, in a
two-armed robot, a central controller means that not
only do both ams always have the same knowledge, but
they each know that they do, they each know that they
each know, and so on; this is called common knowledge
in the logic literature. Endowing the two amms with
separate controllers breaks this common knowledge; the
ams may have different knowledge, or may have the
same knowledge without knowing that they do. Our
knowledge-level language allows us to identify the levels
of knowledge required of different parts of the system,
and thus to precisely quantify various degrees of central-
ization.

Recall that our formal language £ allows nesting of the
knowledge operator. For example, the sentence Ky Kyy
reads "ARU 1 knows that ARU 2 knows that ¢ is the
case"" Recalling that "knowledge" is merely a way of
capturing a certain correlation between an ARU's lo-
cal state and the global state of the system, this means
that the above statement concisely and elegantly cap-
tures a complicated relationship between the local state
of ARU 1, the local state of ARU 2, and the system's
configuration. Knowledge operators can be nested more
deeply, encoding even more complex relationships be-
tween states; K2 A'; Ky is perfectly legal.

Before describing our algorithm we must explain the
notion of a progress measure, which originates in the pro-
gram verification and synthesis literature. The general
idea is to assign values to states from some well-ordered
set (i.e., a set whose every subset has a minimal element)
with the goal state assigned the minimal value. Given a
progress measure we can prove that a protocol performs
a task by showing that each transition the protocol takes
produces a new state whose value is smaller than that of
the previous state. [Erdmann, 1994] ingeniously employs
these ideas to the problem of generating minimal sensors.
He uses an existing protocol to generate a progress mea-
sure that assigns to each state the maximal number of
steps that the protocol might take to achieve the goal.
He then uses this progress measure to obtain sufficient
sensing requirements for a task. We use his method as a
"subroutine" in the algorithm.

Definition 5 A progress measure for an ARD (C, T) is
a functip(C) —» W, where W is a well-ordered set.

We can construct a progress measure given a protocol
and a task. The idea is to see for each state what is the
longest the protocol might take to lead the system to a
goal state.

Definition 6 Given a task Task\I,G) and a KBP P,
the f U N PP Taii,cyS defined for eache € Cas
the least uppef bouhd ori the number of steps along any
execution of V from initial configuration {c} until the
first time a configuration in G is reached, or ¢! ifno
such upper bound exists or if a configuration is reached
on which V is undefined. We say that r € T makes
progress on ¢ € C according to p ifforany ¢' € T(e)(e),
He') < ple)

Lemma 2 ap p,44(1,6); IS @progress measure.

We will also need the following:



Deﬁmtmn 7 Given a joint KBP P for an n-ARU, fhe

b projection of P is ¢ KBP for ARU; containing a pair
of the form “if K;p then do ;" whenever P contains “if
Kpthendo(n,.. .,n,...,70)".

A configuratior ¢ possibly satisfies ¢ if there is an
ARU, e set of global states § C GS, end some s € 8
such that 5,6 = @ and ¥opnpig{s) = c. We say that
conditions ¢ and o are consistent (for ARD (C,T)) if
there exists o configuration that possibly satisfies p A 3.

We define Cp , ; 2o be {c € CloP Taskir.apn < )

We are now ready to present the algorithm. The idea
behind it is as follows. It takes as its input a task de-
scription and a joint KBP for n-ARU, and uses them
to generate a progress measure over the configuration
space of the ARD. It also (nondeterministically) assigns
an ordering to the sub-ARUs. Next, it assigns to each
sub-ARU its projection of the original joint protocol. It
then sequentially goes through the sub-ARUS' protocols
one at a time, adding to each just those additional knowl-
edge conditions needed to ensure coordination with the
preceding sub-ARUs.

Knowledge-Based Distribution Algorithm
Input: (1) A task Task(l,G) (2) A joint KBP V for n-
ARU in disjoint form.
Output: distributed KBP for n-ARU.
1. Construct the progress measure PP Tarkti G

2. Nondeterministically select an ordering over
{1,...,n}.

3. Project V to each sub-ARU. Call the initial protocol
of ARU*, Vi

4. Let r = 2. Repeat the following until r— N:

(a) Repeat sequentially for all knowledge condi-
tions appearing in P,.
i. Let @ be the current condition examined;
let . be the transition assigned to w by P,.
ii. Set C— false
iii. Repeat for all (r - I)-tuples of transitions
ri,..., 71 that ARU4,...,ARU,_; may

perform under conditions consistent with (alpha.

A. If there exist transitions r.+i,...,r,
such that » (where r < | < n)
is assigned to- ARU, under a condi
tion consistent with ¢, and such that
{r1,.--,T,...,Tn} Makes progress (ac-
cording to AFapk (1G)) on all configu-
rations in Cpia that possibly satisfy @,
then set C to

Oy /\ [}
1€54r
where §; is the knowledge condition in P,
under which #; is performed,
iv. Replace the condition “& then c¢r" in r's
protocol by:

“o A KoC then do 7.

(b) Collect conditions corresponding to the same
transition (i.e., replace: “K, then do 7" and
“K.¢' then do r" by "K.(¢V ¢} then de 7).

Theorem 1 Let V be a joint KBP with a finite number
of executions from | and with conditions{ K|t € A},
where aig; (i € A4)) are about C i8[1]. V performsthe
input task Task(l, G) iff the distributed KBP generated
by the algorithm performs Task(l,G).

Several comments about the algorithm. First, differ-
ent orders on the sub-ARUs will result in different dis-
tributed protocols. Roughly, the later a sub-ARU is in
the ordering, the more it has to know, since it must co-
ordinate its actions with the sub-ARU preceding it. Al-
though we do not have a way of quantifying the 'ease’ of
each distribution, some ordering may result in require-
ments that are easier to achieve in practice than others.
Second, the output of the algorithm is highly sensitive
to the input task. A joint protocol usually embodies
much more knowledge (i.e., coordination) than is actu-
ally needed for any given task. Our algorithm uses the
progress measure, and hence the task, to determine just
how much knowledge to add to each sub-ARU. Finally,
an implicit assumption is that the change to a distributed
protocol does not affect the function /nit.

The distributed protocol we obtain is not necessarily
minimal in its knowledge requirements and its proper-
ties, as well as those of other possible algorithms, deserve
further investigation. However, it does offer a method for
obtaining non-trivial specification of sufficient conditions
for task distribution; these are the knowledge conditions
of the distributed KBP obtained as its output.
Example 1 (cont.) The discussion in the
section the following KBP for our task: If Kg
(Stop(armi),Move(am?2)); if K¢  (Move(ami),Stop(arm?2))

the proposition g and «» are defined as before.
Distribution. We start by running the algorithm on this pro-
tocol and the given task. We skip the construction of the
progress measure, which is straightforward. After perform-
|ngﬁ‘|efrsthreeslepswehave
Protocol for amy: Aig top; Wipa-Kig/ € .
Protocol for ammy: If Kag Move; I 29 A =R2g Stop.

Step 4 calls for revising arm,s protocol. The first condi-
tion there is Ky, and both actions Stop and Move could be
performed by ammy under this condition, since positions 3 and
4 satisfy both g and . The only action by ammy that mekes

when amm, does Move, is Stop. Stop is

by amy under the condition K\g Therefore we must re-
pace xyy With Azg A Kz Kyg, Which is equwalent to KoKyg
Slmllady, when we examine the action Stop, performed un-
der the condition K, we find that it makes progress only
when joined with Move. Therefore, we substitute the action
Ki(kipa-f1g)l T K9V e obtain:

Protocol for armi: If &y Stop; 1f A1 A -k Move.
Protocol for ammy: If AzA g  Move; If K{Kvp A —A1g)

Stop.
Sensitivity of distribution to task. Consider the task of Exam-
1, but now the table is heat-resistant, so that the second
am need not start moving isely when the first one hes
stopped, and in addition, the second am hit the ob-
ject while still in motion. Clearly the above distributed KBP
will do, since the original task is more sfringent than this one,
but the reader may verify that, as a resullt of the optimization
performed by the algorithm, we obtain the following KBP:
for a If Kig Stop; [f RipAa-kig €
PI'OtOCO| If Kz Move; i K3 A -R2g

Sensitivity of distribution to the ordering of ARUs. We menr

tioned that the ordering of ARUs can make a difference. If
ammy, wes given higher priority than arm,, we would have
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obtained the symmetric protocol:
ggtoool for amy: If Kikzg Move; If Ky(Kae A ~K2g)
p.
Protocol for am,: If Azg Stop; If Kz A=Kz Move.
In a precise sense, which we do not have space to explain,
both distributions embody the same amount of
However, from the pragmatic point of view one protoool
might be vastly superior to another. For example, in some
situations it may be easier to detect goal configurations from
a distance. In that case the second protocol may be more
appropriate, since detecting g would be easier for arms.

4 Discussion
This paper makes two main contributions:

* We present a formal model of robotics domains, a
logical language for reasoning about the model, and
define natural measures of the information complex-
ity of robotics tasks and the informational abilities
of robots based on the notion of knowledge.

* We use the model and the language to provide a
distribution algorithm for knowledge-based robotic
protocols.

Information, and more specifically sensing, are issues
of central importance in robotics. The unreliability of
sensors and the difficulty in reasoning about sensory in-
formation has lead some researchers to attempt to reduce
the sensing requirements of tasks (e.g.,[Erdmann and
Mason, 1993; Goldberg, 1993]. More generally, there has
been increasing interest in understanding the inherent
sensing requirements of a task. [Erdmann, 1994] is one
such effort which has had major influence on our work.
Erdmann argues that sensors should be constructed to
provide sufficient information to choose an action that
makes progress. He uses progress measures, discussed
earlier, to do so. Erdmann also talks about knowledge,
and the semantics of his notion of information is very
similar to the standard semantics of knowledge which
we use. One contribution of our work is to supply a
formal language that captures these ideas, which (as we
have shown) has natural extensions.

Ancther influential idea is Donald's notion of informa-
tion invariants [Donald, 1994], in which 'reductions' play
an important part. Roughly speaking, system A can be
reduced, to system B if we can use system B to obtain
the same information that system A can obtain. In a
longer version of this paper we discuss a natural notion
of knowledge-based reduction that arises in our work,
and tie it in with Donald's work.”

Motivating our investigation of task distribution was
the work of [Donald et a/., 1993]. This work exam-
ines distribution of manipulation tasks, starting from a
centralized protocol. Their analysis of the information
needed there shows that it pertains to the configuration
of the manipulating robot w.r.t. the manipulated object.
Using our terminology, we can say that from their work
it can be concluded that these tasks do not require two
levels of knowledge for their distribution (i.e., one robot
does not need to know the state of the other). They are

° Updated versons of this work in URL
http://robotics.stanford.edu/users/brafman/bio.htmi
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then able to obtain an asynchronous distributed protocol
for such problems.

Finally, the use of prioritization in multi-robot envi-
ronments appears in a different context in [Erdmann and
Lozano-Perez, 1987]. There, prioritization is used to pro-
duce motion plans for multiple moving objects.

We believe that the marriage of knowledge represen-
tation and robotics is an extremely promising direction,
which we intend to pursue.
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