
A Non-shared Binding Scheme for Parallel Prolog Implementat ion

Kang Zhang Ray Thomas
Department of Electrical and Electronic Engineering

Brighton Polytechnic
Moulsecoomb, Brighton BN2 4GJ

U K

Abstract

To al low eff icient parallel processing of Prolog
programs on distributed multiprocessors, a non-shared
variable binding approach is required such that binding
environments can be independently distributed among
processors. This paper presents a binding scheme,
which realises the independence of a clause's binding
environment by eagerly instantiating variables across
clause arguments. The application of the scheme on a
Prolog virtual machine has illustrated its features of
e f f i c iency in execut ion and s imp l i c i t y in
implementat ion. The prel iminary performance
evaluation has demonstrated the feasibility of the
scheme.

1 Background

Prolog has been widely recognised for the past decade as a
powerful symbolic programming language. To improve the
execution speed of Prolog programs, much attention has
been devoted to the parallel implementation of the language.
One of the central issues is how variable bindings are
represented and manipulated so that AND/OR parallelism
can be supported most effectively.

The conventional approach to representing binding
environments (BEs) in Prolog is known as the "three stack"
approach [Werren, 1983]. Much of the work on parallel
implementations of logic programs has been on efficient
ways of implementing a parallel version of the "three stack"
approach. The principle is that when a new process is
spawned it can share the BE of its parent process, and make
its own variable bindings along the new branch on the stack.

Various kinds of execution model have been investigated
for the efficient management of variable bindings. Recent
achievements in implement ing these models on
conventional von Neumann computers have been highly
successful [Baron et aL, 1988; Ciepielewski, 1989; Lusk et
a I., 1988]. The central idea in those paral le l
implementations is to build a virtual stack for each process
so that it can share as much information as possible with its
sibling processes. The binding schemes in these models
have the fol lowing concepts in common:

a) variable bindings are kept locally in individual clauses;
b) unification of a goal and the head of an applicable

clause often requires access to variables which may be bound
earlier,

c) the unification between two unbound variables is
realised by binding one variable to the reference of the other.

The differences between these schemes are that, to
dereference an ancestor variable, different types of auxiliary
structures are used (e.g. binding arrays or hash windows) to
allow each clause to store its own copy of the variable
[Conery, 1988].

Systems with centralised auxil iary structures may be
called shared binding schemes. The major disadvantages of
shared schemes are that, to access a variable which is bound
at a very early stage, the dereference operation is sometimes
costly; also the l ink of the BEs generated at different
resolution stages requires a centralised memory organisation
to facilitate the auxiliary structure. These result from the
history sensitivity of variable bindings, in other words, any
variable binding has to be kept in order for descendent
processes to access.

In non-shared binding schemes, however, the number of
BEs seen by any process is restricted to one or two. Such
schemes overcome the above drawbacks but include a
l imitation due to tradeoff in extra copying and binding
operations. Among the few proposed non-shared binding
schemes, the EPILOG model [Wise, 1986] and the closed
environments [Conery, 1988] are most representative.
EPILOG allows only one BE to be accessed by a process,
this is achieved by back-unification. In closed environments,
locality is achieved by a two-stage closing operation on both
parent and chi ld environments. Both of these approaches
represent a radical attempt at achieving locality for a non­
shared implementation. But back-unification in the former
and closing operations in the latter are considered costly and
sometimes wasteful in both computing power and use of
storage, because variables are identified locally in individual
processes in both systems.

In the following section, a new scheme is presented that
identifies variables in a global space so that back-unification
is reduced to simple variable exportation, and also reduces
environment space to a minimum by eagerly instantiating
variables in local processes.

2. Eager Instant iat ion B ind ing Scheme

To design a binding scheme suited to a scalable
multiprocessor, high distributability of BEs is desirable. In
other words, BEs should be distributed, rather than shared
among processes. Operations associated with shared stacks
and registers should, therefore, be avoided.

Zhang and Thomas 877

It is generally true that high distributability is usually
achieved at the cost of structure copying. If the amount of
data to be copied is as large as the whole auxiliary structure
for BEs, the copying overhead may well outweigh the
performance gain of distributing the processing. Our first
goal is to minimise the size of the BEs to be copied.
Secondly, the binding scheme should be as readily
supportive as possible for both OR and AND-parallelism.
Thirdly, it should be relatively inexpensive for the system to
allow both parallel execution and sequential execution and to
switch from one mode to another.

The eager instantiation binding scheme is designed to
meet the above requirements. A major feature of the scheme
is that the number of BEs operated on by a process at any
instant in time is restricted to one, this is the process' own
BE.

It is observed that, the evaluation of a process can be
entirely independent of the precedent (sibling or parent)
processes if the variables which appear in the input
arguments of the process, and arc bound during the previous
unif icat ion, have been substituted by their instances
according to the previous BE. In other words, as long as
bindings created in the precedent process are applied to the
corresponding variables before the variables are sent to the
current process, any access to the variables needs not be
dereferenced to the ancestor BEs.

In this binding scheme, the above condition is guaranteed
by variable instantiation operations, which ensure that any
bound variables appearing in an argument w i l l be
substituted with their corresponding instances in the BE.
When structured terms contain variables for substitution,
they are reproduced with the variables being substituted by
their instances. Instantiation operations have to be applied to
the process arguments which are due to be transferred to the
next process.

Argument transfer may happen either a) between sibling
processes, or b) from a parent process to its child process
after head unification. In the first case, the instantiation of
bound variables has to be made before the results of the
process are sent to the output, by using the process' own
BE, and before the input to a sibling process, by using the
binding results of the previous sibling process. This is
called interface instantiation. In the second case, the
instantiation has to be done after the head unification and
before the evaluation of the child processes for the body
literals. This is called face instantiation. Once the evaluation
of a child process terminates, the ancestor variables that were
bound in the child process are paired with their binding
instances and exported back into the parent process. This
export operation, together wi th interface instantiation,
achieves the same goal as the back unification operation in
EPILOG [Wise, 1986]. They ensure that the binding results
of a process wi l l not be required later by its parent or sibling
processes. The face instantiation, on the other hand, serves
to ensure that the child processes have sufficient binding
information from their parent so that they need not to
dereference back to it.

Figure 1 illustrates the eager instantiation binding scheme
applied to a clause. Within the clause, process A has two
goals B and C. After head unification of A, argument X is
instantiated (face instantiation), and then transferred to goal
B. When the evaluation of a child process which matches B

succeeds with X bound to a value v, then the variable-
instance pair X/v is sent back to A to be used for the
instantiation of Y (shown as an arrow in Figure 1). It should
be noted that more than one variable-instance pair may be
produced, if X, introduced from the head, is a structured term
containing more than one unbound variable. Argument Y
(which may be bound to a structured term f (X)) is
instantiated (to f(v) - interface instantiation) before being
sent to goal C. Upon the successful evaluation of A, all
arguments are instantiated according to A's updated BE
(interface instantiation) and then sent back to A's parent
process. X and Y in the example merely stand for clause
arguments - they may be any terms.

Figure 1 Eager instantiation scheme

When more than one child process matches goal B the
mult iple binding instances of X, resulting from the
unification of these processes with B, w i l l be stored in a
special data structure, called stream, or v s . The variable-
instance pair w i l l be used for the instantiation of Y,
which generates a stream of Y's instances.

From the above discussion, it is observed that ful l AND-
parallelism is not allowed in principle with the scheme. But
the scheme can effectively exploit Restricted A N D -
parallelism [DeGroot, 1984J, which is parallel processing of
run-time independent goals. There should be no interface
instantiation between the independent goals because
exporting variable-instance pairs from a child process is
necessary only when the corresponding goal in the parent
process has run-time data dependencies with one or more
sibling goals. In other words, the child processes that are
independent from each other at run-time can be evaluated in
parallel without exporting their variable-instance pairs to the
parent process. Therefore, the arrowed line in Figure 1 can
be omitted in this case.

The binding scheme is called eager instantiation due to the
fact that the instantiation operation is eagerly performed by
the local process. Once a variable has been bound, all
subsequent occurrences of the variable w i l l be replaced by its
binding instance. By ensuring this, the scheme introduces
more overheads on instantiation operations and structure
copying, but it offers a simpler and more distributed parallel
implementation by el iminating the need for accessing
variables in the ancestor process.

Wi th eager instantiation of procedure arguments, the
evaluation of a logic program can be best interpreted in
terms of procedural semantics [Hogger, 1984]. Every
reduction step in a computation entails invoking some

878 Logic Programming

procedure (parent process) and thereby introduces new calls
to the goals (child processes) in the procedure's body. The
process of replacing a call by a goal in the body involves
on ly making the cal l arguments and goal arguments
correspond. This is very similar to the way in which the
semantics of procedure calling is defined for conventional
languages. The only difference is that logic programs make
two arguments correspond by unifying them, whereas
conventional languages impose di f ferent (simpler)
semantics. The unification of a procedure may produce a BE,
which only effects the calls to the body goals.

In representing a variable, the concept of a "value cel l"
[Gabriel et al., 1985] is not used. Instead, a variable-instance
pair is used to accommodate a variable and its binding, and
is created dynamically only when the variable is bound. This
arrangement, though, loses the advantages of a value cell,
i.e. a variable instance can be directly accessed because its
address is the variable itself and binding conflicts can be
checked efficiently, but it brings the following benefits.

Variables are represented uniquely by variable symbols,
which are generated at run-time as the evaluation proceeds. It
is unnecessary to provide memory space for unbound
variables (whereas in a value cell implementation any
variable, bound or unbound, occupies a physical space).
Therefore, there is no synchronisation problem associated
with simultaneous wr i t ing to (binding) a variable by
different processes. A variable-instance pair occupies two
spaces for X /B , which is created only when the variable is
bound to another term during unification. (In an OR-parallel
implementation using value cells, a value cell may also need
two or more spaces). Furthermore, a variable can be
presented in a number of pairs if it is bound to different
values as in OR-parallel execution.

Generally, the BE size of a particular process can be
minimised by optimisation. This is done by substituting
variables in the instance parts with their own instances
found in the same BE, and removing the redundant variable-
instance pairs which are no longer needed. The optimised BE
may occupy much smaller space than the space of value
cells required for all variables. Thus BEs may be extensively
copied between processors on requests in order to exploit
more distributed processing capability.

3 A p p l i c a t i o n on a Data f low V i r t u a l
Machine

The eager instantiation binding scheme was ini t ia l ly
designed for a dataflow Prolog execution model, called
DIALOG [Zhang, 1990]. The DIALOG model is built on a
virtual machine and based on dataflow computation.

Dataflow computation allows the operations which have
received all their input data to be executed in parallel. The
computational model is typically restated as two-dimentional
graphs, known as dataflow graphs, which show the data
dependencies among operations.

The D IALOG virtual machine consists of a number of
virtual instructions, of which dataflow graphs representing
individual Prolog clauses are constructed. The instruction
nodes in a dataflow graph are connected by arcs along which
dataflow tokens are transferred. A l l the nodes whose input
arcs have received tokens can be executed simultaneously.

Each node, after execution, may put a new token
representing a result on its output arcs, and thus activate the
following nodes.

To see how the eager instantiation binding scheme is
applied, consider a simple example which shows one
situation where variable instantiation is required:

The dataflow graphs for individual clauses are shown in
Figure 2. A brief description of the function of instruction
nodes in the graphs follows. More detailed descriptions on
the instructions and some rules for generating dataflow
graphs are given in [Zhang, 1990].

Figure 2 Dataflow graphs for choose_list program

The instructions represented in rectangular nodes perform
procedure calls. A procedure call instruction transfers the
argument values from the process named in the node to the
clauses whose clause heads match the process, and thus
activate the clauses. Meanwhile, the instruction sets the
returning pointers in the clauses pointing to the descendant
processes in the parent process.

Activated by an input term and a BE, an instantiate node
substitutes all the variables appearing in the term with their
binding instances recorded in the input BE, and sends the
instantiated term to its output. An export node merges the
input variable-instance pairs where the variables were created
by the ancestor processes, and exports the new BE to the
parent process.

A unify instruction node unifies two input terms and
generates an instance output 1 and an environment output E.
The I output produces a common instance of the two terms.
The E output delivers a BE which records bindings of the
variables appearing in the two terms.

The execution sequence of the above example is illustrated
in Figure 3.

The query implies that the first element of the chosen list
must be found in element. When the query is executed, X1
and are applied to the graph of choose J i s t (Figure
3(a)). According to the D I A L O G virtual machine, head
unification needs not to be applied to any stand alone
variables in the head. Therefore, in this example, X1 is sent
straight to the first chi ld process e lement (Figure 3(b)).
After unification of e lement, the BE with one variable-
instance pair is produced and exported to the parent
process c h o o s e j i s t (Figure 3(c)). The second argument
input is instantiated to before being sent to the

Zhang and Thomas 879

second goal list (Figure 3(d)). The chi ld process list,
activated by the instantiated argument succeeds with
the first clause and fails with the second (Figure 3(e)).
Final ly, the instantiated outputs a and [a, b, cf d] are
returned to the corresponding two arguments of choose_list
(Figure 3(f)). Since variable X1 and X2 were imported from
a parent process (the query in this case), their bindings
and are exported through an export instruction,
from element and list respectively, back to c h o o s e j i s f s
parent process. It is clear that the evaluation of the child
process list need not access the BE of element, nor the BE
of choose list.

Figure 3 Snapshots of applying the scheme to choose_list

4 Implementat ion and Performance

The DIALOG model has been implemented in Occam2 on a
transputer system [Zhang, 1988].

4.1 Data Representat ion

Variables are identified by their variable symbols, and created
when they have been bound. A BE is represented as two
arrays of integers, one storing variables, the other storing
binding instances. Two arrays together form a whole array of
variable-instance pairs. When two unbound variables are
unified, the variable-instance pair is represented thus: the
more recently created variable is the binding instance of the
other.

Constants are identified by pointers pointing to their
values, which may be integers or character strings.

Lists are identified by list pointers pointing to the starting
addresses of the individual lists represented as:

Structures are identified by structure pointers pointing to
the starting addresses of the individual structures, represented
as:

Lists and structures are referred to as structured terms. The
arity of a structured term is the total number of elements in
the term. The total number of unbound variables is another
important status of the structured term. It helps by
eliminating unnecessary searches for variables in a non-
variable structured term, and also plays a key role in the
implementation of Restricted AND-parallelism.

4.2 Garbage Col lect ion

The structure copying policy causes the memory space to be
consumed rapidly. Therefore, garbage collection is frequently
needed to reclaim memory space occupied by structured
terms no longer used.

The simple reference count garbage collection scheme is
found to be sufficient to solve the problem. Each structured
term in the structure store has an extra tag indicating its
reference count. When a structured term is first created, its
reference count tag is assigned to be one. When the reference
to the term needs to be copied (e.g. when a goal including
the term is unified with a number of applicable clauses), the
tag is incremented by one for each copy. Conversely,
whenever a reference to it is discarded, the reference count
decrements by one. For example, when the term is updated
by instantiating variables in it using the existing binding
information, the updated term occupies a new space, and
thus identifies itself as a different term. In this case, the
reference to the old term can be discarded and replaced by a
new reference. Once the reference count of a structured term
reaches zero, the memory space for that term can be
reclaimed as the term is no longer used.

4.3 An Abst ract Machine Arch i tec tu re

In order to study the feasibility and run-time characteristics
of the scheme, an abstract dataflow architecture has been
simulated. It should be noted, however, that the binding
scheme is equally suited to the implementation on many
other kinds of architectures. The dataflow architecture is
constructed as a r ing connected by the fol lowing main
components (Figure 4): an instruction store where compiled
virtual instructions are stored; a packet queue based on a
FIFO for buffering packet f low; a number of homogeneous
processing elements (PEs); a structure store for storing
structured terms; and a distribution network for delivering
result packets to the instruction store.

880 Logic Programming

Figure 4 An abstract dataflow architecture

In this dataflow architecture, the information elements,
called packets, are flowing simultaneously in different parts
of the ring on behalf of different instructions for concurrent
execution. Hence the ring operates as a pipeline with all of
its components actively processing or creating packets
simultaneously.

When an instruction fails in its execution, the responsible
PE immediately sends a " fa i l " signal to the instruction store
so that no more instructions belonging to the same graph
are allowed for execution. Only when the graph is activated
again may the "fai l " signal be disabled.

4.4 Performance

Six programs have been tested to evaluate the effect of the
binding scheme. They have been hand-compiled into
dataflow graphs to be stored in the instruction store. The
programs are

1) Determinate list concatenation for a list of 8 elements
(append 1);

2) Non-determinate list concatenation of a list of 8
elements with all results (append2);

3) Quicksorting program of a list of 30 elements in a
reversed order (qsort);

4) Naive reverse of a list of 30 elements (na_rev);
5) List checking of a list of 4 elements as a subset of a

list of 8 elements (sublist);
6) Line presentation program for a cube (cube).
Their evaluation reflects different characteristics: non-

determinism in "append2" and "sublist"; recursion in
"appendl", "append2", "qsort" and "na_rev"; graph copying
in "sublist"; and stream processing in "cube". However, the
programs do not cover the whole range of benchmarking,
though they have closely met the requirements of this phase
of evaluation.

The fol lowing is a description of the performance of the
scheme, measured in terms of BEs and structured data. In
Table 1, the maximum lengths (number of variable-instance
pairs) of BEs (EnvLen_Max) are less than three and the
average BE lengths (E n v L e n _ A v e , averaged over all
accessing instants by PEs) are less than two. This results
from eager variable instantiation and the subsequent BE
optimisation that merges variable-instance pairs in place.

Table 1 Measurements of BE operations

A BE stays in a PE after its processing. When another PE
needs to access the same BE next time, it wi l l f ind, from the
instruction store, the host PE where the BE resides, and
then copy it across. Meanwhile, the PE sends its own
identifier to the instruction store, thus associating itself with
the copied BE. After being processed, the BE wi l l stay in the
second PE until it is required again. This lazy copying
policy works on a probability basis because there is a
probability that the BE is required by the same PE for two
or more successive updating operations, in which case
copying is unnecessary. When only one PE is used in the
system, the total number of BEs copied by PEs
(EnvCpy_Tot) is zero, so is the copying percentage [%].
The program "cube" involves no BE operations, and thus no
copying is needed. The copying becomes dominant (mostly
over 90%, except "sublist" 81%) when more (than 4) PEs
are involved. Since the average BE sizes are almost
minimum, the copying overhead is reasonably affordable.

The eager instantiation binding scheme requires extensive
copying of structured terms, which is a major shortcoming
of the scheme. Table 2 summarises the measurements on
structured terms. The first row is the average number of
structure elements involved in each program (StrLen_Ave),
averaged over all accessing instants by PEs. The second row
is the total number of accesses to the structured terms
(S t rAcc_Tot) . It is found that the number of copying
operations (StrCpy_Tot) is proportional to the number of
structure elements being processed (EleCpy_Tot(1)), and to
the number of logic inferences in the programs. On average,
there is 1.3 copying operation per logic inference. Based on
the evaluation results of the overall execution speed of the
programs [Zhang, 1990], the copying policy does not
impose intolerable overhead ("na_rev" program, which
copies 17.6 structured terms per logic inference on average,
performs even better than others). The copying problem
may, however, become more serious when longer structured
terms are involved.

Table 2 Measurements of structured terms

Zhang and Thomas 881

One way to reduce the amount of copying is to allow
some elements to be shared among different structured terms.
Knowing that operations on structured terms in logic
programs are overwhelmingly performed on list heads and
tails, an intuitive idea is to separate heads and tails from
other parts of lists. Therefore, when a new list is created
whose head or tail has been modified from an old one, it
may share the remaining part of the old list. This is
illustrated in Figure 5.

The situation in Figure 5 happens when the list tail of list
A is bound to a new list, whose elements correspond to
e l e m e n t N , e l e m e n t _ N + 1 , ..., e l e m e n t _ M - 1 ,
element_tailB. This is one of the most common situations
in list processing. As Figure 5 suggests, the elements in list
A, element_2, element_3, ..., element_N-1 need not be
copied. The newly constructed list B has its own version of
arity, number of variables, first element, last element and
tail element. It has the same pointer as in list A pointing to
the remaining elements of the list. The list arities (i.e. N and
M) here tell the different belongings of the two lists. The
amounts of copying of structure elements when the
improved l ist representation is used appears in
EleCpy_Tot(2), which is only about half (44 - 57%) of the
amounts of copying using the non-shared representation
(EleCpy_Tot(1)). Compared with the non-shared one, the
shared representation introduces little extra overhead, that is
incurred from tracing and copying a pointer.

5 Conclusion

A binding scheme called eager instantiation has been
presented, which allows a variable to be bound and accessed
locally in an individual binding environment so that no
centralised auxiliary structure is required. Therefore, OR-
parallelism can be exploited effectively within a distributed
processing environment. It is also easy to be extended for
support of Restricted AND- parallelism. The application of
the scheme on a dataflow virtual machine has also been
described. The scheme has low implementational complexity
and high distributability.

The D IALOG execution model utilising the scheme has
been evaluated and reported elsewhere [Zhang, 1990]. The
performance obtained is encouraging on a simulated dataflow
architecture with up to eight processors. It should be said,
however, that the binding scheme is not architecture specific
and is suitable for many other kinds of architectures. More
complex programs that provide larger search spaces need to
be tested to gain broader assessment of the scheme.

Acknowledgment

The first author would like to thank the UK Science and
Engineering Research Council for the support of a
postdoctoral fellowship.

References

[Baron et al., 1988] Baron, U. et al. The Parallel ECRC
Prolog System PEPSys: An Overview and Evaluation
Resul ts . In Proc. Int'l. Conf. of Fifth Generation
Computer Systems, pages 841-850, Tokyo, 1988.

[Ciepielewski et al., 1989] Ciepielewski, A., Haridi, S. and
Hausman, B. OR-Parallel Prolog on Shared Memory
Multiprocessors. J. Logic programming, 7:125-147,
1989.

[Conery] Conery, J.S. Binding Environments for Parallel
Logic Programs in Non-Shared Memory Multiprocessors.
Int'l. J of Parallel Programming, 17(2): 125-152, 1988.

[DeGroot, 1984] DeGroot, D. Restricted A N D Parallelism.
In Proc. Int'l. Conf. Fifth Generation Computer Systems,
pages 471-478, 1984.

[Gabriel et al., 1985] Gabriel, J., Lindholm, T., Lusk, E X .
and Overbeek, R.A. A Tutorial on the Warren Abstract
Machine for Computational Logic. Technical Report,
ANL-84-84, Argonne National Laboratory, Argonne,
USA, Jun. 1985.

[Hogger, 1984] Hogger, C.J. Introduction to Logic
Programming. Academic Press, 1984.

[Lusk et al., 1988] Lusk, E., Warren, D.H.D., Haridi, S. et
al. The Aurora OR-Parallel Prolog System. In Proc. Intl.
Conf. of Fifth Generation Computer Systems, pages 819-
830, Tokyo, 28 Nov. - 2 Dec. 1988.

[Warren, 1983] Warren, D.H.D. An Abstract Prolog
Instruction Set. Technical Note 309, SRI International,
1983.

[Wise, 1986] Wise, M J . Prolog Multiprocessors. Prentice-
Hal l , 1986.

[Zhang, 1988] Zhang, K. An Occam2 Implementation of
Prolog and Its Preliminary Performance. In Proc. 9th
Occam User Group Technical Meeting , Askew, C. (ed.),
Southampton, U K , Sep. 1988.

[Zhang, 1990] Zhang, K. D I A L O G : A Dataf low
Interpretation Approach to Logic Programs. Ph.D Thesis,
Brighton Polytechnic, 1990.

882 Logic Programming

