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Abs t rac t 

We present a new approach to model-based 
monitoring and diagnosis of dynamic systems. 
The presented D I A M O N algori thm1 uses hier­
archical models to monitor and diagnose dy­
namic systems. D I A M O N is based on the in­
tegration of teleological parameter-based moni­
toring models and repair-oriented device-based 
diagnosis models. It combines consistency-
based diagnosis wi th model-based monitoring 
and uses an extension of the QSIM-language for 
the representation of qualitative system mod­
els. Furthermore, D I A M O N is able to detect 
and localize a broad range of non-permanent 
faults and thus extends traditional diagnosis 
which exclusively deals wi th permanent faulty 
behavior. The operation of D IAMON wil l be 
demonstrated on a real-world example in a 
multiple-faults scenario. 

1 I n t r o d u c t i o n 

Only a few model-based approaches trying to moni­
tor and/or diagnose dynamic systems have been pub­
lished in the past (e.g. [Dvorak and Kuipers, 1989; 
Ng, 1990]). Most of them resort to qualitative simu­
lation as an inference engine during the troubleshooting 
process to predict possible behavior patterns. Addit ion­
ally, the architecture of the used qualitative system mod­
els is either non-hierarchical or contains discrete layers 
of abstraction. 

Unfortunately, all approaches concentrate either on 
monitoring (i.e. fault detection) or on diagnosis (i.e. 
fault localization) and therefore miss important aspects 
of effective and efficient troubleshooting. We present 
an integrated algorithm which performs both tasks and 
which can therefore be used as a widely applicable gen­
eral framework for troubleshooting dynamic systems. 

We start in Section 2 with a discussion of the various 
problems that occur in the course of troubleshooting dy­
namic systems. In Section 3 we present our approach 
how to solve these problems and describe the important 

1 DIAMON means DIAgnosis and MONitor ing 
Algorithm 

properties of D IAMON. The operation of D IAMON is 
shown on a real-world control problem - troubleshooting 
a central heating system. Section 4 discusses related re­
search work and compares it w i th our approach, closing 
with some comments on future work. 

2 Troubleshoot ing Dynamic Systems 

In order to build an integrated control system doing both 
monitoring and diagnosis in dynamic environments, we 
have to be aware of the issues which are involved in such 
a task. 

2.1 D y n a m i c vs. S ta t i c D i a g n o s i s / M o n i t o r i n g 

While diagnosis of a faulty component in a static system 
is a comparatively straightforward sequential process of 
fault detection, measurement selection and fault local­
ization (e.g. [de Kleer and Wil l iams, 1989]), this process 
grows more complex in a dynamic system. 

E x a m p l e 1 [Central Heating System:] Consider the 
central heating system depicted in figure 1. The func­
tion of the central heating system is to guarantee that 
the actual room temperature TRoom equals the intended 
room temperature Twanted. 

Figure 1: Central Heating System 
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In the course of monitoring and diagnosing this dy­
namic system, we have to solve the following problems: 
M u l t i p l e Layers of D e t a i l : Due to the use of several 

layers of models (monitoring models, hierarchical di­
agnosis models), we must take a changing system 
description and component set into account. In or­
der to improve efficiency, real-time monitoring tends 
to minimize the amount of parameters under obser­
vation, and constraints are usually not component-
oriented. In our example, checking the thermostat 
and the room temperature is enough for most mon­
itoring purposes. Hierarchical diagnosis models use 
mostly component-oriented constraints at different 
abstraction levels. In our example, the most de­
tailed level includes all the components depicted in 
figure 1. 

T e m p o r a l Observa t i ons : Observations consist of sets 
of measurements at different time points, determin­
ing the value of a specified set of parameters at dif­
ferent times. As a consequence, taking measure­
ments sequentially is not feasible in a dynamic sys­
tem as all parameters in a measurement set have to 
refer to the same system state (which changes over 
time). Addit ionally, the observation rate has to be 
chosen such that all system states can be observed. 

T i m e D e p e n d e n t B e h a v i o r : We have to take various 
modes of correct behavior and various system states 
into account. For example, after turning the ther­
mostat to a higher temperature, the temperature 
difference between room and thermostat tempera­
ture is perfectly normal. However, if they are not 
equal after a sufficient t ime period has elapsed, this 
difference leads to a conflict set. 

I n t c r m i t t e n c y of Fau l t s : Static diagnosis ([Reiter, 
1987]) assumes that the mode (ok or ab) of a com­
ponent does not change during the diagnosis process 
(non-intermittency of component modes). However, 
this may or may not be recognized in the different 
situations which are characterized by the parame­
ter sets. A dynamic diagnosis system has to handle 
this intcrmittency of faults. For example, if one of 
the heating elements is not working, we detect this 
fault only after a sufficient time period has passed 
and the room is stil l not warm enough. 

I n t r a S ta te Cons is tency : Some diagnosis engines 
([Davis, 1984]) use multiple test vectors (parameter 
sets) which are assumed to be independent and de­
scribe only one system state. In dynamic systems we 
have to describe the system in several system states. 
Therefore not only conflicts of a parameter set wi th 
respect to the correct system state are relevant, but 
also conflicts describing faulty transitions between 
these system states have to be included into diagno­
sis. In our example, assume two system states heat 
and cool. The transition from heat to cool takes 
place, if while the system changes 
from cool to heat, if If such a tran­
sition takes place too early (i.e., if the heater turns 
off too quickly), we get a conflict with the specified 
behavior. 

The above discussion shows that the current state-
of-the-art of model-based diagnosis which is l imited to 
static systems and permanently faulty behavior is un­
able to solve the discussed problems. It is the goal of 
our approach to extend model-based diagnosis wi th re­
spect to dynamic systems and to solve most of the above 
mentioned problems. 

2.1.1 M o n i t o r i n g - a Necess i ty in D y n a m i c 
Systems 

Having designed a structural and behavioral model of 
a static device we can unambiguously derive predictions 
about its correct behavior. Therefore, we do not have to 
monitor a static system as its behavior is precisely deter­
mined. However, making predictions about the correct 
behavior of dynamic systems is a more complicated task. 

If we resort to qualitative modeling techniques and 
use qualitative simulation for behavior prediction, we 
can usually predict more than one possible behavior pat­
tern. Consequently this requires a monitoring phase in 
the troubleshooting process to detect inconsistencies be­
tween sets of observations and possible correct behavior 
patterns. 

On the other hand, we claim that it is not necessary to 
observe all possible correct behavior patterns. It is suffi­
cient to determine whether the device fulfills its function 
or not. For example, we wil l use a car long after some 
small deviations from its original behavior specification 
have occurred. In general this function of a device can be 
modeled according to its purpose TEL (which, for exam­
ple, is expressed in first order sentences) by a teleological 
monitoring model (denoted with TELM) following the 
condition 

Note that in the above definition wil l be 
the dynamic system itself (i.e. we can use the abbrevi­
ation ok (device)). However, we can easily extend this 
general concept to allow subpurposes of subparts of the 
system. 

In contrast to [Franke, 1989] who proposes the deriva-
tion of teleological models from an envisionment, we de­
rive such models heuristically. We claim that a teleologic 
model contains meta-knowledge about the purpose of the 
device which can only be determined by a human expert 
and which includes such knowledge as which faults can 
stil l be tolerated. 

While monitoring, we have to check only the accor­
dance of the actual behavior wi th this teleological model 
under the assumption that the device works correctly. 
D e f i n i t i o n 1 (Monitoring) Monitoring is the process of 
testing whether 

is consistent. 
Usually fault detection alone is not sufficient and we 

need an additional diagnosis phase to provide sufficient 
information about fault localization for repair. 

Addit ionally, we have to clarify how the choice of a 
qualitative model influences the monitoring and diagno­
sis process. 
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2.2 D i f f e ren t T y p e s o f Q u a l i t a t i v e M o d e l s 

2.2.1 S i m u l a t i o n M o d e l s 
Doing simulation we are mainly interested in the be­

havior of the dynamic system over t ime. This behav-
ior is optimally deduced from a structural model which 
uses time-varying parameters as its model primitives and 
which does not necessarily have to contain component-
oriented knowledge. 

Further we want to derive all behavior patterns with 
respect to the qualitative model no matter whether they 
describe faulty or correct behavior. Note that the term 
all refers to the chosen level of qualitative abstraction in 
the simulation model. The partial inclusion of models 
which describe physically impossible behavior is caused 
by the qualitative nature of the representation language 
and the problem-solving strategy of the simulation algo­
r i thm ([Kuipers, 1985]). 

2.2.2 M o n i t o r i n g M o d e l s 
We claim that the main task of monitoring is to check 

in real t ime if the purpose of the system is st i l l fulfi l led. A 
monitoring system observes under real-time constraints a 
small set of parameters and determines their correctness 
with respect to the system description. 

Therefore, a monitoring model usually contains only 
a few parameters and constraints necessary to describe 
the teleological purpose of the device. Informally, we re­
strict the set of simulation models by adding teleology in 
accordance wi th the previous discussion about teleologic 
monitoring models. 

Note that a monitoring model can be viewed as an 
instantiation of the system's teleology. In general, how­
ever, system teleology may cover a broader range of pur­
pose than the monitoring model actually expresses. 

2.2.3 D iagnos is M o d e l s 

Simulation and monitoring models are both built us­
ing parameters and constraints. This parameter-oriented 
view, however, is not sufficient for diagnosis. Parame­
ters can represent fault symptoms (e.g. the exceeding 
of thresholds), but faults are usually related to physical 
components. We assume here that the main aspect of 
diagnosis is to provide information for repair, and only 
mechanical devices (and not parameters) can be repaired 
2. We therefore have to relate purely parameter-oriented 
constraints (e.g. QSIM-constraints) to the device com­
ponents that we want to diagnose and to repair. 

Diagnosis models include component-connection infor­
mation and are typically hierarchically structured. It is 
obvious that the lowest-level model has to contain only 
components which can be repaired, also called smallest 
replaceable units or SRUs. The choice of the SRUs de­
pends on the availability of a repair-technician as well as 
on cost considerations. 

Diagnosis greatly benefits f rom hierarchical models. 
Complex real-world technical systems include intrinsic 
hierarchies which are related to the modularity or the 

The adjustment of parameters is a struggle against fault 
symptoms, not against fault causes. 

purpose of the mechanism. Note that not only a device-
oriented structural model can be hierarchical; we use hi­
erarchical, parameter-oriented structural models as well 
to represent decomposable physical quantities (e.g. fluid 
flow). 

We have of course described extreme positions for 
these models. Sometimes it might be useful to express 
sub-purposes of sub-mechanisms. On the other hand, di­
agnosis coupled wi th repair is also often oriented towards 
reconstruction of a teleology which may be different from 
the one used for monitoring ([Friedrich et a/., 1990]). 

The above discussion shows that diagnosis models are 
more restricted than simulation models 3 but cover a 
broader range of expertise than monitoring models do. 

3 T h e D I A M O N S y s t e m 

The following section introduces the D I A M O N sys­
tem, a qualitative reasoner for model-based diagnosis 
and monitoring, which incorporates the principles dis­
cussed in the previous section. 

3.1 E x a m p l e : C e n t r a l H e a t i n g Sys tem 

Figure 2 shows the constraint-network of the central 
heating system: the parameter model and the de­
vice model are connected by constraints. The device-
model contains three hierarchies consisting of 1 compo­
nent (Central Heating), 3 components (Room, Boiler, 
Pipe-System) and 8 components (Thermostat, Radiator, 
Heater 1, Heater2, Switch, Insulation, Pipes, Pump). 

Figure 2: Constraint Network for the Central Heating 

We use a flat monitoring model and a hierarchical di­
agnosis model which consists of two levels. The mon­
itoring level is modeled with 2 parameters and 1 con­
straint. The first diagnosis level (describing the 3 device-
components) uses 7 parameters and 5 constraints, the 

3with respect to their qualitative expressiveness 
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SRU-level (describing the 8 device-components) which 
is used for repair consists of 16 parameters and 13 con­
straints. 

Table 1 explains those parameters of our model that 
are used for monitoring and diagnosis. 

Table 1: Model Parameter 

3.2 Q u a l i t a t i v e M o d e l i n g us ing Dev ice 
Cons t ra i n t s 

We extend the QSIM-language of [Kuipers, 1986] by 
adding device-oriented knowledge to the constraints. 

D e f i n i t i o n 2 (Device Constraint) The syntax of a de­
vice constraint is grammatically defined as follows 

where (constr) and (corresp.values) refer to the 
tradit ional QSIM definitions of (constraint) and 
(corresponding — values), and (I_of_comp) denotes the 
list of device components which are associated by the 
constraint. 

E x a m p l e 2 The device constraint 

is interpreted as follows: 

• parameter PB is a rnonotonic function of parameter 
PA 

• the constrained parameters are associated to the 
device-components C 0 M P 1 and C 0 M P 2 

• if the qualitative value of PA is landmark value 1ml 
(or lm3), then PB simultaneously has the qualita­
tive value lm2 (or lm4). 

According to the introduced device-oriented exten­
sion, we distinguish between four classes of device con­
straints in our modeling language. 

Teleologic Dev i ce Cons t ra i n t s : A teleologic device 
constraint contains parameters that are used during the 
monitoring cycle to detect a first fault symptom. It is 
obvious that the device itself (at its highest level of ab-
straction) is the device-oriented part in such a device 
constraint. 

E x a m p l e 3 In our example, the following teleologic de­
vice constraint states the desired relationship between 
the intended and the observed room temperature: 

Tau to log i c Dev i ce C o n s t r a i n t s : These constraints 
exclusively denote relations between parameters that 
cannot cause inconsistencies due to a component fail­
ure. We use them to denote laws of nature, for example 
energy-conservation, or to relate computation parame­
ters. In contrast to the other types of constraints a tau­
tologic device constraint is not associated to any com­
ponent as it can not provide any diagnostic information 
for troubleshooting. 
E x a m p l e 4 In our example, we use a tautologic device 
constraint to relate the intended room temperature, the 
actual room temperature and the temperature difference 
(which is a computation parameter). NIL denotes the 
empty component set. 

S ing le ton Dev ice C o n s t r a i n t s : Some device con­
straints are explicitly associated to only one component. 
They express restrictions on internal operations of the 
component which do not affect its surroundings. An in­
consistency between such a device constraint and the 
observed values is therefore explained by the assumption 
that the component is behaving abnormally. 
E x a m p l e 5 A singleton device constraint is associated 
to the radiator, that expresses a qualitative state of the 
radiator-signal: 

Set Dev ice Cons t ra i n t s : This class of device con­
straints associates at least two components. Although 
the included components are usually situated at the same 
level of abstraction, some set device constraints might as­
sociate components at different levels of abstractions as 
well. 
E x a m p l e 6 The rnonotonic functional relation (ex­
pressed by an constraint (see [Kuipers, 1986])) 
between the amount of water in the pipe-system and the 
pressure of water associates the pipes and the pump: 

In this case, we use a set device constraint to avoid the 
introduction of additional parameters which cure not ob­
servable. Addit ionally, set device constraints represent 
the behavior of connected groups of SRUs (we cannot, 
replace an abstract component like PIPE-SYSTEM). 

3.2.1 Laye red M o d e l i n g A r c h i t e c t u r e 
The modeling architecture of D I A M O N consists of 

three layers: 

M o n i t o r i n g Layer : The monitoring layer of DIA­
MON contains a teleologic device constraint model which 
is used to check for faults in the system. A l l parame­
ters in the monitoring layer are continuously observed 
to guarantee fast fault detection. Note that if the moni­
toring layer contains enough parameters to pinpoint the 
failure of a specific part of the device, then this focusing 
is done on the first diagnosis level. In this case the first 
diagnosis level could actually consist of the same param­
eters as the monitoring level, but additionally include 
device components. 
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Diagnosis Laye r : The diagnosis layer of D IAMON 
contains hierarchically structured device constraints 
which are used for the dynamic refinement of fault lo­
calization. It is obvious that the complexity of a device 
is represented in the hierarchical architecture of the di­
agnosis layer. 

Repa i r Layer : The repair layer of D I A M O N contains 
device constraints which exclusively relate SRUs. If the 
diagnosis process reaches the repair layer (i.e. all actual 
diagnoses only contain SRUs), it switches control to the 
repair process. 

3.3 A l g o r i t h m 
The following section introduces the algorithmic princi­
ples of D I A M O N . 

3.3.1 T h e E x t e n d e d H S - D A G - a l g o r i t h m 
Previous approaches to monitoring have usually con­

centrated on the control of predefined thresholds. Con­
versely we view both monitoring and diagnosis from 
the consistency-preserving point of view which allows 
us to cover a broader range of detectable faults. The 
limits of detectability are due to the expressiveness of 
the underlying constraint language, not to the monitor­
ing/diagnosis algorithm itself. 

D I A M O N is built on top of the HS-DA ( a l g o r i t h m 
[Greiner et a/., 198990] which is an improved version of 
the Re iter-algorithm [Reiter, 1987] for model-based di­
agnosis. The device constraints are checked for consis­
tency by a constraint-propagator. If an inconsistency in 
a constraint is detected, D IAMON adds the associated 
components to the conflict set. 

We have extended the basic HS-DAG-algorithm to 
deal with dynamic systems similarly to the algorithm 
presented in [Ng, 1990]. 

3.3.2 D y n a m i c M o d e l Z o o m i n g 
We have developed a continuous strategy of dynamic 

model zooming for the diagnosis layer. Zooming denotes 
the process of focusing the diagnosis process to the rele­
vant parts of the model. In our current implementation 
we use a breadth-first zooming strategy which recursively 
zooms in the hierarchically deeper level for all compo-
nents which are part of a diagnosis. This strategy guar­
antees a diagnostic process which is optimal w.r.t. the 
amount of detectable faults. 

We plan to develop an integration of heuristic knowl­
edge and a best-first zooming strategy if no safety-criteria 
are violated. 

3.4 T h e M o n i t o r i n g / D i a g n o s i s Cyc le 
Continuing the above discussion we present a formal def­
inition of the DIAMON-algor i thm. 

Let M be the system description consisting of a se­
quence of qualitative models denotes 
a set of diagnoses (following [Reiter, 1987]). 

According to our hierarchical modeling concepts, m0 
is the monitoring layer, mn denotes the repair layer and 
mjt with n are the models of the diagnosis layer. 
mactuai M denotes the current working model used for 
troubleshooting. 

1 INITIALIZATION: 

2. MONITORING: 
WHILE ({con .= CONSISTENT(mnctualtdactna)) = 0) 
DO READ(daciual), 

3 DIAGNOSIS: 

4 (REPAIR: 
REANIMATE; GOTO 1) 

In this paper we concentrate on monitoring and di­
agnosis and do not discuss repair strategies. We are 
currently investigating and evaluating various strategies 
how to restore teleology in a dynamic system doing re­
pair (see also [Friedrich et a/., 1990]). 

3.5 E x a m p l e : A Fau l t Scenar io in the C e n t r a l 
H e a t i n g Sys tem 

Applying D I A M O N to the on-line control of the central 
heating system yields the following results for the detec­
tion and localization of a double fault. 

Assume that the radiator is switched off and one 
heating element (H2) is permanently faul ty D I A M O N 
correctly detects that differs from and 
switches to the first diagnosis level. Addit ional param­
eters and constraints are zoomed in (state s2), i.e. the 
parameters are measured and the constraints are evalu­
ated. This is done again in state s3 to reach the SRU-
level. The diagnosis process finally localizes the double 
fault [RADIATOR,H2). 
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Table 2 summarizes the control process (sO - s3 denote 
the qualitative system states (see IKuipers, 1986])). 

Table 2: Double-Fault-Diagnosis 

4 C o n c l u s i o n a n d R e l a t e d W o r k 

We have presented a new approach to model-based trou­
bleshooting dynamic systems which uses an extended 
constraint language for hierarchical system models and 
which is based on consistency-preserving algorithmic 
concepts for monitoring and diagnosis. 

Our work is closely related to that of [Dvorak and 
Kuipers, 1989] and [Ng, 1990]. The D IAMON system 
differs from these approaches in some important ways. 

First, we use a combined model-based algorithm which 
integrates both monitoring and diagnosis and which ad­
ditionally uses hierarchical models and a dynamic zoom­
ing strategy. 

Second, DIAMON's fault coverage is more complete 
than those of [Dvorak and Kuipers, 1989] and [Ng, 1990]. 
In [Dvorak and Kuipers, 1989J faults can be missed due 
to the use of pre-simulated fault models which do not 
allow the detection and localization of unanticipated 
faults. The algorithm of [Ng, 1990] can miss faults if 
the heuristically chosen incomplete sets of measurable 
parameters do not represent the actual fault scenario. 

The use of a hierarchical modeling architecture for 
troubleshooting is closely related to to the work of [Ham-
scher, 1991] who distinguishes between a functional and 
a physical (repair) model for diagnosis of digital circuits. 

We differ from [Dvorak and Kuipers, 1989] in that we 
do not use fault models and inductively derived fault hy­
potheses for monitoring. Rather, we rely on the behav­
ior discrepancies to the correct behavior model, which 
allows us to handle unanticipated faults. 
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