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Abstract 

To al low eff icient parallel processing of Prolog 
programs on distributed multiprocessors, a non-shared 
variable binding approach is required such that binding 
environments can be independently distributed among 
processors. This paper presents a binding scheme, 
which realises the independence of a clause's binding 
environment by eagerly instantiating variables across 
clause arguments. The application of the scheme on a 
Prolog virtual machine has illustrated its features of 
e f f i c iency in execut ion and s imp l i c i t y in 
implementat ion. The prel iminary performance 
evaluation has demonstrated the feasibility of the 
scheme. 

1 Background 

Prolog has been widely recognised for the past decade as a 
powerful symbolic programming language. To improve the 
execution speed of Prolog programs, much attention has 
been devoted to the parallel implementation of the language. 
One of the central issues is how variable bindings are 
represented and manipulated so that AND/OR parallelism 
can be supported most effectively. 

The conventional approach to representing binding 
environments (BEs) in Prolog is known as the "three stack" 
approach [Werren, 1983]. Much of the work on parallel 
implementations of logic programs has been on efficient 
ways of implementing a parallel version of the "three stack" 
approach. The principle is that when a new process is 
spawned it can share the BE of its parent process, and make 
its own variable bindings along the new branch on the stack. 

Various kinds of execution model have been investigated 
for the efficient management of variable bindings. Recent 
achievements in implement ing these models on 
conventional von Neumann computers have been highly 
successful [Baron et aL, 1988; Ciepielewski, 1989; Lusk et 
a I., 1988]. The central idea in those paral le l 
implementations is to build a virtual stack for each process 
so that it can share as much information as possible with its 
sibling processes. The binding schemes in these models 
have the fol lowing concepts in common: 

a) variable bindings are kept locally in individual clauses; 
b) unification of a goal and the head of an applicable 

clause often requires access to variables which may be bound 
earlier, 

c) the unification between two unbound variables is 
realised by binding one variable to the reference of the other. 

The differences between these schemes are that, to 
dereference an ancestor variable, different types of auxiliary 
structures are used (e.g. binding arrays or hash windows) to 
allow each clause to store its own copy of the variable 
[Conery, 1988]. 

Systems with centralised auxil iary structures may be 
called shared binding schemes. The major disadvantages of 
shared schemes are that, to access a variable which is bound 
at a very early stage, the dereference operation is sometimes 
costly; also the l ink of the BEs generated at different 
resolution stages requires a centralised memory organisation 
to facilitate the auxiliary structure. These result from the 
history sensitivity of variable bindings, in other words, any 
variable binding has to be kept in order for descendent 
processes to access. 

In non-shared binding schemes, however, the number of 
BEs seen by any process is restricted to one or two. Such 
schemes overcome the above drawbacks but include a 
l imitation due to tradeoff in extra copying and binding 
operations. Among the few proposed non-shared binding 
schemes, the EPILOG model [Wise, 1986] and the closed 
environments [Conery, 1988] are most representative. 
EPILOG allows only one BE to be accessed by a process, 
this is achieved by back-unification. In closed environments, 
locality is achieved by a two-stage closing operation on both 
parent and chi ld environments. Both of these approaches 
represent a radical attempt at achieving locality for a non­
shared implementation. But back-unification in the former 
and closing operations in the latter are considered costly and 
sometimes wasteful in both computing power and use of 
storage, because variables are identified locally in individual 
processes in both systems. 

In the following section, a new scheme is presented that 
identifies variables in a global space so that back-unification 
is reduced to simple variable exportation, and also reduces 
environment space to a minimum by eagerly instantiating 
variables in local processes. 

2. Eager Instant iat ion B ind ing Scheme 

To design a binding scheme suited to a scalable 
multiprocessor, high distributability of BEs is desirable. In 
other words, BEs should be distributed, rather than shared 
among processes. Operations associated with shared stacks 
and registers should, therefore, be avoided. 
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It is generally true that high distributability is usually 
achieved at the cost of structure copying. If the amount of 
data to be copied is as large as the whole auxiliary structure 
for BEs, the copying overhead may well outweigh the 
performance gain of distributing the processing. Our first 
goal is to minimise the size of the BEs to be copied. 
Secondly, the binding scheme should be as readily 
supportive as possible for both OR and AND-parallelism. 
Thirdly, it should be relatively inexpensive for the system to 
allow both parallel execution and sequential execution and to 
switch from one mode to another. 

The eager instantiation binding scheme is designed to 
meet the above requirements. A major feature of the scheme 
is that the number of BEs operated on by a process at any 
instant in time is restricted to one, this is the process' own 
BE. 

It is observed that, the evaluation of a process can be 
entirely independent of the precedent (sibling or parent) 
processes if the variables which appear in the input 
arguments of the process, and arc bound during the previous 
unif icat ion, have been substituted by their instances 
according to the previous BE. In other words, as long as 
bindings created in the precedent process are applied to the 
corresponding variables before the variables are sent to the 
current process, any access to the variables needs not be 
dereferenced to the ancestor BEs. 

In this binding scheme, the above condition is guaranteed 
by variable instantiation operations, which ensure that any 
bound variables appearing in an argument w i l l be 
substituted with their corresponding instances in the BE. 
When structured terms contain variables for substitution, 
they are reproduced with the variables being substituted by 
their instances. Instantiation operations have to be applied to 
the process arguments which are due to be transferred to the 
next process. 

Argument transfer may happen either a) between sibling 
processes, or b) from a parent process to its child process 
after head unification. In the first case, the instantiation of 
bound variables has to be made before the results of the 
process are sent to the output, by using the process' own 
BE, and before the input to a sibling process, by using the 
binding results of the previous sibling process. This is 
called interface instantiation. In the second case, the 
instantiation has to be done after the head unification and 
before the evaluation of the child processes for the body 
literals. This is called face instantiation. Once the evaluation 
of a child process terminates, the ancestor variables that were 
bound in the child process are paired with their binding 
instances and exported back into the parent process. This 
export operation, together wi th interface instantiation, 
achieves the same goal as the back unification operation in 
EPILOG [Wise, 1986]. They ensure that the binding results 
of a process wi l l not be required later by its parent or sibling 
processes. The face instantiation, on the other hand, serves 
to ensure that the child processes have sufficient binding 
information from their parent so that they need not to 
dereference back to it. 

Figure 1 illustrates the eager instantiation binding scheme 
applied to a clause. Within the clause, process A has two 
goals B and C. After head unification of A, argument X is 
instantiated (face instantiation), and then transferred to goal 
B. When the evaluation of a child process which matches B 

succeeds with X bound to a value v, then the variable-
instance pair X/v is sent back to A to be used for the 
instantiation of Y (shown as an arrow in Figure 1). It should 
be noted that more than one variable-instance pair may be 
produced, if X, introduced from the head, is a structured term 
containing more than one unbound variable. Argument Y 
(which may be bound to a structured term f (X) ) is 
instantiated (to f(v) - interface instantiation) before being 
sent to goal C. Upon the successful evaluation of A, all 
arguments are instantiated according to A's updated BE 
(interface instantiation) and then sent back to A's parent 
process. X and Y in the example merely stand for clause 
arguments - they may be any terms. 

Figure 1 Eager instantiation scheme 

When more than one child process matches goal B the 
mult iple binding instances of X, resulting from the 
unification of these processes with B, w i l l be stored in a 
special data structure, called stream, or v s . The variable-
instance pair w i l l be used for the instantiation of Y, 
which generates a stream of Y's instances. 

From the above discussion, it is observed that ful l AND-
parallelism is not allowed in principle with the scheme. But 
the scheme can effectively exploit Restricted A N D -
parallelism [DeGroot, 1984J, which is parallel processing of 
run-time independent goals. There should be no interface 
instantiation between the independent goals because 
exporting variable-instance pairs from a child process is 
necessary only when the corresponding goal in the parent 
process has run-time data dependencies with one or more 
sibling goals. In other words, the child processes that are 
independent from each other at run-time can be evaluated in 
parallel without exporting their variable-instance pairs to the 
parent process. Therefore, the arrowed line in Figure 1 can 
be omitted in this case. 

The binding scheme is called eager instantiation due to the 
fact that the instantiation operation is eagerly performed by 
the local process. Once a variable has been bound, all 
subsequent occurrences of the variable w i l l be replaced by its 
binding instance. By ensuring this, the scheme introduces 
more overheads on instantiation operations and structure 
copying, but it offers a simpler and more distributed parallel 
implementation by el iminating the need for accessing 
variables in the ancestor process. 

Wi th eager instantiation of procedure arguments, the 
evaluation of a logic program can be best interpreted in 
terms of procedural semantics [Hogger, 1984]. Every 
reduction step in a computation entails invoking some 
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procedure (parent process) and thereby introduces new calls 
to the goals (child processes) in the procedure's body. The 
process of replacing a call by a goal in the body involves 
on ly making the cal l arguments and goal arguments 
correspond. This is very similar to the way in which the 
semantics of procedure calling is defined for conventional 
languages. The only difference is that logic programs make 
two arguments correspond by unifying them, whereas 
conventional languages impose di f ferent (simpler) 
semantics. The unification of a procedure may produce a BE, 
which only effects the calls to the body goals. 

In representing a variable, the concept of a "value cel l" 
[Gabriel et al., 1985] is not used. Instead, a variable-instance 
pair is used to accommodate a variable and its binding, and 
is created dynamically only when the variable is bound. This 
arrangement, though, loses the advantages of a value cell, 
i.e. a variable instance can be directly accessed because its 
address is the variable itself and binding conflicts can be 
checked efficiently, but it brings the following benefits. 

Variables are represented uniquely by variable symbols, 
which are generated at run-time as the evaluation proceeds. It 
is unnecessary to provide memory space for unbound 
variables (whereas in a value cell implementation any 
variable, bound or unbound, occupies a physical space). 
Therefore, there is no synchronisation problem associated 
with simultaneous wr i t ing to (binding) a variable by 
different processes. A variable-instance pair occupies two 
spaces for X /B , which is created only when the variable is 
bound to another term during unification. (In an OR-parallel 
implementation using value cells, a value cell may also need 
two or more spaces). Furthermore, a variable can be 
presented in a number of pairs if it is bound to different 
values as in OR-parallel execution. 

Generally, the BE size of a particular process can be 
minimised by optimisation. This is done by substituting 
variables in the instance parts with their own instances 
found in the same BE, and removing the redundant variable-
instance pairs which are no longer needed. The optimised BE 
may occupy much smaller space than the space of value 
cells required for all variables. Thus BEs may be extensively 
copied between processors on requests in order to exploit 
more distributed processing capability. 

3 A p p l i c a t i o n on a Data f low V i r t u a l 
Machine 

The eager instantiation binding scheme was ini t ia l ly 
designed for a dataflow Prolog execution model, called 
DIALOG [Zhang, 1990]. The DIALOG model is built on a 
virtual machine and based on dataflow computation. 

Dataflow computation allows the operations which have 
received all their input data to be executed in parallel. The 
computational model is typically restated as two-dimentional 
graphs, known as dataflow graphs, which show the data 
dependencies among operations. 

The D IALOG virtual machine consists of a number of 
virtual instructions, of which dataflow graphs representing 
individual Prolog clauses are constructed. The instruction 
nodes in a dataflow graph are connected by arcs along which 
dataflow tokens are transferred. A l l the nodes whose input 
arcs have received tokens can be executed simultaneously. 

Each node, after execution, may put a new token 
representing a result on its output arcs, and thus activate the 
following nodes. 

To see how the eager instantiation binding scheme is 
applied, consider a simple example which shows one 
situation where variable instantiation is required: 

The dataflow graphs for individual clauses are shown in 
Figure 2. A brief description of the function of instruction 
nodes in the graphs follows. More detailed descriptions on 
the instructions and some rules for generating dataflow 
graphs are given in [Zhang, 1990]. 

Figure 2 Dataflow graphs for choose_list program 

The instructions represented in rectangular nodes perform 
procedure calls. A procedure call instruction transfers the 
argument values from the process named in the node to the 
clauses whose clause heads match the process, and thus 
activate the clauses. Meanwhile, the instruction sets the 
returning pointers in the clauses pointing to the descendant 
processes in the parent process. 

Activated by an input term and a BE, an instantiate node 
substitutes all the variables appearing in the term with their 
binding instances recorded in the input BE, and sends the 
instantiated term to its output. An export node merges the 
input variable-instance pairs where the variables were created 
by the ancestor processes, and exports the new BE to the 
parent process. 

A unify instruction node unifies two input terms and 
generates an instance output 1 and an environment output E. 
The I output produces a common instance of the two terms. 
The E output delivers a BE which records bindings of the 
variables appearing in the two terms. 

The execution sequence of the above example is illustrated 
in Figure 3. 

The query implies that the first element of the chosen list 
must be found in element. When the query is executed, X1 
and are applied to the graph of choose J i s t (Figure 
3(a)). According to the D I A L O G virtual machine, head 
unification needs not to be applied to any stand alone 
variables in the head. Therefore, in this example, X1 is sent 
straight to the first chi ld process e lement (Figure 3(b)). 
After unification of e lement, the BE with one variable-
instance pair is produced and exported to the parent 
process c h o o s e j i s t (Figure 3(c)). The second argument 
input is instantiated to before being sent to the 
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second goal list (Figure 3(d)). The chi ld process list, 
activated by the instantiated argument succeeds with 
the first clause and fails with the second (Figure 3(e)). 
Final ly, the instantiated outputs a and [a, b, cf d] are 
returned to the corresponding two arguments of choose_list 
(Figure 3(f)). Since variable X1 and X2 were imported from 
a parent process (the query in this case), their bindings 
and are exported through an export instruction, 
from element and list respectively, back to c h o o s e j i s f s 
parent process. It is clear that the evaluation of the child 
process list need not access the BE of element, nor the BE 
of choose list. 

Figure 3 Snapshots of applying the scheme to choose_list 

4 Implementat ion and Performance 

The DIALOG model has been implemented in Occam2 on a 
transputer system [Zhang, 1988]. 

4.1 Data Representat ion 

Variables are identified by their variable symbols, and created 
when they have been bound. A BE is represented as two 
arrays of integers, one storing variables, the other storing 
binding instances. Two arrays together form a whole array of 
variable-instance pairs. When two unbound variables are 
unified, the variable-instance pair is represented thus: the 
more recently created variable is the binding instance of the 
other. 

Constants are identified by pointers pointing to their 
values, which may be integers or character strings. 

Lists are identified by list pointers pointing to the starting 
addresses of the individual lists represented as: 

Structures are identified by structure pointers pointing to 
the starting addresses of the individual structures, represented 
as: 

Lists and structures are referred to as structured terms. The 
arity of a structured term is the total number of elements in 
the term. The total number of unbound variables is another 
important status of the structured term. It helps by 
eliminating unnecessary searches for variables in a non-
variable structured term, and also plays a key role in the 
implementation of Restricted AND-parallelism. 

4.2 Garbage Col lect ion 

The structure copying policy causes the memory space to be 
consumed rapidly. Therefore, garbage collection is frequently 
needed to reclaim memory space occupied by structured 
terms no longer used. 

The simple reference count garbage collection scheme is 
found to be sufficient to solve the problem. Each structured 
term in the structure store has an extra tag indicating its 
reference count. When a structured term is first created, its 
reference count tag is assigned to be one. When the reference 
to the term needs to be copied (e.g. when a goal including 
the term is unified with a number of applicable clauses), the 
tag is incremented by one for each copy. Conversely, 
whenever a reference to it is discarded, the reference count 
decrements by one. For example, when the term is updated 
by instantiating variables in it using the existing binding 
information, the updated term occupies a new space, and 
thus identifies itself as a different term. In this case, the 
reference to the old term can be discarded and replaced by a 
new reference. Once the reference count of a structured term 
reaches zero, the memory space for that term can be 
reclaimed as the term is no longer used. 

4.3 An Abst ract Machine Arch i tec tu re 

In order to study the feasibility and run-time characteristics 
of the scheme, an abstract dataflow architecture has been 
simulated. It should be noted, however, that the binding 
scheme is equally suited to the implementation on many 
other kinds of architectures. The dataflow architecture is 
constructed as a r ing connected by the fol lowing main 
components (Figure 4): an instruction store where compiled 
virtual instructions are stored; a packet queue based on a 
FIFO for buffering packet f low; a number of homogeneous 
processing elements (PEs); a structure store for storing 
structured terms; and a distribution network for delivering 
result packets to the instruction store. 
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Figure 4 An abstract dataflow architecture 

In this dataflow architecture, the information elements, 
called packets, are flowing simultaneously in different parts 
of the ring on behalf of different instructions for concurrent 
execution. Hence the ring operates as a pipeline with all of 
its components actively processing or creating packets 
simultaneously. 

When an instruction fails in its execution, the responsible 
PE immediately sends a " fa i l " signal to the instruction store 
so that no more instructions belonging to the same graph 
are allowed for execution. Only when the graph is activated 
again may the "fai l " signal be disabled. 

4.4 Performance 

Six programs have been tested to evaluate the effect of the 
binding scheme. They have been hand-compiled into 
dataflow graphs to be stored in the instruction store. The 
programs are 

1) Determinate list concatenation for a list of 8 elements 
(append 1); 

2) Non-determinate list concatenation of a list of 8 
elements with all results (append2); 

3) Quicksorting program of a list of 30 elements in a 
reversed order (qsort); 

4) Naive reverse of a list of 30 elements (na_rev); 
5) List checking of a list of 4 elements as a subset of a 

list of 8 elements (sublist); 
6) Line presentation program for a cube (cube). 
Their evaluation reflects different characteristics: non-

determinism in "append2" and "sublist"; recursion in 
"appendl", "append2", "qsort" and "na_rev"; graph copying 
in "sublist"; and stream processing in "cube". However, the 
programs do not cover the whole range of benchmarking, 
though they have closely met the requirements of this phase 
of evaluation. 

The fol lowing is a description of the performance of the 
scheme, measured in terms of BEs and structured data. In 
Table 1, the maximum lengths (number of variable-instance 
pairs) of BEs (EnvLen_Max) are less than three and the 
average BE lengths ( E n v L e n _ A v e , averaged over all 
accessing instants by PEs) are less than two. This results 
from eager variable instantiation and the subsequent BE 
optimisation that merges variable-instance pairs in place. 

Table 1 Measurements of BE operations 

A BE stays in a PE after its processing. When another PE 
needs to access the same BE next time, it wi l l f ind, from the 
instruction store, the host PE where the BE resides, and 
then copy it across. Meanwhile, the PE sends its own 
identifier to the instruction store, thus associating itself with 
the copied BE. After being processed, the BE wi l l stay in the 
second PE until it is required again. This lazy copying 
policy works on a probability basis because there is a 
probability that the BE is required by the same PE for two 
or more successive updating operations, in which case 
copying is unnecessary. When only one PE is used in the 
system, the total number of BEs copied by PEs 
(EnvCpy_Tot) is zero, so is the copying percentage [%]. 
The program "cube" involves no BE operations, and thus no 
copying is needed. The copying becomes dominant (mostly 
over 90%, except "sublist" 81%) when more (than 4) PEs 
are involved. Since the average BE sizes are almost 
minimum, the copying overhead is reasonably affordable. 

The eager instantiation binding scheme requires extensive 
copying of structured terms, which is a major shortcoming 
of the scheme. Table 2 summarises the measurements on 
structured terms. The first row is the average number of 
structure elements involved in each program (StrLen_Ave), 
averaged over all accessing instants by PEs. The second row 
is the total number of accesses to the structured terms 
(S t rAcc_Tot ) . It is found that the number of copying 
operations (StrCpy_Tot) is proportional to the number of 
structure elements being processed (EleCpy_Tot(1)), and to 
the number of logic inferences in the programs. On average, 
there is 1.3 copying operation per logic inference. Based on 
the evaluation results of the overall execution speed of the 
programs [Zhang, 1990], the copying policy does not 
impose intolerable overhead ("na_rev" program, which 
copies 17.6 structured terms per logic inference on average, 
performs even better than others). The copying problem 
may, however, become more serious when longer structured 
terms are involved. 

Table 2 Measurements of structured terms 
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One way to reduce the amount of copying is to allow 
some elements to be shared among different structured terms. 
Knowing that operations on structured terms in logic 
programs are overwhelmingly performed on list heads and 
tails, an intuitive idea is to separate heads and tails from 
other parts of lists. Therefore, when a new list is created 
whose head or tail has been modified from an old one, it 
may share the remaining part of the old list. This is 
illustrated in Figure 5. 

The situation in Figure 5 happens when the list tail of list 
A is bound to a new list, whose elements correspond to 
e l e m e n t N , e l e m e n t _ N + 1 , ..., e l e m e n t _ M - 1 , 
element_tailB. This is one of the most common situations 
in list processing. As Figure 5 suggests, the elements in list 
A, element_2, element_3, ..., element_N-1 need not be 
copied. The newly constructed list B has its own version of 
arity, number of variables, first element, last element and 
tail element. It has the same pointer as in list A pointing to 
the remaining elements of the list. The list arities (i.e. N and 
M) here tell the different belongings of the two lists. The 
amounts of copying of structure elements when the 
improved l ist representation is used appears in 
EleCpy_Tot(2), which is only about half (44 - 57%) of the 
amounts of copying using the non-shared representation 
(EleCpy_Tot(1)). Compared with the non-shared one, the 
shared representation introduces little extra overhead, that is 
incurred from tracing and copying a pointer. 

5 Conclusion 

A binding scheme called eager instantiation has been 
presented, which allows a variable to be bound and accessed 
locally in an individual binding environment so that no 
centralised auxiliary structure is required. Therefore, OR-
parallelism can be exploited effectively within a distributed 
processing environment. It is also easy to be extended for 
support of Restricted AND- parallelism. The application of 
the scheme on a dataflow virtual machine has also been 
described. The scheme has low implementational complexity 
and high distributability. 

The D IALOG execution model utilising the scheme has 
been evaluated and reported elsewhere [Zhang, 1990]. The 
performance obtained is encouraging on a simulated dataflow 
architecture with up to eight processors. It should be said, 
however, that the binding scheme is not architecture specific 
and is suitable for many other kinds of architectures. More 
complex programs that provide larger search spaces need to 
be tested to gain broader assessment of the scheme. 
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