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Abst rac t 

We develop a formal tool for representing 
and analyzing informational aspects of robotic 
tasks, based on the formal concept of 'knowl­
edge.' Specifically, we adopt the notion of 
knowledge-based protocols from distributed 
systems, and define the notions of knowledge 
complexity of a robotic task and knowledge ca­
pability of a robot. The resulting formalism 
naturally captures previous work in the areas 
of robot information management, but is suffi­
ciently rigorous and natural to allow many ex­
tensions. In this paper we show one novel appli­
cation - the automated distribution of robotic 
tasks. 

1 I n t r oduc t i on 
The notion of computational complexity has had a pro­
found effect on the development of computer science. 
While still crude, our ability to classify different compu­
tational problems in terms of their complexity allows us 
to understand inherent difficulties in solving such prob­
lems. Some areas of robotics, such as motion planning, 
have benefited from advances in computational complex­
ity (e.g.,[Canny, 1989]). However, the area of robotics as 
a whole still lacks the analog of a Turing machine, a 
formal device that faithfully quantifies the difficulty of a 
robotic task or the capabilities of a robot. The reason for 
this is that usually, space and time complexity of compu­
tation are not the dominating factors in a robotic task. 
Instead, the physical embedding of robots brings to the 
fore issues such as sloppy controllers, imprecise sensors, 
and spatially separated components, all of which suggest 
that a good model for robotics should revolve around the 
notions of information and uncertainty. 

We propose a framework that faithfully models the 
information and lack thereof inherent in robotic tasks, 
such as is brought about by spatial distribution and im­
precise sensors. In doing so we join a number of authors 
who have recently attempted to quantify the sensing dif­
ficulty of robotic tasks. [Erdmann, 1994] attempts to as­
sess the sensing requirements of robotics tasks in terms 
of what he calls abstract sensors. [Donald, 1994] devel­
ops formal tools that allow him, among other things, 

to compare and classify the sensing capabilities of dif­
ferent concrete sensor systems such as a radial sensor 
and a beacon sensor. We find this recent work inspir­
ing, but believe that further progress can be made by 
couching the analysis of informational considerations in 
robotic tasks in a suitable abstract language. In particu­
lar, we believe that the formal notion of 'knowledge' that 
has been proposed and studied in AI (e.g., [Moore, 1985; 
Rosenschein, 1985]) and distributed systems (e.g., [Fagin 
et al., 1995]) can serve as a basis for just such an abstrac­
tion. We recently showed a particular application of the 
formal notion of knowledge to the task of robot motion 
planning under uncertainty [Brafman et a/., 1994]; here 
we propose a more ambitious application of the notion, 
namely as a basis for the general model of informational 
aspects of robots and robotic tasks. In our framework, 
robotic tasks can be characterized in terms of the knowl­
edge required to perform them, and robots can be char­
acterized in terms of the knowledge they can acquire. We 
can therefore assess the ability of a particular robot to 
perform a task by comparing its knowledge capabilities 
to the knowledge requirements of the task. One of the 
benefits of this formal approach and its underlying se­
mantics is extensibility. In particular, we are able to ex­
ploit this feature in the analysis of multi-robot domains. 
As a demonstration of this, we provide a provably corrept 
algorithm for distributing centralized robotic protocols; 
roughly speaking, the algorithm accepts as input a de­
scription of a robotic task and a high-level description 
of a centralized protocol for achieving the task, and out­
puts a high-level description of a decentralized protocol 
that is guaranteed to achieve the same task. 

To provide intuition, throughout the paper we will an­
chor the formal development in the following example. 
Although simple, the example embodies two important 
ingredients - imprecise sensing, and the need to coordi­
nate the action of spatially distributed actuators. 
Example 1. Two horizontal, perpendicular, one-
dimensional robotic arms must coordinate as follows. The 
first arm is to push a hot object lengthwise across the table 
until the the second arm is able to push it sideways so that it 
falls into a cooling bin. The length of the table is marked in 
feet, from 0 thru 10 (for simplicity we ignore the horizontal 
coordinate). The second arm is able to push the object if it is 
anywhere in the region [3,7]. The second arm cannot hit the 
object while the object is in motion, but on the other hand 
the object cannot remain motionless for more than an instant 
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or it will burn a hole into the table. Thus the second arm 
must move precisely when the first one stops. We consider 
four variants of the problem: 
la. The arms share a controller. The controller has access to 

a sensor reporting the position of the object with error 
no greater than 1, i.e., if the object's current location is 
q then the reading can be anywhere in [q - 1, q + 1]. 

lb. Same as la, except the error bound is 4 rather than 1. 
lc. Each arm is controlled separately. Each controller 

has access to a location sensor as in la; however these 
are two independent sensors whose readings may differ 
(within the allowed bounds). 

Id. The situation is as in lc, except that only the first 
controller has a sensor. However, in addition the first 
controller can emit (e.g., infra-red) signals, and the sec­
ond controller can reliably detect thern. 

It is not hard to see that in cases lb and lc there does not 
exist a protocol that will achieve the task, whereas in cases 
la and Id there do exist such protocols.1 | 

There are three remaining sections in the article: (2) 
the formal model and language, (3) an application to 
the distribution of robotic tasks, and (A) discussion of 
related work. 

2 The mode l 
We start by presenting our model, which is based on the 
notions of Abstract Robotic Domain (ARD) and Abstract 
Robotic Unit (ARU). In the second section we present a 
(by now standard) logic for talking about the model, 
including the knowledge of ARUs. In the third section 
we introduce the new notions of knowledge capability and 
knowledge complexity, which we then relate to the notion 
of knowledge-based protocols. 

2.1 Abstract Robotic Units and Domains 
We start by defining the notion of an Abstract Robotic 
Domain, or ARD. An ARD consists of a set of possi­
ble states and the possible transformations among them. 
Roughly, a state of the ARD corresponds to the notion 
of configuration in robotics [Lozano-Perez, 1983]; it en­
codes everything that is not internal to robots, such as 
the location of the robot and other objects. The informa­
tion and computation capabilities of a robot are captured 
by an Abstract Robotic Unit (ARU). An ARU is a state 
machine whose actions "cause'1 the ARD's transitions. 
Different ARUs acting on a given ARD have identical 
actuation capabilities, but their abilities to sense and 
compute can vary. 
Definition 1 An ARD is a pair (C,T) where C, the con 
figuration space, is a set of states, and T, the transitions, 
is a set of functions from C to 2C'\0, containing the iden­
tity function. 

1 For example, the centralized protocol in case la might 
be as follows (r is the current reading): If r < 4 then 
(Move(armi),Stop(arm2)); else (Stop(armi),Move(arm2)). 
Similarly, a decentralized protocol in case Id might be: 
Protocol for arm1: If r < 4 then Move; If r E [4,6] then 
signal and stop. 
Protocol for arm2: If Signal has been detected then Move; 
Else stop. 
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a KBP with conditions that perforins 
Task(I,G). 

This lemma suggests a method for analyzing a robot's 
ability to perform a task in terms of two subproblems: 
(1) finding a KBP V that performs the task, and (2) 
showing that the robot is K-capable of , 
where are the knowledge conditions of 
P. This robot can then perform the task by running a 
KBP derived from V by adding a final else clause which 
(abstractly) states: 

Else learn whether or ... or 
Thus, the robot will alternately be making direct "phys­
ical" progress toward the goal state and attaining the 
knowledge required to make such progress. 

We conclude the section with two remarks on KBPs. 
First, although, as we have just mentioned, a standard 
protocol can always be viewed as a special case of a KBP, 
it is a degenerate case. KBPs are powerful precisely be­
cause they allow us to abstract away the idiosyncrasies 
of local state. Thus, for example, rather than discuss 
the content of the frame buffer of a robot's vision sys­
tem, a KBP allows us to talk about the robot knowing 
that there is an obstacle in front of it. Second, while in 
principle well defined, in practice it can be quite difficult 
to transform a KBP to a standard one. We believe, how­
ever, that, as has been the case in distributed systems, 
starting with knowledge-oriented analysis and design is 
a useful methodology. 
Example 1 (cont.) Let g and alpha be as defined before. 
Here is an example of a distributed KBP for the task, which 
we derive algorithmically in Section 3: 
Protocol for arm1.if K\g then Stop; if then Move. 
Protocol for arm2'. if then Move; if 
then Stop. 
As we will see, the use of nested knowledge operators is a 
natural and concise way of capturing coordination. | 

3 A u t o m a t e d d i s t r i bu t i on of robot ic 
tasks 

So far we have provided a rigorous framework for rep­
resenting and reasoning about informational aspects of 
robots and robotic tasks. Certainly, a minimal require­
ment from any formal framework is that one be able to 
use it to reason about simple and intuitively well under­
stood examples; indeed, all along we have applied the 
framework to such an example. However, for the frame-
work to be something other than an idle exercise, it must 
ultimately be used for other than merely formalizing the 
obvious. One direction to go would be to increase the 
complexity of the robotic task until its solution or lack 
thereof are no longer obvious. However, here we offer 
a different novel contribution - a provably correct algo­
rithm for distributing robotic tasks; that is, an algorithm 
that (roughly speaking) accepts a multi-robot task and a 
central controller for the robots that achieves it, and out­
puts local controllers for each of the robots that jointly 
achieve the same task. 

Our approach to task distribution rests on capturing 
the notion of centralization through the formal notion 
of knowledge. With central control all knowledge of the 
various components resides at one place, the controller. 

This has far-reaching consequences. For example, in a 
two-armed robot, a central controller means that not 
only do both arms always have the same knowledge, but 
they each know that they do, they each know that they 
each know, and so on; this is called common knowledge 
in the logic literature. Endowing the two arms with 
separate controllers breaks this common knowledge; the 
arms may have different knowledge, or may have the 
same knowledge without knowing that they do. Our 
knowledge-level language allows us to identify the levels 
of knowledge required of different parts of the system, 
and thus to precisely quantify various degrees of central­
ization. 

Recall that our formal language allows nesting of the 
knowledge operator. For example, the sentence 
reads "ARU 1 knows that ARU 2 knows that is the 
case." Recalling that "knowledge" is merely a way of 
capturing a certain correlation between an ARU's lo­
cal state and the global state of the system, this means 
that the above statement concisely and elegantly cap­
tures a complicated relationship between the local state 
of ARU 1, the local state of ARU 2, and the system's 
configuration. Knowledge operators can be nested more 
deeply, encoding even more complex relationships be­
tween states; is perfectly legal. 

Before describing our algorithm we must explain the 
notion of a progress measure, which originates in the pro­
gram verification and synthesis literature. The general 
idea is to assign values to states from some well-ordered 
set (i.e., a set whose every subset has a minimal element) 
with the goal state assigned the minimal value. Given a 
progress measure we can prove that a protocol performs 
a task by showing that each transition the protocol takes 
produces a new state whose value is smaller than that of 
the previous state. [Erdmann, 1994] ingeniously employs 
these ideas to the problem of generating minimal sensors. 
He uses an existing protocol to generate a progress mea­
sure that assigns to each state the maximal number of 
steps that the protocol might take to achieve the goal. 
He then uses this progress measure to obtain sufficient 
sensing requirements for a task. We use his method as a 
"subroutine" in the algorithm. 

Definition 5 A progress measure for an ARD (C, T) is 
a function —► W, where W is a well-ordered set. 

We can construct a progress measure given a protocol 
and a task. The idea is to see for each state what is the 
longest the protocol might take to lead the system to a 
goal state. 
Definition 6 Given a task Task\ and a KBP P, 
the f u n c t i o n i s defined for each as 
the least upper bound on the number of steps along any 
execution of V from initial configuration {c} until the 
first time a configuration in G is reached, or as if no 
such upper bound exists or if a configuration is reached 
on which V is undefined. We say that makes 
progress on according to p if for any 

Lemma 2 is a progress measure. 

We will also need the following: 
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We are now ready to present the algorithm. The idea 
behind it is as follows. It takes as its input a task de­
scription and a joint KBP for n-ARU, and uses them 
to generate a progress measure over the configuration 
space of the ARD. It also (nondeterministically) assigns 
an ordering to the sub-ARUs. Next, it assigns to each 
sub-ARU its projection of the original joint protocol. It-
then sequentially goes through the sub-ARUs' protocols 
one at a time, adding to each just those additional knowl­
edge conditions needed to ensure coordination with the 
preceding sub-ARUs. 

Knowledge-Based Distribution Algorithm 
Input: (!) A task Task(l,G) (2) A joint KBP V for n-
ARU in disjoint form. 
Output: distributed KBP for n-ARU. 

1. Construct the progress measure 
2. Nondeterministically select an ordering over 

{1,...,n}. 
3. Project V to each sub-ARU. Call the initial protocol 

of ARU*, Vk. 
4. Let Repeat the following until r — N: 

(a) Repeat sequentially for all knowledge condi­
tions appearing in 
i. Let be the current condition examined; 

let . be the transition assigned to 
ii. Set C — false 
iii. Repeat for all (r - l)-tuples of transitions 

that ARU1,...,ARUr_1 may 
perform under conditions consistent with (alpha. 

A. If there exist transitions r r+i,...,rn 
such that (where r < i < n) 
is assigned to- ARU, under a condi­
tion consistent with and such that 

makes progress (ac­
cording to Task (I,G))) on all configu-
rations in that possibly satisfy 
then set C to 

where is the knowledge condition in 
under which is performed, 

iv. Replace the condition then do in r's 
protocol by: 

(b) Collect conditions corresponding to the same 
transition (i.e., replace 

then do r" by " 

Theorem 1 Let V be a joint KBP with a finite number 
of executions from I and with conditions 
where all ) are about C in V performs the 
input task Task(I, G) iff the distributed KBP generated 
by the algorithm performs Task(l,G). 

Several comments about the algorithm. First, differ­
ent orders on the sub-ARUs will result in different dis-
tributed protocols. Roughly, the later a sub-ARU is in 
the ordering, the more it has to know, since it must co-
ordinate its actions with the sub-ARU preceding it. Al­
though we do not have a way of quantifying the 'ease' of 
each distribution, some ordering may result in require­
ments that are easier to achieve in practice than others. 
Second, the output of the algorithm is highly sensitive 
to the input task. A joint protocol usually embodies 
much more knowledge (i.e., coordination) than is actu­
ally needed for any given task. Our algorithm uses the 
progress measure, and hence the task, to determine just 
how much knowledge to add to each sub-ARU. Finally, 
an implicit assumption is that the change to a distributed 
protocol does not affect the function Init. 

The distributed protocol we obtain is not necessarily 
minimal in its knowledge requirements and its proper­
ties, as well as those of other possible algorithms, deserve 
further investigation. However, it does offer a method for 
obtaining non-trivial specification of sufficient conditions 
for task distribution; these are the knowledge conditions 
of the distributed KBP obtained as its output. 
Example 1 (cont.) The discussion in the previous 
section suggests the following KBP for our task: If Kg 
(Stop(armi),Move(arm2)); if (Move(armi),Stop(arm2)) 
where the proposition g and are defined as before. 
Distribution. We start by running the algorithm on this pro-
tocol and the given task. We skip the construction of the 
progress measure, which is straightforward. After perform­
ing the first three steps we have: 
Protocol for arm1: I f S t o p ; I f M o v e . 
Protocol for arm2: If Move; If Stop. 

Step 4 calls for revising arm2s protocol. The first condi­
tion there is and both actions Stop and Move could be 
performed by arm1 under this condition, since positions 3 and 
4 satisfy both g and The only action by arm1 that makes 
progress when arm2 does Move, is Stop. Stop is performed 
by arm1 under the condition K\g. Therefore, we must re­
place K2g with , which is equivalent to K2.K1g 
Similarly, when we examine the action Stop, performed un­
der the condition we find that it makes progress only 
when joined with Move. Therefore, we substitute the action 

I f o r W e obtain: 
Protocol for armi: If _ Stop; 
Protocol for arm2: If 
Stop. 
Sensitivity of distribution to task. Consider the task of Exam­
ple 1, but now the table is heat-resistant, so that the second 
arm need not start moving precisely when the first one has 
stopped, and in addition, the second arm may hit the ob­
ject while still in motion. Clearly the above distributed KBP 
will do, since the original task is more stringent than this one, 
but the reader may verify that, as a result of the optimization 
performed by the algorithm, we obtain the following KBP: 
Protocol for a r m i : M o v e . 
Protocol for arm2: Stop. 
Sensitivity of distribution to the ordering of ARUs. We men­
tioned that the ordering of ARUs can make a difference. If 
arm2 was given higher priority than arm1, we would have 
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obtained the symmetric protocol: 
Protocol for arm1: If Move; If 
Stop. 
Protocol for arm2: If Stop; If Move. 

In a precise sense, which we do not have space to explain, 
both distributions embody the same amount of knowledge. 
However, from the pragmatic point of view one protocol 
might be vastly superior to another. For example, in some 
situations it may be easier to detect goal configurations from 
a distance. In that case the second protocol may be more 
appropriate, since detecting g would be easier for arm2. 
4 Discussion 
This paper makes two main contributions: 

• We present a formal model of robotics domains, a 
logical language for reasoning about the model, and 
define natural measures of the information complex­
ity of robotics tasks and the informational abilities 
of robots based on the notion of knowledge. 

• We use the model and the language to provide a 
distribution algorithm for knowledge-based robotic 
protocols. 

Information, and more specifically sensing, are issues 
of central importance in robotics. The unreliability of 
sensors and the difficulty in reasoning about sensory in­
formation has lead some researchers to attempt to reduce 
the sensing requirements of tasks (e.g.,[Erdmann and 
Mason, 1993; Goldberg, 1993]. More generally, there has 
been increasing interest in understanding the inherent 
sensing requirements of a task. [Erdmann, 1994] is one 
such effort which has had major influence on our work. 
Erdmann argues that sensors should be constructed to 
provide sufficient information to choose an action that 
makes progress. He uses progress measures, discussed 
earlier, to do so. Erdmann also talks about knowledge, 
and the semantics of his notion of information is very 
similar to the standard semantics of knowledge which 
we use. One contribution of our work is to supply a 
formal language that captures these ideas, which (as we 
have shown) has natural extensions. 

Another influential idea is Donald's notion of informa­
tion invariants [Donald, 1994], in which 'reductions' play 
an important part. Roughly speaking, system A can be 
reduced, to system B if we can use system B to obtain 
the same information that system A can obtain. In a 
longer version of this paper we discuss a natural notion 
of knowledge-based reduction that arises in our work, 
and tie it in with Donald's work.5 

Motivating our investigation of task distribution was 
the work of [Donald et a/., 1993]. This work exam­
ines distribution of manipulation tasks, starting from a 
centralized protocol. Their analysis of the information 
needed there shows that it pertains to the configuration 
of the manipulating robot w.r.t. the manipulated object. 
Using our terminology, we can say that from their work 
it can be concluded that these tasks do not require two 
levels of knowledge for their distribution (i.e., one robot 
does not need to know the state of the other). They are 

5 Updated versions of this work appear in URL 
http://robotics.stanford.edu/users/brafman/bio.html 

then able to obtain an asynchronous distributed protocol 
for such problems. 

Finally, the use of prioritization in multi-robot envi­
ronments appears in a different context in [Erdmann and 
Lozano-Perez, 1987]. There, prioritization is used to pro­
duce motion plans for multiple moving objects. 

We believe that the marriage of knowledge represen­
tation and robotics is an extremely promising direction, 
which we intend to pursue. 
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