LOGIC PROGRAMMING IN ARTIFICIAL INTELLIGENCE

Robert A. | owalski
Department of Computing

Imperial College of Science, Technology and Medicine
London SW7 2BZ, WK

. iIMTRODtrcr™ ? B* and .-. and B

Logic programming originated in the field of to a logic program can be arbitrary formulae of

artificial intelligence?* It was artificial first-order '09'_C- Such queries can be reduced

intelligence that provided both the theorem- to a normal logic program together with a nomad
query, in which all conditions are atomic

proving research for its backward-reasoning
execution strategy [42,47,68] and its first
intended applications in natural language
question-answering [14]- It also provided the
controversy (see e.g« [32,81]). Dbetween the
relative merita of procedural versus declarative

formulae or negations of atomic formulae.
The basis of logic programming is the
interpretation of rules as procedures:

reduce problems of the form A

representations of knowledge/ which helped to to subproblems of the form B™ ... , Bn.
motivate the procedural interpretation of Horn
clauses, which is the basis of logic programming, The significance of this procedural
even today. interpretation is two-fold: Not only can
In this short paper | will sketch some of the declarative sentences be executed as procedures/
subsequent developments in logic programming, but procedures in problem-reduction form can be
concentrating especially on extensions which have interpreted declaratively as statements of logic-
been developed to make logic programming more In this way logic programming reconciles
suitable for knowledge representation in declarative and procedural representations of
artificial intelligence, 1 will focus knowledge.
particularly on developments in non-monotonic Today many artificial intelligence
reasoning, abduction, and metareasoning. | will applications are explicitly represented in logic
also argue that the unrestricted use of full programming form, and many of these are
first-order logic might not be necessary or implemented in a logic programming language such
useful for most applications. as Prolog. However, many other applications are
represented de facto as logic programs, without
2. THE SCOPE OP LOftTP PROGRAMMING FOPM explicit acknowledgement of the fact. The
situation calculus and its application to the
Logic programming was originally restricted to Yale shooting problem [311 are among the most
sentences (also called rules) in Homn clause interesting examples. The case of the Yale
form: shooting problem is especially interesting,
because as pointed out in [2,24,25] the use of
AifBrAand .-. and B, negation by failure in logic programming solves
the problem of non-monotonic reasoning which
arises in the example. The procedural

with a single atomic conclusion A and zero or _ _ _ ,
interpretation and operational semantics of

more atomic conditions BA”, All variables/ _ _ _ _ _
_ _ _ negation by failure are discussed in section 4
X}, ,,. , x™, occurring in a rule are universally below
uantified in front of the rule: L Cee : :
a In addition to these artificial intelligence

applications explicitly or implicitly formulated

forall X - - A if Bj and ,,. and B, _
b e .] as logic programs, there are many others
Today th« notion of logic programming also |mplem§nted 'n _'f'then Ia.nguages [82], which
approximate Ilogic programming form* Most of

includes rules whose conditions are arbitrary
formulae of first-order logic. Lloyd and Topor
[61/52] showed bhow to reduce such more general
rules to normal logic programming form, where
each condition is either an atomic formula or the
negation of an atomic formula. Similarly the
conditions B: in queries

these languages, many of which are in the EMYCItf
family [79], have only the expressive power of
variable-free (i.e. propositional) logic programs
augrt\ented with some forxcv of "isa-hierarchy" for
taxonomic reasoning, compensating for the
propositional nature of the rules.

9596 Award and Invited Papers

Other applications of logic, not restricted to
those exclusively associated with artificial
intelligence, such as those to do with the formal
specification of programs, the implementation of
database systems, and the formalisation of
legislation, show a similar bias towards the use
of logic programming form. Appiicationa to
legislation ([44,45,49%,70) have apacial
significance for knowledge representation in
artificial intelligence, because the law deals
with every aspect of human affairs. They also
have special significance for logic programming,
because they provide a rich source of material
for guiding the development of its extensions.
It is interesting that the extensions needed for
legislation do not seem to include disjunctions
in the conclusions of rules or complex forms of
quantification.

3. —AND-ONLY-

it seems that many applications of 1logic in
artificial intelligence which c¢an not be reduced
to normal logic programming form can be
understood instead as expressing the only-if
halves of if-and-only-if definitions.

Normal logic programs, on the other hand, can
be understood as expressing the if-halves of
definitions. The program

parent (X, ¥Y) if mother(X, Y)
parent (X, Y) if father (X, Y)
mother (mary, jack)
mother (mary, jill}
father (john, jack)
father{john, jill)

tor example, is the if-half of the if-and-only-if
definitions

parent {X,Y) 1ff [mother(X,Y) or father(X,Y)]

mother (X,Y) iff [(X=mary and Y+jack) or
(Xemary and Y=jill}]

father(X,Y) iff [(X=john and ¥Y=jack}) or
(X=john and ¥=jill)]

augmented with appropriate axioms of equality and
inequality, such as

X=X
s # t, for every pair of distinct terms s,t.

It can be argued [43] that the if-and-only-if
form expresses the semantics intended by the if-
form.

It seems to be the case that reasoning with
the {if-halves of definitions can simulate
reasconing with the only-if halves and vice-varsa.
Consider, for example, the assertion

parent (x, jack)

where x is a constant. Reasoning forward using
the only-if half of the definitions we can derive
first

mothear (x, jack) or father(x, jack)

then
{x = mary and jack = jack) or
(x = mary and jack = 3jill) or
{x = john and jack = jack} or
{x = john and jack = iill}.

Simplifying this disjunction, we obtain the final
conclusion:

X = mary or X = Jjohn,
This conclusion is dual {(see e.g. [l6]}) to the

one wWe obtain by reasoning backward, logic
programming style, and deriving all answers to

the query

? parent (X, Jjack}

where X is a variable:
? parent (X, jack)
7 mother{X, jack) ?7 father (X, dack)
? X = mary and ? X = john

Thus backward reasoning using the if-halves cof
the definitions simulates forward reasoning with
the only-if halves. Moreover implicit reascning
with egquality by means of unification simulates
explicit reasoning with equality and inequality
ayioms.

The asimulation of only-if halves of
definitions by if-halves is alsc the basis for
Clark's result [9] that negation by failure is a
correct implementation of classical negation.

4. NON-MONOTONIC REASONING IN LOGIC PROGRAMMING

The execution of negative conditions in logic
programs is performed by negation by failure:

not P holds if and only if
P fails to held.

Clark {9] showed that finite failure ¢to
demonstrate P using the if-halves of definitions
simulates proof of not P using the only-if
halves. Reiter [6b] showad that the if-and-only-
if form (also called the completion or Clark-
completion) of a logic program is "sometimea”
equivalent to McCarthy's circumscription [54}.

Cespite the attractiona of the completion as a
semantics for negation by failure, it has a
number of limitations, which have been addressed
by subsequent investigatocrs. Kunen ([50] and
Fitting [27] for example have proposed three-
valued logic for the semantics of the completion.
Apt, Blair and Walker [2], Przymuszynski [63,64]
and van Gelder [(76,77]) have proposed extensions
of the leaat fix point and minimal model
semantics originally developed for Horn clauses
by van Emden and Kowalski {75].

Kowalski 597

More recently Gelfond ([28) showed that
negation by failure in logic programming can be

interpreted in Moore's autoepistemic logic [58].
A rule of the form

A if By and ... B, not C1 and ..

. not Cq
where B; and C{ are atomic formulae, can be
interpreted as a sentence

A if By and ... B, and not LC, and ...

not LG,

where LC; means C; is believed, and therefore
not LC; means C; is not believed. Gelfond and

Lifschitz subsequently showed how tc adapt the
semantics of autoepistemic 1logic to obtain a
Airect stable model semantjcs [29) for normal
logic programs.

Marek and Truszczynski [55] showed how
negation by failure can be interpreted in
Reiter'a default legic [65]. A rule of the form
given above 1s interpreted as a default rule

Bl, ..., Bn: X not Cl, ..., M not Cm

A

Eshghi and Kowalski [24) have shown that
nagation by fallure can be interpreted as a caae
of abduction:

not C]_; r DOL Cﬂ'l

are hypotheses which are assumed to hold,
provided there is nc evidence to the contrary.
The abductive Iinterpretaticn of negatien by
failure has been developed further by Kakas and
Mancarella [37] and Dung [22].

5. ABDUCTION

Abductisn has many applications in artificial
intelligence, including fault diagnosis (B,62],
image recognition [19], plan formation [23], plan
racognition [8), temporal reasening (71), and
natural language understanding {8,74]. 1t can
also be used for knowledge assimilation [38,39)
and default reasoning [24,61].

Various strategies have been developed for
generating abductive hypotheses. Most of these
are basad on resoclutieon [19,2¢). The ATMS
approach develcoped by Reitear and deKleer [67] for
propositional Horn clauses alsc uses a form of
resolution, together with subsumption, called
consensus. The use of subsumption guarantees
that the hypotheses which are generated are
minimal.

Similar strategies have also been developed
for generating conditional answers within a logic
programming *“query-the-user®™ framework ([69].
Instead of failing in a procf when a condition
selectad for execution fails toc unify with the
conclusion of any rule or can not be answered by
the user, the condition is set aside as a
hypothesia for the answer. Thus, for example,
given the program

598 Award and invited Papers

wobbly-wheel if broken-spokes
wobbly-wheel if flat-tyre
flat-tyre if punctured-tube
flat-tyre if leaky-valve

and the observed conclusion
wobbly-wheel
reducesa the

backward reasoning eventually
conclusion to the hypotheseas

broken-spokes
punctured-tube
leaky-valve

each of which is an alternatjive explanation of
the observation.

In the general case such hypotheses have to be
tested for compatibility with integrity
conatrainta. In most applications the use of
backward reasoning makea it unnecessary to test
hypothesea for minimality.

Conacle, Theseidre Dupré and Torasso [13] have
noted that abductive reasoning using the tf-
halves of if-and-only-if definitions can be
replaced by deduction using the only-if halves.
For example, using the only-if halves of the
completion

wobbly-wheel iff [broken-spokes or flat-tyre]
flat-tyre iff {punctured-tube or leaky-valve].

forward reascning from the obaservation
wobbly-wheel
generates the disjunction

broken-apokes or punctured-tube or leaky-valve.

Thus we see ancther example of a
correspondence between 1f-halves and only-if
halves of the ijif-and-only-if form of logic
programs. Such axamples give added support to
the thesis that logic programming appropriately
extended might provide a general basis for
knowledge representation and reasoning in
artificial intelligence.

6. “REAL" NEGATION

Recently, extensions of logic programming have
been developed in which the conclusions of rules
can be negaticng of atomic formulae. Gelfond and
Lifschitz [29] in particular have shown how to
extend the stable model semantics to allow logic
programs to contaln both "real™ negation, "-", as
well as negation by failure, "not”. Kowalski and
Sadri [48] have adapted their semantics so that
rules with negative conclusions are interpreted
A3 exceptions to rules with positive conclusionas.
Applied to the well-known example

fly(X) if bird(x)
—fly(X) if ostrich(X)

bird(X) if ostrich(X)

ostrich{tom)

the semantics gives the result The metapredicate can be implemented Dby
reflection rules as in Weyhrauch's FOL (B80] or

— £1y (tom) Costantini and Lanzaroni's [18] Reflective
Prolog. It can, and more usually is, implemented
bitt not the reaylt by means of a metainterpreter, as in the

following case where the extra argument
represents a time point:

flyitom) .
Equivalent results can also be obtained by demo (X, ¥, T) if demo(X, Y & 2, T)
combining both forms of negation: and demo (X, &, T)
demo(X, Y A 2, T) if demo(X, Y, T)
ly(X) Lif bird(X) and not = fly(X) and demo(X, Z, T}
- fly(X) if ostrich(X) demc {example, mortal(X) & human (X), T)
bird{X) if ostrichiX) demo (example, human(socrates), T)
ostrich(tom}. if 380 b.c. & 7T
demo {(example, human(turing), T)
Under this adaptation of the atable model if 1912 a.d. € T
semantics, both formulations are essentially
equivalent to a conventional formulation in Here "¢ " and "A" are infix function symbols
ncrmal logic programming form naming "if™ and "and". The conatant symbol
"axample” names an object level theory.
fly (X} 4if bird(X) and not ab(X) The computational overheads o¢f running the
ab(X) if ostrich(X) metainterpreter can be alleviated by "top-down"
bird(X) if ostrich(X) partial evaluation [74a] or "bottom—up” data-
ostrich (tom) driven, transformation (17]. In the example

above, the five rules can be replaced by three:
where the negative predicate — fly(X) is renamed

as a positive predicate ab(X). demo (example, mortal (X), T)

if demo(example, human{X), T)

Thus under this semantics, programs combining demo (example, human (socrates), T)
r 4

real negation and negation by failure can be

transformed back into normal logic programs with if 380 b.c. £ T
only negation by failure. Nonetheless, empirical demo (example, buman(turing}; T)
studies of the language of legislation 1[44] if 1912 a.d. £ T
suggest that the extension of logic programming
to include negation in the concluaion of rules is These rules can be simplified further. I1f we
easential for naturalness of axpraasian in rename predicateas, rﬂplﬂ-ciﬂg
practice.
demo (example, mortal(X),T) by meortal*({X,T)
7. METALOGIC. PROGRAMMING demo (example, human{X),T} by human*(X,T)
Metaprogramming, in which programs, databases, we cbtain the essentially egquivaient object level
and "theories” in general are manipulated as tules:
data, 1is an important technigque in 1legic
programming methodelogy ([5,43,73]. It is used mortal*(X, T) 1f human*{(X, T)
for such applications as program transformation human*{scc?ates, T} if 380 b.c. 5T
and verificatien, knowledge base management, and human*{turing, T) ir 1912 a.d. £ T
the implementation of expert system shells. It
is commonly used to overcome the limitations of ~ Metalogic programming can also be used to
Prolog’'s simple execution astrategy and to implement more powerful object level reasoning,
implement more sophisticated execution methods. for example by means of such metarules as
Metalogic programming ls usually carried out
with the ald of a one-argument predicate demo (X, Y} if demo(X, Y v Z)

and demo{X, - Z}
solve (X), which holds when the goal X

can be solved, where "v" and "-" are function symbols naming
disjunction and negation respectively. Such use
or with a two-argument predicate of a restricted metalanguage to implement and
reason about a more powerful object langquage is
demo (X, Y), which holds when the goal Y reminiscent of Hilbert's program to use a
can be solved (or demonstrated) finitary metatheory to justify non-constructive

using the program, database, mathematics (see e.g. [40]}).

or theory X.

The proof predicate
It is common to augment the metapredicate with

extra arguments representing such entities as demo (X, Y)
proof, uncertainty, or time.

¢tan also be used to represent belief:

X believes Y.

Kowalski 599

Such an interpretation of belief as provability
in artificial intelligence has been advocated in
different ways by Konolige [41] and Perils [603 -
The wuse of the demo predicate within a Jlogic
programming framework to represent multi-agent
knowledge and belief has been studied by Kowalski
and Kim [4606]-

The use of metalogic is essential also when
logic programming IS used to represent
legislation. It is needed, for example, to
represent situations where one statute refers to
another, or where one provision refers to another
provision of the same statute. It is needed also
[45] to represent explicitly the executive
agency's reasoning process.

Metalogic gives much of the power of higher
order logic. Conversely, highereorder logic, as
incorporated in Miller's XAProlog [56] for
example, can also be used forroetaprogramming.

8- TERMINQLOGTPAL REACHING

Beginning with the language KLONE [6], there has
been much interest in recent years in Jlanguages

and logics specifically designed for
"terminological reasoning". In these logics,
terms denote sets, and logical operators such as
conjunction, disjunction, negation and
quantification, which can be applied to terms,
denote operations on sets- The important logical

properties of such structured terms are whether
a term is satisfi&ble (denotes a non-empty set)
and whether one term subsumes another (denotes a
set which includes the set denoted by the other}.

Ait Kasi and Nasr [1] have shown how to extend
logic programming to include structured terms -
Such extensions combine the advantages of logic
programming with those of terminological

reasoning. More recently, Biirkert [7] and
Hohfeld and Smolka [33] have shown that such a
combination of logic programming and

terminological reasoning can be obtained by
incorporating equations over structured terms as
constraints within a constraint logic programming
framework,

9, CONSTRAINT hOGTC PROGRAMMING

In constraint logic programming, the conditions
of rules are partitioned into two Kkinds ¢ One
kind is executed normally by backward reasoning.
The other kind is treated in a domain-specific
manner as a constraint. Constraints are
simplified and tested for satisfiability wusing
algorithms specific to the given problem domain.

The first language incorporating an early
notion of <constraint logic programming was
Colmerauer's Prolog Il [13], since extended to

Prolog 111 [121 ¢ The wunderlying theory was
developed by Jaffar, Lassez, and Maher [36] *
Some of the most successful applications have
been implemented using CHIP [21], the language

developed at ECRC.

Constraint logic programming has proved to be
a fruitful paradigm for integrating logic
programming with special-purpose problem-solving
mechanisms for mathematical programming,
functional programming, and finite domains. | t
may be that many of the special-purpose problem

600 Award and Invited Papers

solving methods developed in artificial
intelligence can usefully be integrated with
logic programming in this way”

10. FpftMft* METHODS

Logic has traditionally been used to formalise
program specifications for program verification
and synthesis. For such purposes, logic
programming has the advantage over other
programming approaches that programs and
specifications are written in the same logical
formalism- Moreover program execution,
verification, and synthesis can all be performed

using similar Jlogical reasoning techniques.
These characteristics of logic programming have
motivated many investigations (e.g.
[10,11,34,35]) into the problem of deriving

from more obviously
logical specifications.

efficient Jlogic programs
correct, but inefficient,

These studies are important for artificial
intelligence, because they show how rigorous,
formal methods can be applied to artificial

intelligence applications.

1U LEfcRMIHG

it is not always possible or <convenient to
rigorously formulate a program specification,
either before or after writing a program. In
many such cases, however/ it is natural to
specify the intended program informally by means
of examples” The simple form of logic programs
makes them especially amenable to such Ilearning
methods,

Ehud Shapiro's early work [72] was
specifically oriented toward Ilearning logic
programs® Many other learning methods generate
logic programs implicitly without explicitly
acknowledging that fact. It has been shown, for
example, that explanation-based learning can be
viewed as partial evaluation of logic programs

Recent work (see e.g. Muggleton [59] and De
Raedt [20]) has begun to show that non trivial
logic programs can be generated automatically
from examples + Techniques which treat negative
examples as exceptions to rules that generalise
positive examples [41 seem to be especially
appropriate for formulation as logic programs
combining real negation with negation by failure.

12, CONCLUSION

| have argued that, to be more useful for
knowledge representation and reasoning in
artificial intelligence, normal logic programming

needs to be extended to include such additional
features as real negation, abduction,
metareasoning, terminological reasoning and
constraint solving. Other extensions such as
temporal reasoning and uncertainty can Dbe
implemented conveniently by metalogic programming
techniques. Disjunctive logic programming, in
which conclusions of rules can be disjunctions,
has also been developed, notably by Loveland [53]
and Minker [57] and their colleagues,
Characteristic applications for these systems
remain to be identified.

The field of logic programming enjoys a [11] Clark, K.L. and Tarnlund, S.-A. [1977]; "A

healthy interaction between its theory and its first- order theory of data and programs"

practice. It also enjoys good connections with In Proc IFIP 1977. Amsterdam: North-Holland
diverse areas of computing including database op. 939-944. |
systems, formal methods and artificial
intelligence, as well as with areas outside of [12] Colmerauer, A. [1990]: "An introduction to
computing including mathematics and legal PROLOG 111", Comm. ACM, pp. 70-90.
reasoning. In my opinion, however, it is the
links which logic programming retains with [13] Colmerauer, A., Kanoui, H. and Caneghem,
artificial intelligence and the emerging links M.V. [1983]: "Prolog, theoretical principles
with legal reasoning which will be most important and current trends", Technology and Science
for the development of logic programming in the of Informatics, Vol. 2, No. 4, pp. 255-292.
future.
[14] Colmerauer, A., Kanoui, H., Pasero, R. and
Roussel, P. [1973] "un systeme de
communication homme-machine en Francais",
ACKKNOWLEDGEMENTA Groupe d'Intelligence Artificielle, Univ.
d'Aix Marseille |I, Luminy, France.

This research was supported by ESPRIT Basic

Research Project "Compulog" and by Fujitsu. | am [15] Console, L-, Theseider Dupre, D. and

grateful to Phan Minh Dung and.Tony Kakas for :’c())rrasgct)),jelz;[_l[;\?gl()].abdAl\JCct(i)(r)nnpulfatlogrossmar;\tpl\;sl
helpful comments on a draft of this paper- Symposium on Automated Abduction, Stanford,
March 1990.
REFERENCES
[16] Copi, |.M. [1954]: "Symbolic Logic", The
[1] Ait Kaci, H. and Nasr, R. [1966]: LOGIN: "A MacMillan Company, New York.
logic programming language with built-in
inheritance", Journal of Logic Programming, [17] Cosmodopoulos,Y., Sergot, M., and Southwick,
Vol. 3, pp. 185-215. R.W. [1991]: "A general data-driven
transformation of meta-interpreters”,
[2] Apt, K.R. and Bezem, M. [1990]: "Acyclic Department of Computing, Imperial College,
programs", Proc. of the Seventh London.
International Conference on Logic
Programming, MIT Press, pp. 579-597. [18] Costantini, S, and Lanzarone, G. A. [1989]:
"A metalogic programming language", Proc.
[3] Apt, K., Blair, H. and Walker, A. [1987]: Sixth International Conference on Logic
"Towards a theory of declarative knowledge™'. Programming, MIT press, pp,218-233.
I n J. Minker, editor, Foundations
of Deductive Databases and Logic [19] Cox, P.T. and Pietrzykowski, T. [1986]:
Programming, Morgan Kaufmann, Los Altos, "Causes for Events; Their Computation and
C-A. pp. 89-142. Applications", in Proceedings CADE-86, pp
608-621.
[4] Bain, M. and Muggleton, S. [1990]: "Non-
monotonic Learning” Machine Intelligence 12, [20] De Raedt, L. 11991} : Interactive concept-
Oxford University Press. learning. PhD thesis, Department of Computer

Science, Katholieke Universiteit Leuven,
[5} Bowen, K.A. and Kowalski, R.A. [1982]:

"Amalgamating Language and Metalanguage in

Logic Programming**, in Logic Programming [21] Dincbas, M., van Hentenryck, P., Simonis,
(Clark, K.L. and Tarnlund, S.-A., editors), H., Aggoun, A., Graf, T. and Berthier. F.
Academic Press, pp. 153-173. [1988] "The constraint logic
programming language CHIP", In Proceedings

(6] Brachmann, R.J. and Levesque, H.J. [1984]: of the International Conference on Fifth

"The tractability of subsumption in frame Generation Computer Systems FGCS-88, pp.

based description languages*®, Proceedings of 093-702.
the Fourth National Conference of the AAAI, [22] Dung, P.M. [1991] "Negations as hypotheses:
pp. 34-37. an abductive foundation for logic
programming”, Proc. ICLP-91, MIT Press.
[7] Burckert, JH.J.[1990]: "A resolution
principle for clauses with <constraints",
Proc. 10th CADE, LNAIl 449, pp. 178-192. [23] Eshghi, K. [1988]; "Abductive planning with
event calculus", Proceedings of the 5th
[8] Charniak, E. and McDermott, D. [1985]: International ~ Conference on lLogic
"Introduction to Artificial Intelligence", Programming, MIT press.

Addi -Wesley, : :
Ison-Wesley [24] Eshghi, K. and Kowalski, R.A. (1989]:

[9] Clark, K.L. [1978]: "Negation by failure", "Abduction compared with negation by
in "Logic and databases", Gallaire, H. and 1I‘allure_, Ipri_oce_edlgngs OT t(?ef Sixth
Minker, J. [eds], Plenum Press, pp. 293-322. nternational Logic Programming Conference,

MIT Press, pp. 234-255.

[10] Clark, K.L. and Darlington, J. [1980]:
"Algorithm classification through
synthesis", Computer J. pp. 61-65.

Kowalski 601

[23]

126]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

602

Evans, C [1989]: "Negation-as-failure as

an approach to the Hanks and McDermott
problem"/ Proc. Second International
Symposium on Artificial Intelligence,
Monterrey, Mexico.

Finger, J-J. and Geneaereth, M.R, (19851:
"RESIDUE: A Deductive Approach to Design
Synthesis", Stanford University Report No.
CS-85-1035.

Fitting, M. [1985]; "A Kripke-Kleene

semantics for logic programs". Journal of

Logic Programming, Vol- 2- No. 4. pp 295-
312.

Gelfond, M, [1987]: "On stratified
autoepistemic theories”, In Proceedings

AAAI-87, American Association for Artificial

Intelligence, Morgan Kaufmann, Los Altos,
CA, pp. 207-211.
Gelfond, M. and Lifachitz, V. (1908]: "The

stable model semantics for logic programs”,

Proceedings of the Fifth International
Conference and Symposium on Logic
Programming, Mil press pp. 1070-1080.
Gelfond, M. and Lifschitz, V, [1990]: "Logic
programs vith classical negation”,
Proceedings of the Seventh International
Conference on Logic Programming, MIT Press,
pp. 579-597.

Hanks, S. and McDermott, D. [1986]:
"Default reasoning, non-monotonic logics,
and the frame problem", Proc. AAAI, Morgan

and Kaufman, pp, 328-333.

Hewitt, C [1969]:
proving theorems in
of IJCAI-1 (Washington,

"PLANNER; A language for
robots™, In Proceedings
D,C), pp. 295-301.

Hofeld, M. and Smolka, G. [1988]: "Definite
relations over constraint languages”, LILOG
Report 53, IWBS, IBM Deutschland, Stuttgart,
Germany. To appear in the Journal of Logic
Programming.

Hogger, C.J. [1981]: "Derivation of logic
programs", J. Ass. Comput. Mach. Vol. 28,
pp. 372-322.

Hogger, C.J. (1984]: Introduction to Logic
Programming, Academic Press, London.

Jaffar, J., Lassez, J. and Maher, M, [1987]:

"Constraint Logic Programming"” in Proc. of

14th ACM Symp. POPL.

Kakaa, A.C.
"Generalised stable models:

and Mancarella, P. [1990],
a semantics for

abduction”, Proceedings of ECAI 90, pp.
385-391.

Kakas, A.C. and Mancarella, P. [1990J,
"Database updates through abduction”,
Proceedings of VLDB 90.

Kakaa, A-C. and Mancarella, P. [1990]:
"Knowledge Assimilation and Abduction”,

the ECAI-1990 Workshop on
Springer-Verlag,

Proceedings of
Truth Maintenance Systems,
1990.

Award and Invited Papers

[40]

[41]

[42]

[43]

[44]

[45]

{46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

(93]

Kleene, S.C. [1952]; "Introduction to
Metamathematics”, D. van Nostrand Co.,
Princeton.

Konolige, K. 11986} "A Deduction Model of
Belief", Pitman Research Notes in Artificial
Intelligence.

Kowalski, R.A. {1974]: "Predicate logic as
programming language", In Proceedings of
IFIP 1974 (Stockholm, Sweden). North-
Holland, Amsterdam, pp. 569-574).

Kowalski, R.A. [1979]: Logic for problem

solving. New York: Elsevier

"The treatment of
representing
the Second
Artificial

R.A. [1989]:
logic programs for
Proceedings of

Conference on
11-15.

Kowalski,

negation in
legislation”,
International
Intelligence and Law, pp.

Kowalski, R.A. [1991]. "Legislation as logic
programs"”, Department of Computing, Imperial
College, London.

Kowalski, R.A. and Kim, J.S. 11991}; "A
metalogic programming approach to multi-

agent knowledge and belief", to appear in
Artificial Intelligence and Mathematical
Theory of Computation (V. Lifschitz, ed.)
Academic Press-

Kowalski, R.A. and Kuehner, D. [1971]

"Linear resolution with selection function".
Artif, Intell. Vol. 2, pp. 227-260.

Kowalski, R.A. and Sadri, F.
programs with exceptions”, Proceedings of
the Seventh International Conference on
Logic Programming, MIT Press, pp. 598-613.

[1990}: "Logic

Kowalski, R A., Sergot, M.J. [1990]: "The
use of logical models in Ilegal problem
solving"”, Ratio Juris, Vol. 3, No. 2, pp.
201-218.

Kunen, K. [1987]: "Negation in logic
programming"”. Journal of Logic Programing,

Vol. 4, No. 4, pp. 289-308.

Lloyd, J.W. and Topor, RW. [1984]:
"Making Prolog more expressive"”, Journal of
Logic Programming, Vol. 3, No. 1, pp. 225-
240.

Lloyd J.W. [1987]t "Foundations of logic
programming”, second extended edition,

Springer-Verlag.

Loveland, DW. [1987]: "Near-Horn Prolog”
Logic Programmingt Proceedings of the Fourth
International Conference, MIT Press, pp 456-
469.

McCarthy, J, [1980]: "Circumscription - a
form of nonmonotonic reasoning®, Artificial
Intelligence, Vol. 26, No. 3, pp. 89-116.

Marek, W. and Trusiczynski, M. [1989]:
"Stable semantics for logic programs and
default theories", Proc. NACLP-89, MIT
Press.

[56]

157]

[58]

[59]

[60]

[61]

162]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Miller, D. and Nadathur, G. [1966]: "Higher-
order logic programming", Proceedings of the
Third International Conference on Logic

Programming,. Springer-Verlag, pp. 448-462.

Minker, J. [1989].: "Toward a foundation of
disjunctive logic programming” Logic
Programming: Proceedings of the North
American Conference, MIT Press, pp. 1215-
1235.

Moore, R.C. 11985]: "Semantical
considerations on nonmonotonic logic in
artificial intelligence", Artificial
Intelligence, Vol, 25, pp. 75-94.
Muggleton, S. [1991]: "Inductive logic

programming”, New Generation Computing, Vol.

B, pp. 295-318.

Perils, D. [1988]: "Language with Self-
Reference | 1I: Knowledge, Belief and
Modality", Artificial Intelligence Vol, 34,
pp. 179-212.

Poole, D. [19B8]: "A logical framework for
default reasoning”, Artificial Intelligence
Vol, 36, pp. 27-47,

Pople, H.E., Jr. [1973]: "On the
mechanization of abductive logic" Proc.
Third IJCAI, Stanford, Ca. pp 147-152.
PrzymuszynskKki, T. [1987]: "On the
declarative semantics of stratified
deductive databases and logic programs”, in

J. Minker,
Databases
Kaufmann, Los Altos,

editor, Foundations of Deductive
and Logic Programming, Morgan
CA., pp 193-216

"Non-monotonic
programming”,

[1989]:
logic

Przyntuszyrrski, T.
formalisms and

Proceedings of the Sixth International Logic
Progamming Conference, MIT Press, pp. 655-
674 .

Reiter, R. [1980] ; "A logic for default
reasoning”, Artificial Intelligence, Vol.
13, pp. 81-132.

Reiter, R. [1982]: "Circumscription implies

predicate completion (sometimes}”,
Proceedings of the National Conference on
Artificial Intelligence, Pittsburgh Pa.

Reiter, R. and
"Foundations of

maintenance systems:
Proc. AAAI-87, Seattle, pp.

deKleer J. [1987]:
assumption-based truth
preliminary report”,
183-188.

Robinson, J.A- [1565]: "A machine-oriented
logic based on the resolution principle”, J.

AOM 12, Vol- 1, pp, 23-41.

Sergot, M. [1982]: "A query-the-user
facility for logic programming”, In Proc.
ECICS, Stresa, Italy (eds. P. Degano & E.

Sandewall) Amsterdam: North-Holland, pp. 27-
41.

Sergot, M.J., Sadri, p., Kowalski, R.A.,
Kriwaczek, F., Hammond, P. and Cory, H.T.
[1986]: "The British Nationality Act as a
logic program", CACM, Vol. 29, No. 5, pp.
370-336.

[71]

[72]

[73]

[74]

[74a]Takeuchi, A.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Shanahan, M. [19B9]: "Prediction IS

deduction but explanation is abduction”,
IJCAI 89.

Shapiro. E.y. [1983]: Algorithmic Program
Debugging. The MIT press.

Sterling, L. and Shapiro, EY [1966]: "The
Art of Prolog", MIT Press.

stickel, M.E. [1968]: "A Prolog-like

inference system for computing minimum-cost
abductive explanations in natural-language
interpretation”, Proc. International
Computer Science Conference (Artificial
Intelligence: Theory and Applications) (J,-
L. Lassez and P.Y.L. Chin, editors), pp.
343-350.

and Furukawa, K. [1986]:

"Partial evaluation of Prolog programs and

its application to metaprogranuning”, Proc,
IFIP, North Holland, pp. 4715-420,

van Emden, M.H. and Kowalski, R.A. [19706]:
"The semantics of predicate logic as a
programming language”, J. ACM, Vol. 23, No.
4 (Oct. 1976), pp. 733-742.

van Gelder, A, [1987]: "Negation as failure
using tight derivations for general logic
programs”. In J. Minker, editor, Foundations
of Deductive Databases and Logic
Programming, Morgan Kaufmann, Los Altos,
C.A., pp. 149-176.

van Gelder, A., Rosa, K. and Schlipf.
[1988]: "Unfounded sets and well-founded

semantics for general logic programs”. In
Proceedings of the Symposium on Principles
of Database Systems, AOM SIGACT-SIGMOD.

van Harmelen, F. and Bundy, A.
"Explanation based generalization -
evaluation”, Artificial Intelligence,
36, pp. 401-412.

[1968]
partial
Vol.

van Melle, W.J. [1980]:
constructing consultation
Press, Ann Arbor, Mi.

System aids in
programs, UMI

Weyhrauch, RW. [1980]: "Prolegomena to a
theory of mechanized formal reasoning”,
Artificial Intelligence Vol. 13, pp. 133-
170.

Winograd, T. [1972]: Understanding natural

language, Academic Press, New York.
Winston, P.H. [1984]: "Artificial
Intelligence"”, second edition, Addison
Wesley.

Kowalski

603

