
Off-line Reasoning for On-line Efficiency *

Yoram Moses Moshe Tennenholtz
Robotics Lab

Department of Applied Math and CS Department of Computer Science

The Weizmann Institute of Science Stanford University

Rehovot, 76100 Israel Stanford, CA 94305

Abstract

The complex i ty of reasoning is a fundamenta l issue in
A I . In many cases, the fact tha t an intel l igent system
needs to per form reasoning on-l ine contr ibutes to the
di f f icul ty of this reasoning. In this paper we investigate
a couple of contexts in which an i n i t i a l phase of off-l ine
preprocessing and design can improve the on-l ine com­
plexi ty considerably. The first context is one in which an
intel l igent system computes whether a query is entai led
by the system's knowledge base. We present the not ion
of an efficient basts for a query language, and show tha t
off-l ine preprocessing can be very effective for query lan-
guages tha t have an efficient basis. The usefulness of this
not ion is i l lust rated by showing tha t a fair ly expressive
language has an efficient basis. The second context is
closely related to the ar t i f ic ia l social systems approach
introduced in [MT90] . We present the design of a so­
cial law for a mul t i -agent envi ronment as p r imar i l y an
instance of off- l ine processing, and study this problem in
a par t icu lar mode l . We briefly review the ar t i f ic ia l so­
cial systems approach to design of mul t i -agent systems,
introduced in [MT90] . C o m p u t i n g or coming up w i th a
social law is viewed as a p r imar i l y off-l ine act iv i ty tha t
has ma jo r impac t on the effectiveness of the on-l ine ac­
t i v i t y of the agents. The tradeoff' between the amount of
effort invested in comput ing the social law and the cost
of the on- l ine ac t iv i t y can thus be viewed as an off-l ine
vs. on-l ine tradeoff.

1 In t roduc t ion

Many act iv i t ies in the f ramework of knowledge repre­
sentat ion and reasoning are concerned w i t h the fo l lowing
task: An inte l l igent agent has a given representation of a
system (or a relevant aspect of the wor ld) , and a problem
tha t relates to th is representat ion. I ts task is to solve this
problem relat ively efficiently. Typ ica l examples include

*Th is work was supported in part by a grant f rom the US-Israel
B inat ional Science Foundat ion. The first author is incumbent of
the Helen and M i l t o n A. K imme lman Career Development Chair.

planning and comput ing whether a query is entai led by
a given knowledge base. The reasoning in both of these
cases can be thought of as on-l ine reasoning: When an
input is given, our a lgo r i t hm should reason about the
system and about the problem instance, and should f ind
a solut ion to the prob lem. In order to handle such prob­
lems, researchers often use general schemes of knowl ­
edge representation such as First Order Logic [MH81] ,
logic programs [Kow74], semantic networks [Qui67], etc.
Moreover, the reasoning is then carried out using gen­
eral schemes of reasoning such as resolut ion for theorem
prov ing, Prolog for logic programs, etc.

Consider the fo l lowing question: Can our agent i m ­
prove its on-l ine performance in a case where the model
it uses (e.g., its knowledge-base or representation of the
wor ld) is f ixed, and we know ahead of t ime tha t the agent
is to be asked to solve many problems w i t h respect to
this model? In tu i t ive ly , i t is clear tha t the answer should
be posit ive; given a f ixed model there should invar iably
be special-purpose a lgor i thms for solv ing problems w i t h
respect to this par t icu lar mode l , instead of using gen­
eral schemes of reasoning. Th is answer, however, is not
very useful to the agent, without, our p rov id ing the agent
w i th a way in which it can obta in such special-purpose
a lgor i thms. Our a im in this paper is to consider the
problem of how an in i t i a l phase of off- l ine preprocessing
can serve to reduce the complex i ty of the agent's on-
line behavior. We are especially interested in systems
where agents m igh t be presented w i t h (perhaps expo­
nent ia l ly) many potent ia l problems dur ing the on-l ine
act iv i ty . In such a case the agent should be allowed to
perform rather extensive preprocessing w i t hou t increas­
ing the amort ized cost per solut ion signi f icant ly. Specif­
ically, we shall investigate two central contexts. The
first involves an intel l igent system tha t needs to compute
whether par t icu lar formulas (queries) are entai led by i ts
knowledge base. We present the not ion of an efficient
basts for a query language, and show tha t off- l ine pre-
processing can be very effective for query languages tha t
have an efficient basis. The second context involves dy­
namic mul t i -agent act iv i ty , and is closely related to the
ar t i f ic ia l social systems approach in t roduced in [MT90] .

490 Knowledge Base Technology

Reactive approaches to problems in A I , related espe­
cially to p lann ing , have been suggested in a number of
works (see [Agr91] , [AC87]) . Some other works suggested
to compi le reactive behaviors in advance (see [Sch87]).
However, the task of improv ing on-l ine behavior does
not need to concentrate only on " rea l " reactive behav­
ior. On- l ine behavior m igh t refer more generally to the
behavior of an agent where it faces various problems af­
ter the in i t i a l i za t ion of the system. The ma in task is
to ident i fy areas where off- l ine processing can be helpful
and to suggest a par t icu lar type of solut ion for each such
area. Th is is exact ly the object ive of this work.

Th is paper is organized as fol lows. Section 2 contains a
high-level discussion about how off-l ine reasoning can be
used in two general scenarios. In Section 3 we discuss a
property of query languages tha t makes preprocessing of
knowledge bases for these languages extremely effective.
Section \ presents a fa i r ly expressive query language w i th
the property described in Section 3, and considers addi­
t ional examples in which off-l ine preprocessing is useful
in the context of knowledge bases. Section 5 relates the
art i f ic ial social systems approach to the on-l ine vs. off­
line reasoning pa rad igm.

2 Off- l ine versus on-l ine reasoning

Consider the well known problem of determin ing
whether queries are entai led by a knowledge base, as dis­
cussed for example in [Lev89]. We assume that we have a
knowledge base KB expressed in some logical language,
and a query language QL in which queries concerning
KB are fo rmu la ted . Given a query we are interested
in whether KB Th is problem is int ractable in
the generic case. Moreover, even for t ractable queries,
the ver i f icat ion process migh t be very inefficient. 'There
are two ma in approaches tha t are discussed in the Al
l i terature for overcoming this d i f f icu l ty :

1. Replacing problem-solv ing by model checking
[HV91] : discuss knowledge bases that represent
specific models, so that a query needs only to be
checked against a mode l , rather than comput ing
whether it is logical ly entai led by a knowledge base.

2. Decreasing the expressive power of the knowledge
base and of the query language in order to have
more t ractable queries.

The first, approach is in fact the way in which rela­
t ional databases are treated in theoret ical computer sci-
ence. The second is concerned w i th f inding good trade­
offs between expressiveness and complex i ty (as is done
in the knowledge base case by [Lev89], or in the case of
mult i -agent ac t i v i t y by [TM89]) .

Another potent ia l way for decreasing complex i ty is the
fo l lowing. Assume tha t any specific query can be veri­
fied in t ime /, where / m ight be large but feasible (e.g.,
super-l inear but po lynomia l in the size of the knowledge
base K B) . The question is whether we can f ind a subset

of a feasible size, verify off-l ine for each mem­
ber or of Q L ' whether (al l of this m igh t take
a lot of t ime) , and use this off-l ine processing in order
to make the on-l ine behavior more efficient. In the next
sections we i l lust rate how this approach can be useful.
We po in t to a general set of queries tha t can be han­
dled in this way, and discuss specific examples. Notice
tha t this approach can be treated as a type of mul t ip le
query op t im iza t i on . However, the context of our query
op t im iza t ion (enta i lment by knowledge bases instead of
retr ieval f rom relat ional databases), and the actual way
in which it is performed (off- l ine preprocessing instead of
clever retr ieval of a set of queries after their arr ival) w i l l
be different f rom classical mu l t i p le query op t im iza t ion
(see [Sel88]).

Another area in which off-l ine design can improve on­
line reasoning is mul t i -agent act iv i ty . A major issue in
rnult i -agent ac t iv i ty is concerned w i t h the coordinat ion
of agents' act iv i t ies (see [BG88] for a collection of papers
on this topic and on other topics in mul t i -agent activ­
i t y) . There are several ways for coord inat ing act iv i ty ,
such as deals and negotiat ions (e.g., [RG85], [DS83]).
Here we wi l l concentrate on a specific methodology for
coord inat ing ac t iv i ty called ar t i f i c ia l social systems. We
wi l l now briefly review the ar t i f ic ia l social systems ap­
proach to mul t i -agent act iv i ty (see [MT90] and [MT91])
and discuss its connection to the off-l ine vs. on-l ine idea.

Consider the fo l lowing scenario: You are the manager
of a large warehouse tha t treats tens of customers at a
t ime. You have just received a shipment of fifty mobi le
robots for the purpose of au tomat ing your warehouse.
Clearly, at any given t ime different robots w i l l serve the
needs of different clients (some of them may concurrent ly
perform addi t iona l maintenance operat ions). Before you
can put the robots to work, you are faced w i th a ma jo r
design problem invo lv ing how to make effective use of
the robots. The ar t i f ic ia l social systems approach to th is
prob lem, introduced in [MT90 , M T 9 1 , Ten91], is to al­
low robots to work ind iv idua l l y but force them to obey
certain social laws, conventions, etc. The basic thesis
of this approach is tha t the r ight social laws can signif i­
cantly s impl i fy both a robot 's task of p lann ing to achieve
its goals, and the amount of work i t needs to per form
while actual ly pursuing the goal . The choice of these
laws, however, is a delicate mat te r . Not ice tha t devis-
ing appropr iate social laws can be considered as off-l ine
processing, whi le devising a plan for achieving a specific
goal in a given s i tua t ion (whi le obeying the social order)
corresponds to solv ing a problem on- l ine. We discuss
this issue in greater detai l in Section 5.

Moses and Tennenholtz 491

3 Languages w i t h an ef f ic ient basis

In th is section we concentrate on off-l ine reasoning in
the knowledge base case. We assume that each query
formulated in the query language QL can be verified in
t ime t (generally, t m igh t be a funct ion of the size of
the knowledge base and of the size of the current query).
For ease of exposi t ion we w i l l assume that the knowl ­
edge base KB and every query are formulas
in the language of proposi t ional logic. Let us de­
note the set of p r im i t i ve proposi t ions in this logic by

We use to denote the set
of formulas of C whose p r im i t i ve proposit ions are a sub­
set of As usual, we define the size, of
a f o rmu la to be the number of symbols appearing in
the fo rmu la . We w i l l associate w i t h every query lan­
guage QL an in f in i te sequence where

We say tha t a query language QL' is
of polynomial size if there exists a fixed po lynomia l p(i),
such tha t where denotes the number
of elements in

We can spend t ime to compute any given
query a. However, i f we expect to encounter exponen­
t ia l l y many queries of a certain size, it w i l l be very costly
to compute each one of them f rom scratch. In such a case
it would be desirable to ident i fy a smal l set of queries
which, once computed , make comput ing other queries
considerably s impler . I f we consider po lynormal ly many
queries a reasonably smal l number, this leads to the fol-
lowing def in i t ions:

D e f i n i t i o n 3 . 1 : A set of queries wi l l be
called a basis for QL if every query in QL is equivalent
to a con junct ion of elements of B. A basis is called
an efficient basis if i ts size (as a sublanguage of QL) is
po l ynomia l .

Given these def in i t ions, we can now show:

T h e o r e m 3 . 1 : Let QL be a query language, and let
QV be an efficient basis for QL. Moreover, let KB
be a knowledge base and let be an integer for
which holds. Finally, lei t be an upper bound
on the time it takes to compute whether . for
an arbitrary Then there exists an off-line
computation of complexity 0(t • poly(n)), after which on-
line testing whether can be performed in time

T h e proof of th is result, as well as al l other results
reported on in th is paper, w i l l appear in the long version
of the paper. We remark tha t the size of the knowledge
base KB in Theorem 3.1 plays a role only in affecting
the parameter t. Once the preprocessing is done, the
knowledge base can be ignored, and the complex i ty of

computing entailment of a query is linear in the size of
the query and in logn.

Notice that, assuming the size of a query is negligible
relative to the size of KB, this result shows that in the
abovcmentioned case we are able to get on-line reasoning
which is much more efficient than what can be achieved
without appropriate off-line computations.

4 Efficient On-Line Reasoning

In the previous section we showed that off-line prepro­
cessing can be very effective for query languages that
have an efficient basis. One wonders, however, whether
this family contains any natural and/or useful query lan­
guages that can be used in practice. We now present such
a query language. Recall that a CNF formula is a con­
junction of clauses each of which contains a disjunction
of literals. (A literal is a primitive proposition or the
negation of one.) A k-CNF formula is a CNF formula
where each clause contains no more than k literals. It is
not hard to show:

P ropos i t i on 4 . 1 : For every the k-CNF query
language has an efficient basis.

Recall that every formula of propositional logic is equiv­
alent to a CNF formula. In particular, every formula is
equivalent to a k;-CNF formula for a sufficiently large k.
Moreover, formulas that serve as queries to a knowledge
base are likely to be expressible as k-CNF formulas for
a rather small k. The language k-CNF is thus a fairly
expressive query language in general, for which off-line
preprocessing is a useful procedure.

We remark that Proposition 4.1 can be extended some­
what beyond the purely propositional case. In partic­
ular, it applies to universal formulas of the predicate
calculus that have the form
where may contain function symbols and relations, but
is syntactically of the form of a k-CNF formula. (Here
we allow as literals not only primitive propositions, but
any term of the predicate calculus.) The result and the
proof are the same as in the propositional case. The key
point remains having a polynomial basis.

We now consider a concrete class of knowledge bases
for which the preprocessing stage for a basis for k-
CNF described above can be performed using feasible
resources, and can yield considerable amortized savings
in the on-line computations. Consider the case in which
the knowledge base KB consists of a formula in disjunc­
tive normal form (DNF). In this case we can show:

P ropos i t i on 4.2: Testing whether a k-CNF formula φ
is entatled by a DNF knowledge base KB is linear in

492 Knowledge Base Technology

Notice tha t considering very large knowledge bases and
the need for close to rea l - t ime response dur ing the on-l ine
act iv i ty , the above proposi t ion points to the fact t ha t
the on-l ine reasoning in th is case m igh t s t i l l be rather
inefficient. However, Theorem 3.1 guarantees tha t w i t h
appropr iate off- l ine processing (before any query arrives)
testing whether a k - C N F fo rmu la is entai led by a D N F
knowledge-base is l inear in . Th i s is signif i ­
cantly better than what can be achieved w i thou t off-l ine
processing.

The results presented so far i l lust rate the fact tha t
off-line reasoning can great ly improve the on-l ine per­
formance of useful AI appl icat ions invo lv ing knowledge
bases. However, a designer tha t decides to use such off­
line reasoning must be careful. A possible drawback of
such reasoning m igh t appear when we consider knowl ­
edge bases tha t need to be updated frequently. In such
cases the con t r ibu t ion of off- l ine processing depends on
the amount of updates and on the cost of upda t ing the
preprocessing performed earlier. Suppose tha t we have
two separate knowledge bases KB1 and KB2 t ha t use
the same language, tha t the query language for both of
them is k - C N F , and tha t appropr ia te off-l ine reasoning
was performed for each knowledge base separately. If
we want to combine these knowledge bases, there is no
general way for combin ing the respective off-l ine data
on which much effort was spent. The designer w i l l have
to investigate whether i t is wor thwhi le to compute al l
the off-l ine queries again, or whether in the specific case
it is relat ively easy to combine the off-l ine results. We
now show a par t icu lar fo rm of systems where the above
problem can be handled efficiently.

One mo t i va t i on for discussing knowledge bases that
consist of proposi t ions and not of specific models is the
need to represent uncerta inty (th is issue is thoroughly
discussed in [Lev89]). Therefore, it is often reasonable
to consider knowledge bases in contexts where updates
increase the degree of uncerta inty in the knowledge base.
For example, a knowledge base migh t contain a hypothe­
sis about the relat ionships between x1, . . ., xn, and there
might be another knowledge base that represents another
al ternat ive for these relat ionships. Comb in ing these al­
ternatives corresponds to tak ing a d is junct ion between
proposi t ional formulas. In such cases the appropr iate
off-line computa t ions can be easily combined. If two sci­
entists worked on different knowledge bases (hypotheses)
using off-l ine computa t ions , and would like to combine
their hypotheses (to see what is entailed if it might be
the case tha t only one of the hypotheses is t rue) , then
they can combine their off- l ine computat ions easily in
order to answer the on- l ine queries efficiently. Formal ly ,
this can be fo rmu la ted as fol lows:

P r o p o s i t i o n 4 . 3 : Let KB\ and KB2 be knowledge
bases, let QL be a query language, and let be

an efficient basis for QL. Finally, let n satisfy
Then computing the relevant off-line data

for QL with respect to given the data with
respect to KB\ and the data with respect to KB2 can be
done in time linear in

5 Socia l Laws as Of f - l i ne Des ign

The not ion of ar t i f ic ia l social systems has been suggested
as a parad igm for the design of shared mul t i -agent envi­
ronments. Essentially, when a number of loosely-coupled
agents are to funct ion in a shared envi ronment , care must
be taken to ensure tha t the agents do not interfere w i th
one another. Confl icts should be resolved, or better yet
to be avoided whenever possible. As suggested in [MT90]
and [MT91] , an effective way for agents to usefully co­
exist in a shared envi ronment is by hav ing them obey
certain general rules, and a l lowing them to act indepen­
dent ly in the context of these rules. We th ink of these
rules as conventions or a social law.

The design of a social law can be thought of as an in ­
stance of off-l ine preprocessing whose role is to improve
the agents1 ab i l i ty to better a t ta in their goals on-l ine.
For example, we now consider the case in which agents
are model led by finite state au tomata , each able to per­
form a certain set of actions.

A system of dependent automata (D A) is a tuple
is a set of n

agents where each agent i is represented by a non-
determinist ic f inite-state machine M i, and T is a state
t ransi t ion funct ion for the system. Each M i may be in
one of a f ini te number of different (physical) local states
f rom a set S i (we assume that the Si's are d is jo in t) . A
tuple of states (s1, . . ., sn), where for all i, is
called a configuration of the system. We denote the set
of system configurat ions by C. We assume tha t at any
point in t ime the system is in a par t icu lar conf igurat ion.
At every step, agent i performs an act ion taken f rom a
set A of possible actions (notice tha t the agent can s t i l l
choose which action it w i l l per form in a given state, since
this is not necessarily determined by its state). The set
of possible actions an agent can take is in general a func­
t ion of the local state the agent is i n . A tup le of actions
(a 1 , . . ., an) consisting of the actions the different agents
per form at a given po in t (where agent i is assumed to ex­
ecute a,) consti tutes the agents1 joint action there. The
next state of every agent is a func t ion of the system's
current conf igurat ion and the j o i n t act ion performed by
the agents. Formal ly th is is captured by the t rans i t ion
funct ion At any given po in t , a goal for

an agent is ident i f ied w i t h one of i ts states. We assume
that an agent can per form computat ions to plan how to
a t ta in i ts goal , and to determine what actions to take at
any given po in t .

Moses and Tennenholtz 493

In such a mode l , the success of one agent's actions
may depend in a crucial way on the actions the other
agents take. Many of the issues tha t arise in complex
mul t i -agent systems can already be represented in DA
systems.

An agent's plan tha t guarantees the a t ta inment of a
part icular goal in a DA system amounts to a strategy
by which, regardless of what the other agents do, our
agent, w i l l a t ta in i ts goal . Compu t i ng such plans can be
rather complex. Moreover, a plan that needs to be able
to respond to any possible behavior by the other agents
may be very inefficient in the number of steps it takes.
Indeed, such a plan may often fai l to exist! A DA system
is said to be social if it is computa t iona l ly feasible for an
agent to devise, on- l ine, efficient plans that, guarantee to
a t ta in any of i ts possible goals. From the po in t of view
of ar t i f ic ia l social systems, a number of computa t iona l
questions are na tura l at this stage. These computa t iona l
problems relate to f ind ing a set of restr ict ions (called the
social law) on the actions performed by different agents
at different states of the or ig inal DA . These restrict ions
w i l l be determined off-l ine before the in i t i a t i on of ac­
t i v i t y and w i l l induce a system where agents are able
to (eff iciently) achieve their goals dur ing the on-l ine ac­
t i v i t y . For example, given a DA system S we may be
interested in rest r ic t ing the agents' actions by a social
law to y ie ld a system so tha t either:

1. in every agent has a plan to achieve each of its
goals;

2. in every agent has an efficient plan to achieve
each of its goals;

3. the prob lem of comput ing plans in is t ractable;
or

4. the system is social.

Various assumptions about the structure of the DA
system, for example regarding the number of local states
agents have, or the number of actions an agent can per­
fo rm in every state, may affect the abovementioned com­
puta t iona l problems. These and s imi lar problems wi l l
apply to more complex types of systems as wel l . We
now tu rn to s tudy a par t icu lar problem in the context of
DA systems. Let us call a plan simple if it consists of a
short sequence of actions, where by short we mean tha t
its length is at most po lynomia l (in the size of the DA
system).1 We say tha t a social law for a DA system S
is enabling i f in the system result ing f rom the appl i ­
cat ion of the social law in S, every agent has a simple
p lan for a t ta in ing each of its goals f rom each of i ts local
states. We can now show:

1 Our results ho ld also when we assume that a simple plan is a
tree of po lynomia l size where the nodes correspond to tests on the
current state and the edges correspond to appropriate actions.

P r o p o s i t i o n 5 . 1 : Let n 2 be a constant. Given a
DA system S with n agents, the problem of finding an
enabling social law for such a system, if one exists, is
NP-complete.

Notice tha t a l though the number of agents is constant
in Proposi t ion 5 .1 , the size of the system (or, rather its
representation) may vary. I t depends on the number
of local states the agents can be in , the number of ac­
t ions they can per form, and on the number of possible
t ransi t ions in the system. These parameters may vary
considerably even in the case of j us t two agents.

Proposi t ion 5.1 answers a question of the second type
in the above l ist. Wh i le NP-completeness results are usu­
al ly interpreted as evidence tha t a problem is hard , we
interpret this result in a s l ight ly different manner here.
Since social laws w i l l be found off- l ine before the in i t ia ­
t ion of act iv i ty , we can spend much t ime in determin ing
a social law. The proof of the proposi t ion shows tha t
the design process of an enabl ing social law can be sup­
ported by an efficient ver i f icat ion of whether we found an
enabl ing social law or where we fa i led. Thus , in generic
cases, it, should be feasible to (off- l ine) construct an en-
abl ing social law incremental ly.

A fur ther restr ict ion can provide us w i t h answers to
questions of the th i rd and four th type in the above l ist.
Given a DA system, we say that a pair (.s,/) of local
states for an agent are neighbors if there exist two con­
f igurat ions cs,ct of the system and a j o i n t act ion a such
that (i) in cs the agent is in state s and in c t it is in /, and
(i i) per forming a in cs yields the state ct. Given a DA
system ,9, a social law for this system is called deter-
minizing if for every pair of neighbor states of the agent,
in the result ing system the agent has a simple plan
for get t ing f rom s to t. Specifically, it has a sequence
consisting of a constant number of actions which, when
started in s is guaranteed to reach t. Not ice tha t a deter-
min iz ing social law is necessarily an enabl ing social law,
but not vice-versa. A determin iz ing social law solves the
th i rd computa t iona l problem stated above, and since en­
abl ing social laws solve the second, we ob ta in that a de-
te rmin iz ing social law yields a social system (and hence
solves the four th computa t iona l p rob lem) . We have:

P r o p o s i t i o n 5 . 2 : Let n 2 be a constant. Given a
DA system S with n agents, the problem of finding a
determinizing social law for such a system, if one exists,
is NP-complete.

As before, the fact the problem is NP-complete can be
interpreted here as relat ively good news. Given a can­
didate for a determin iz ing social law we w i l l be able to
efficiently verify whether it is appropr ia te or where it
fai ls. Thus , in generic cases, it should be feasible to (off-
l ine) construct a determin iz ing social law incremental ly .
We remark tha t if the local states of the agents have a

494 Knowledge Base Technology

sufficiently simple form, then the problem of finding a de-
terminizing social law for a system of a constant number
of agents can be solved in polynomial time (see [Ten91]).

A particular case study of the design of a social law
is presented in [ST92]. There, Shoham and Tennenholtz
investigate traffic laws for mobile robots that operate on
an n by n grid. They present nontrivial laws that allow
the robots to carry out respective tasks without collision
at a rate that is within a constant of the rate it would
take each of them if it had the whole space to itself. This
is an example of how appropriate off-line design of social
laws guarantees very effective on-line behavior.

6 Conc lus ions

This paper suggests the use of off-line processing before
the initiation of a system in order to improve the on-
line behavior of artificial systems. We investigated this
approach in the framework of entailment of queries by
knowledge bases, and in the context of multi-agent ac­
tivity. We presented the notion of an efficient basis for a
query language, and showed that off-line preprocessing
can be very effective for query languages that have an ef­
ficient basis. We also showed that the language of k-CNF
formulas, a useful and rather expressive language, has an
efficient basis. The second context in which off-line pro-
cessing is very helpful is multi-agent activity. Finding
an efficient and computationally tractable social law is
the appropriate form of off-line processing in this case.
The social law is a set of restrictions on agents1 activities
that enables agents to tend to work individually but in
a mutually compatible manner. This social law needs
to be designed carefully and the design process might
be a relatively long trial and error procedure, but when
we arrive at the appropriate social law then the on-line
activity becomes effective and efficient. We formulated
the approach in the framework of dependent automata.
In that framework, testing whether a given social law is
appropriate or where it fails can be efficiently computed.
This can greatly speed up the process of generating an
appropriate social law.

References

[AC87] P. Agre and D. Chapman. Pengi: An Imple­
mentation of a Theory of Activity. In Proc. of
AAAI-87, pages 268 272, 1987.

[Agr91] P. Agre. The Dynamic Structure of Every­
day Life. Cambridge University Press, Cam­
bridge, UK, 1991.

[BG88] A. H. Bond and L. Gasser. Readings in Dis­
tributed Art i f ic ial Intelligence. Ablex Publish­
ing Corporation, 1988.

[DS83] R. Davis and R. G. Smith. Negotiation as a
metaphor for distributed problem solving. Ar-
tificial Intelligence, 20(1):63 109, 1983.

[HV91] J. Y. Halpern and M. Y. Vardi. Model checking
vs. theorem proving: a manifesto. In Principles
of Knowledge Representation and Reasoning:
Proceedings of the Second International Con­
ference, pages 325-334, 1991.

[Kow74] R. Kowalski. Predicate logic as a program­
ming language. In IF IP Conference, Stockholm,
pages 569 574, 1974.

[Lev89] H. J. Levesque. Logic and the Complexity of
Reasoning. Technical Report KRR-TR-89-2,
University of Toronto, 1989.

[MH81] J. McCarthy and P. Hayes. Some Philosophi­
cal Problems from the Standpoint of Artificial
Intelligence. In E. L. Webber and N. J. Nils-
son, editors, Readings in Art i f icial Intelligence.
Tioga Publishing Company, 1981.

[MT90] Y. Moses and M. Tennenholtz. Artificial Social
Systems Part I: Basic Principles. Technical Re­
port CS90-12, Weizmann Institute, 1990.

[MT91] Y. Moses and M. Tennenholtz. On Formal As­
pects of Artificial Social Systems. Technical
Report CS91-01, Weizmann Institute, 1991.

[Qui67] M. Quillian. Word concepts: a theory and sim­
ulation of some basic semantic capabilities. Be-
hav. Sci., 12:410 430, 1967.

[RG85] ,1. S. Rosenschein and M. R. Genesereth. Deals
Among Rational Agents. In Proc. 9th Inter-
national Joint Conference on Art i f ic ial Intell i­
gence, pages 91-99, 1985.

[Sch87] M.J. Schoppers. Universal Plans for Reac­
tive Robots in Unpredictable Environments. In
Proc. of AAAI-87, pages 1039-1046, 1987.

[Sel88] T.K Sell is. Multiple-query optimization. A C M
Transactions on Database Systems, 13(1):23—
52, 1988.

[ST92] Y. Shoham and M. Tennenholtz. On Traffic
Laws for Mobile Robots. Proc. of AIPS-92,
1992.

[Ten91] M. Tennenholtz. Efficient Representation and
Reasoning in Multi-Agent Systems. PhD thesis,
Weizmann Institute, Israel, 1991.

[TM89] M. Tennenholtz and Yoram Moses. On Coop­
eration in a Mult i-Entity Model. In Proc. 11th
International Joint Conference on Artif icial In­
telligence, 1989.

Moses and Tennenholtz 495

