Off-line Reasoning for On-line Efficiency *

Yoram Moses

Department of Applied Math and CS
The Weizmann Institute of Science
Rehovot, 76100 Israel

Abstract

The complexity of reasoning is a fundamental issue in
Al. In many cases, the fact that an intelligent system
needs to perform reasoning on-line contributes to the
difficulty of this reasoning. In this paper we investigate
a couple of contexts in which an initial phase of off-line
preprocessing and design can improve the on-line com-
plexity considerably. The first context is one in which an
intelligent system computes whether a query is entailed
by the system's knowledge base. We present the notion
of an efficient basts for a query language, and show that
off-line preprocessing can be very effective for query lan-
guages that have an efficient basis. The usefulness of this
notion is illustrated by showing that a fairly expressive
language has an efficient basis. The second context is
closely related to the artificial social systems approach
introduced in [MT90]. We present the design of a so-
cial law for a multi-agent environment as primarily an
instance of off-line processing, and study this problem in
a particular model. We briefly review the artificial so-
cial systems approach to design of multi-agent systems,
introduced in [MT90]. Computing or coming up with a
social law is viewed as a primarily off-line activity that
has major impact on the effectiveness of the on-line ac-
tivity of the agents. The tradeoff' between the amount of
effort invested in computing the social law and the cost
of the on-line activity can thus be viewed as an off-line
vs. on-line tradeoff.

1 Introduction

Many activities in the framework of knowledge repre-
sentation and reasoning are concerned with the following
task: An intelligent agent has a given representation of a
system (or a relevant aspect of the world), and a problem
that relates to this representation. Its task is to solve this
problem relatively efficiently. Typical examples include

*This work was supported in part by a grant from the US-Israel

Binational Science Foundation. The first author is incumbent of
the Helen and Milton A. Kimmelman Career Development Chair.

490 Knowledge Base Technology

Moshe Tennenholtz
Robotics Lab
Department of Computer Science
Stanford University
Stanford, CA 94305

planning and computing whether a query is entailed by
a given knowledge base. The reasoning in both of these
cases can be thought of as on-line reasoning: When an
input is given, our algorithm should reason about the
system and about the problem instance, and should find
a solution to the problem. In order to handle such prob-
lems, researchers often use general schemes of knowl-
edge representation such as First Order Logic [MH81],
logic programs [Kow74], semantic networks [Qui67], etc.
Moreover, the reasoning is then carried out using gen-
eral schemes of reasoning such as resolution for theorem
proving, Prolog for logic programs, etc.

Consider the following question: Can our agent im-
prove its on-line performance in a case where the model
it uses (e.g., its knowledge-base or representation of the
world) is fixed, and we know ahead of time that the agent
is to be asked to solve many problems with respect to
this model? Intuitively, it is clear that the answer should
be positive; given a fixed model there should invariably
be special-purpose algorithms for solving problems with
respect to this particular model, instead of using gen-
eral schemes of reasoning. This answer, however, is not
very useful to the agent, without, our providing the agent
with a way in which it can obtain such special-purpose
algorithms. Our aim in this paper is to consider the
problem of how an initial phase of off-line preprocessing
can serve to reduce the complexity of the agent's on-
line behavior. We are especially interested in systems
where agents might be presented with (perhaps expo-
nentially) many potential problems during the on-line
activity. In such a case the agent should be allowed to
perform rather extensive preprocessing without increas-
ing the amortized cost per solution significantly. Specif-
ically, we shall investigate two central contexts. The
first involves an intelligent system that needs to compute
whether particular formulas (queries) are entailed by its
knowledge base. We present the notion of an efficient
basts for a query language, and show that off-line pre-
processing can be very effective for query languages that
have an efficient basis. The second context involves dy-
namic multi-agent activity, and is closely related to the
artificial social systems approach introduced in [MT90].

Reactive approaches to problems in Al, related espe-
cially to planning, have been suggested in a number of
works (see [Agr91],[AC87]). Some other works suggested
to compile reactive behaviors in advance (see [Sch87]).
However, the task of improving on-line behavior does
not need to concentrate only on "real" reactive behav-
ior. On-line behavior might refer more generally to the
behavior of an agent where it faces various problems af-
ter the initialization of the system. The main task is
to identify areas where off-line processing can be helpful
and to suggest a particular type of solution for each such
area. This is exactly the objective of this work.

This paper is organized as follows. Section 2 contains a
high-level discussion about how off-line reasoning can be
used in two general scenarios. In Section 3 we discuss a
property of query languages that makes preprocessing of
knowledge bases for these languages extremely effective.
Section \ presents a fairly expressive query language with
the property described in Section 3, and considers addi-
tional examples in which off-line preprocessing is useful
in the context of knowledge bases. Section 5 relates the
artificial social systems approach to the on-line vs. off-
line reasoning paradigm.

2 Off-line versus on-line reasoning
Consider the well known problem of determining
whether queries are entailed by a knowledge base, as dis-
cussed for example in [Lev89]. We assume that we have a
knowledge base KB expressed in some logical language,
and a query language QL in which queries concerning
KB are formulated. Given a query @, we are interested
in whether KB |= «. This problem is intractable in
the generic case. Moreover, even for tractable queries,
the verification process might be very inefficient. 'There
are two main approaches that are discussed in the Al
literature for overcoming this difficulty:

1. Replacing
[HVI1]:
specific models, so that a query needs only to be
checked against
whether it is logically entailed by a knowledge base.

problem-solving by model checking
discuss knowledge bases that represent

a model, rather than computing

2. Decreasing the expressive power of the knowledge
base and of the query language in order to have
more tractable queries.

The first, approach is in fact the way in which rela-
tional databases are treated in theoretical computer sci-
ence. The second is concerned with finding good trade-
offs between expressiveness and complexity (as is done
in the knowledge base case by [Lev89], or in the case of
multi-agent activity by [TM89]).

Another potential way for decreasing complexity is the
following. Assume that any specific query can be veri-
fied in time /, where / might be large but feasible (e.g.,
super-linear but polynomial in the size of the knowledge
base KB). The question is whether we can find a subset
QL' C QL of a feasible size, verify off-line for each mem-
ber or of QL' whether K8 = a (all of this might take
a lot of time), and use this off-line processing in order
to make the on-line behavior more efficient. In the next
sections we illustrate how this approach can be useful.
We point to a general set of queries that can be han-
dled in this way, and discuss specific examples. Notice
that this approach can be treated as a type of multiple
query optimization. However, the context of our query
optimization (entailment by knowledge bases instead of
retrieval from relational databases), and the actual way
in which it is performed (off-line preprocessing instead of
clever retrieval of a set of queries after their arrival) will
be different from classical multiple query optimization
(see [Sel88]).

Another area in which off-line design can improve on-
line reasoning is multi-agent activity. A major issue in
rnulti-agent activity is concerned with the coordination
of agents' activities (see [BG88] for a collection of papers
on this topic and on other topics in multi-agent activ-
ity). There are several ways for coordinating activity,
such as deals and negotiations (e.g., [RG85], [DS83]).
Here we will concentrate on a specific methodology for
coordinating activity called artificial social systems. We
will now briefly review the artificial social systems ap-
proach to multi-agent activity (see [MT90] and [MT91])
and discuss its connection to the off-line vs. on-line idea.

Consider the following scenario: You are the manager
of a large warehouse that treats tens of customers at a
time. You have just received a shipment of fifty mobile
robots for the purpose of automating your warehouse.
Clearly, at any given time different robots will serve the
needs of different clients (some of them may concurrently
perform additional maintenance operations). Before you
can put the robots to work, you are faced with a major
design problem involving how to make effective use of
the robots. The artificial social systems approach to this
problem, introduced in [MT90, MT91, Ten91], is to al-
low robots to work individually but force them to obey
certain social laws, conventions, etc. The basic thesis
of this approach is that the right social laws can signifi-
cantly simplify both a robot's task of planning to achieve
its goals, and the amount of work it needs to perform
while actually pursuing the goal. The choice of these
laws, however, is a delicate matter. Notice that devis-
ing appropriate social laws can be considered as off-line
processing, while devising a plan for achieving a specific
goal in a given situation (while obeying the social order)
corresponds to solving a problem on-line. We discuss
this issue in greater detail in Section 5.

Moses and Tennenholtz 491

3 Languages with an efficient basis

In this section we concentrate on off-line reasoning in
the knowledge base case. We assume that each query
formulated in the query language QL can be verified in
time t (generally, t might be a function of the size of
the knowledge base and of the size of the current query).
For ease of exposition we will assume that the knowl-
edge base KB and every query « € @l are formulas
in the language £ of propositional logic. Let us de-
note the set of primitive propositions in this logic by
X = {r1,z2,...,2s,...}. We use L; to denote the set
of formulas of C whose primitive propositions are a sub-
set of {Z1,z4,...,#i}. As usual, we define the size, of
a formula to be the number of symbols appearing in
the formula. We will associate with every query lan-
guage QL an infinite sequence @I C QL. C .-, where
Q1L = QLN L; We say that a query language QL' is
of polynomial size if there exists a fixed polynomial p(i),
such that |@L;] < p(i), where |JL!| denotes the number
of elements in QL7

We can spend time {(|a|) to compute any given
query a. However, if we expect to encounter exponen-
tially many queries of a certain size, it will be very costly
to compute each one of them from scratch. In such a case
it would be desirable to identify a small set of queries
which, once computed, make computing other queries
considerably simpler. If we consider polynormally many
queries a reasonably small number, this leads to the fol-
lowing definitions:

Definition 3.1: A set I8 C Q1. of queries will be
called a basis for QL if every query in QL is equivalent
to a conjunction of elements of B. A basis is called
an efficient basis if its size (as a sublanguage of QL) is
polynomial.

Given these definitions, we can now show:

Theorem 3.1: Let QL be a query language, and let
QV be an efficient basis for QL. Moreover, let KB
be a knowledge base and let n > 1 be an integer for

which I8 C L, holds. Finally, lei t be an upper bound
on the time it takes to compute whether K B &= o' for
an arbitrary o' € QL' . Then there exists an off-line
computation of complexity O(t <+ poly(n)), after which on-
line testing whether K B = @ can be performed in time

O(size{a) - logn) for every o € QL.

The proof of this result, as well as all other results
reported on in this paper, will appear in the long version
of the paper. We remark that the size of the knowledge
base KB in Theorem 3.1 plays a role only in affecting
the parameter t. Once the preprocessing is done, the
knowledge base can be ignored, and the complexity of

492 Knowledge Base Technology

computing entailment of a query is linear in the size of
the query and in logn.

Notice that, assuming the size of a query is negligible
relative to the size of KB, this result shows that in the
abovcmentioned case we are able to get on-line reasoning
which is much more efficient than what can be achieved
without appropriate off-line computations.

4 Efficient On-Line Reasoning

In the previous section we showed that off-line prepro-
cessing can be very effective for query languages that
have an efficient basis. One wonders, however, whether
this family contains any natural and/or useful query lan-
guages that can be used in practice. We now present such
a query language. Recall that a CNF formula is a con-
junction of clauses each of which contains a disjunction
of literals. (A literal is a primitive proposition or the
negation of one.) A k-CNF formula is a CNF formula
where each clause contains no more than k literals. It is
not hard to show:

Proposition 4.1: For every k > {), the k-CNF query
language has an efficient basis.

Recall that every formula of propositional logic is equiv-
alent to a CNF formula. In particular, every formula is
equivalent to a k;-CNF formula for a sufficiently large k.
Moreover, formulas that serve as queries to a knowledge
base are likely to be expressible as k-CNF formulas for
a rather small k. The language k-CNF is thus a fairly
expressive query language in general, for which off-line
preprocessing is a useful procedure.

We remark that Proposition 4.1 can be extended some-
what beyond the purely propositional case. In partic-
ular, it applies to universal formulas of the predicate
calculus that have the form ¥ x;,..., &, w(x1.....%5),
where ¢ may contain function symbols and relations, but
is syntactically of the form of a k-CNF formula. (Here
we allow as literals not only primitive propositions, but
any term of the predicate calculus.) The result and the
proof are the same as in the propositional case. The key
point remains having a polynomial basis.

We now consider a concrete class of knowledge bases
for which the preprocessing stage for a basis for k-
CNF described above can be performed using feasible
resources, and can yield considerable amortized savings
in the on-line computations. Consider the case in which
the knowledge base KB consists of a formula in disjunc-
tive normal form (DNF). In this case we can show:

Proposition 4.2: Testing whether a k-CNF formula ¢
is entatled by a DNF knowledge base KB is linear in
lel - 1K B

Notice that considering very large knowledge bases and
the need for close to real-time response during the on-line
activity, the above proposition points to the fact that
the on-line reasoning in this case might still be rather
inefficient. However, Theorem 3.1 guarantees that with
appropriate off-line processing (before any query arrives)
testing whether a k-CNF formula is entailed by a DNF
knowledge-base is linear in || - fag(n). This is signifi-
cantly better than what can be achieved without off-line
processing.

The results presented so far illustrate the fact that
off-line reasoning can greatly improve the on-line per-
formance of useful Al applications involving knowledge
bases. However, a designer that decides to use such off-
line reasoning must be careful. A possible drawback of
such reasoning might appear when we consider knowl-
edge bases that need to be updated frequently. In such
cases the contribution of off-line processing depends on
the amount of updates and on the cost of updating the
preprocessing performed earlier. Suppose that we have
two separate knowledge bases KB; and KB, that use
the same language, that the query language for both of
them is k-CNF, and that appropriate off-line reasoning
was performed for each knowledge base separately. |If
we want to combine these knowledge bases, there is no
general way for combining the respective off-line data
on which much effort was spent. The designer will have
to investigate whether it is worthwhile to compute all
the off-line queries again, or whether in the specific case
it is relatively easy to combine the off-line results. We
now show a particular form of systems where the above
problem can be handled efficiently.

One motivation for discussing knowledge bases that
consist of propositions and not of specific models is the
need to represent uncertainty (this issue is thoroughly
discussed in [Lev89]). Therefore, it is often reasonable
to consider knowledge bases in contexts where updates
increase the degree of uncertainty in the knowledge base.
For example, a knowledge base might contain a hypothe-
sis about the relationships between x;, . . ., X, and there
might be another knowledge base that represents another
alternative for these relationships. Combining these al-
ternatives corresponds to taking a disjunction between
propositional formulas. In such cases the appropriate
off-line computations can be easily combined. If two sci-
entists worked on different knowledge bases (hypotheses)
using off-line computations, and would like to combine
their hypotheses (to see what is entailed if it might be
the case that only one of the hypotheses is true), then
they can combine their off-line computations easily in
order to answer the on-line queries efficiently. Formally,
this can be formulated as follows:

Proposition 4.3: Let KB\ and KB, be knowledge
bases, let QL be a query language, and let QL' C @L be

an efficient basis for QL. Finally, let n satisfy (K By ¥V
KBy C L. Then computing the relevant off-line data
for QL with respect to (K HyV K By) given the data with
respect to KB\ and the data with respect to KB, can be

done in time linear in |@LZ|.

5 Social Laws as Off-line Design

The notion of artificial social systems has been suggested
as a paradigm for the design of shared multi-agent envi-
ronments. Essentially, when a number of loosely-coupled
agents are to function in a shared environment, care must
be taken to ensure that the agents do not interfere with
one another. Conflicts should be resolved, or better yet
to be avoided whenever possible. As suggested in [MT90]
and [MT91], an effective way for agents to usefully co-
exist in a shared environment is by having them obey
certain general rules, and allowing them to act indepen-
dently in the context of these rules. We think of these
rules as conventions or a social law.

The design of a social law can be thought of as an in-
stance of off-line preprocessing whose role is to improve
the agents' ability to better attain their goals on-line.
For example, we now consider the case in which agents
are modelled by finite state automata, each able to per-
form a certain set of actions.

A system of dependent automata (DA) is a tuple
(N AM, hen.d}) where N = {1,...,n} is a set of n
agents where each agent i is represented by a non-

deterministic finite-state machine M;, and T is a state
transition function for the system. Each M; may be in
one of a finite number of different (physical) local states
from a set S; (we assume that the S/'s are disjoint). A
tuple of states (ss, ... sy, where s; € 5; for all i, is
called a configuration of the system. We denote the set
of system configurations by C. We assume that at any
point in time the system is in a particular configuration.
At every step, agent i performs an action taken from a
set A of possible actions (notice that the agent can still
choose which action it will perform in a given state, since
this is not necessarily determined by its state). The set
of possible actions an agent can take is in general a func-
tion of the local state the agent is in. A tuple of actions
(a1, . . ., a,) consisting of the actions the different agents
perform at a given point (where agent i is assumed to ex-
ecute a,) constitutes the agents1 joint action there. The
next state of every agent is a function of the system's
current configuration and the joint action performed by
the agents. Formally this is captured by the transition
function T : O x A™ — (. At any given point, a goal for
an agent is identified with one of its states. We assume
that an agent can perform computations to plan how to
attain its goal, and to determine what actions to take at
any given point.

Moses and Tennenholtz 493

In such a model, the success of one agent's actions
may depend in a crucial way on the actions the other
agents take. Many of the issues that arise in complex
multi-agent systems can already be represented in DA
systems.

An agent's plan that guarantees the attainment of a
particular goal in a DA system amounts to a strategy
by which, regardless of what the other agents do, our
agent, will attain its goal. Computing such plans can be
rather complex. Moreover, a plan that needs to be able
to respond to any possible behavior by the other agents
may be very inefficient in the number of steps it takes.
Indeed, such a plan may often fail to exist! A DA system
is said to be social if it is computationally feasible for an
agent to devise, on-line, efficient plans that, guarantee to
attain any of its possible goals. From the point of view
of artificial social systems, a number of computational
questions are natural at this stage. These computational
problems relate to finding a set of restrictions (called the
social law) on the actions performed by different agents
at different states of the original DA. These restrictions
will be determined off-line before the initiation of ac-
tivity and will induce a system where agents are able
to (efficiently) achieve their goals during the on-line ac-
tivity. For example, given a DA system S we may be
interested in restricting the agents' actions by a social
law ¥ to yield a system 5% 50 that either:

1. in 8% every agent has a plan to achieve each of its
goals;

2. in §% every agent has an efficient plan to achieve
each of its goals;

3. the problem of computing plans in 5% s tractable;
or

4. the system S¥ is social.

Various assumptions about the structure of the DA
system, for example regarding the number of local states
agents have, or the number of actions an agent can per-
form in every state, may affect the abovementioned com-
putational problems. These and similar problems will
apply to more complex types of systems as well. We
now turn to study a particular problem in the context of
DA systems. Let us call a plan simple if it consists of a
short sequence of actions, where by short we mean that
its length is at most polynomial (in the size of the DA
system)." We say that a social law X for a DA system S
is enabling if in the system sF resulting from the appli-
cation of the social law X in S, every agent has a simple
plan for attaining each of its goals from each of its local
states. We can now show:

" Our results hold also when we assume that a simple plan is a
tree of polynomial size where the nodes correspond to tests on the
current state and the edges correspond to appropriate actions.

494 Knowledge Base Technology

Let n > 2 be a constant. Given a
the problem of finding an
if one exists, is

Proposition 5.1:
DA system S with n agents,
enabling social law for such a system,
NP-complete.

Notice that although the number of agents is constant
in Proposition 5.1, the size of the system (or, rather its
representation) may vary. It depends on the number
of local states the agents can be in, the number of ac-
tions they can perform, and on the number of possible
transitions in the system. These parameters may vary
considerably even in the case ofjust two agents.

Proposition 5.1 answers a question of the second type
in the above list. While NP-completeness results are usu-
ally interpreted as evidence that a problem is hard, we
interpret this result in a slightly different manner here.
Since social laws will be found off-line before the initia-
tion of activity, we can spend much time in determining
a social law. The proof of the proposition shows that
the design process of an enabling social law can be sup-
ported by an efficient verification of whether we found an
enabling social law or where we failed. Thus, in generic
cases, it, should be feasible to (off-line) construct an en-
abling social law incrementally.

A further restriction can provide us with answers to
questions of the third and fourth type in the above list.
Given a DA system, we say that a pair (.s,/) of local
states for an agent are neighbors if there exist two con-
figurations csc; of the system and a joint action a such
that (i) in cs the agent is in state s and in ¢ it is in/, and
(ii) performing a in cs yields the state ¢. Given a DA
system ,9, a social law X for this system is called deter-
minizing if for every pair of neighbor states of the agent,
in the resulting system S¥ the agent has a simple plan
for getting from s to t. Specifically, it has a sequence
consisting of a constant number of actions which, when
started in s is guaranteed to reach t. Notice that a deter-
minizing social law is necessarily an enabling social law,
but not vice-versa. A determinizing social law solves the
third computational problem stated above, and since en-
abling social laws solve the second, we obtain that a de-
terminizing social law yields a social system (and hence
solves the fourth computational problem). We have:

Proposition 5.2: Given a
DA system S with n agents,
determinizing social law for such a system,

is NP-complete.

Let n > 2 be a constant.
the problem of finding a
if one exists,

As before, the fact the problem is NP-complete can be
interpreted here as relatively good news. Given a can-
didate for a determinizing social law we will be able to
efficiently verify whether it is appropriate or where it
fails. Thus, in generic cases, it should be feasible to (off-
line) construct a determinizing social law incrementally.
We remark that if the local states of the agents have a

sufficiently simple form, then the problem offinding a de-
terminizing social law for a system of a constant number
of agents can be solved in polynomial time (see [Ten91]).

A particular case study of the design of a social law
is presented in [ST92]. There, Shoham and Tennenholtz
investigate traffic laws for mobile robots that operate on
an n by n grid. They present nontrivial laws that allow
the robots to carry out respective tasks without collision
at a rate that is within a constant of the rate it would
take each of them if it had the whole space to itself. This
is an example of how appropriate off-line design of social
laws guarantees very effective on-line behavior.

6 Conclusions

This paper suggests the use of off-line processing before
the initiation of a system in order to improve the on-
line behavior of artificial systems. We investigated this
approach in the framework of entailment of queries by
knowledge bases, and in the context of multi-agent ac-
tivity. We presented the notion of an efficient basis for a
query language, and showed that off-line preprocessing
can be very effective for query languages that have an ef-
ficient basis. We also showed that the language of k-CNF
formulas, a useful and rather expressive language, has an
efficient basis. The second context in which off-line pro-
cessing is very helpful is multi-agent activity. Finding
an efficient and computationally tractable social law is
the appropriate form of off-line processing in this case.
The social law is a set of restrictions on agents1 activities
that enables agents to tend to work individually but in
a mutually compatible manner. This social law needs
to be designed carefully and the design process might
be a relatively long trial and error procedure, but when
we arrive at the appropriate social law then the on-line
activity becomes effective and efficient. We formulated
the approach in the framework of dependent automata.
In that framework, testing whether a given social law is
appropriate or where it fails can be efficiently computed.
This can greatly speed up the process of generating an
appropriate social law.

References

[AC87] P. Agre and D. Chapman. Pengi: An Imple-
mentation of a Theory of Activity. In Proc. of

AAAI-87, pages 268 272, 1987.

[Agr91] P. Agre. The Dynamic Structure of Every-
day Life. Cambridge University Press, Cam-
bridge, UK, 1991.

[BG88] A. H. Bond and L. Gasser. Readings in Dis-

tributed Artificial Intelligence. Ablex Publish-
ing Corporation, 1988.

[DS83]

[HV91]

[Kow74]

[Lev89]

IMH81]

[MT90]

IMT91]

[QuiB7]

[RG85]

[Sch87]

[Sel8s]

[ST92]

[Ten91]

[TM89]

R. Davis and R. G. Smith. Negotiation as a
metaphor for distributed problem solving. Ar-
tificial Intelligence, 20(1):63 109, 1983.

J. Y. Halpern and M. Y. Vardi. Model checking
vs. theorem proving: a manifesto. In Principles
of Knowledge Representation and Reasoning:
Proceedings of the Second International Con-
ference, pages 325-334, 1991.

R. Kowalski. Predicate logic as a program-
ming language. In IFIP Conference, Stockholm,
pages 569 574, 1974.

H. J. Levesque. Logic and the Complexity of
Reasoning. Technical Report KRR-TR-89-2,
University of Toronto, 1989.

J. McCarthy and P. Hayes. Some Philosophi-
cal Problems from the Standpoint of Artificial
Intelligence. In E. L. Webber and N. J. Nils-
son, editors, Readings in Artificial Intelligence.
Tioga Publishing Company, 1981.

Y. Moses and M. Tennenholtz. Artificial Social
Systems Part |: Basic Principles. Technical Re-
port CS90-12, Weizmann Institute, 1990.

Y. Moses and M. Tennenholtz. On Formal As-
pects of Artificial Social Systems. Technical
Report CS91-01, Weizmann Institute, 1991.

M. Quillian. Word concepts: a theory and sim-
ulation of some basic semantic capabilities. Be-
hav. Sci., 12:410 430, 1967.

,1. S. Rosenschein and M. R. Genesereth. Deals
Among Rational Agents. In Proc. 9th Inter-
national Joint Conference on Artificial Intelli-
gence, pages 91-99, 1985.

M.J. Schoppers. Universal Plans for Reac-
tive Robots in Unpredictable Environments. In
Proc. of AAAI-87, pages 1039-1046, 1987.

T.K Sellis. Multiple-query optimization. ACM
Transactions on Database Systems, 13(1)23—
52, 1988.

Y. Shoham and M. Tennenholtz. On Traffic
Laws for Mobile Robots. Proc. of AIPS-92,
1992.

M. Tennenholtz. Efficient Representation and
Reasoning in Multi-Agent Systems. PhD thesis,
Weizmann Institute, Israel, 1991.

M. Tennenholtz and Yoram Moses. On Coop-
eration in a Multi-Entity Model. In Proc. 11th
International Joint Conference on Artificial In-
telligence, 1989.

Moses and Tennenholtz 495

