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Abstract

We address the problem of answering queries in
circumscription and related nonmonotonic for-
malisms. The answering process we describe
uses resolution-based theorem provers recently
developed for circumscription. In a way analo-
gous to query answering techniques in classical
predicate logic, the process extracts informa-
tion from a proof of the query. Circumscriptive
theorem provers consist of two processes, gener-
ating explanations for the theorem to be proved
and showing that these explanations cannot be
refuted. In general, many explanations com-
pete in supporting the theorem. We show that
queries can be answered by finding certain com-
binations of explanations, and present results
to search the space of explanations while car-
rying out significant pruning on this space. The
results are relevant to other nonmonotonic for-
malisms having explanation-based proof proce-
dures.

1 Infroduction

For the first-order predicate logic, techniques devel-
oped by Green [I1969a] are the basis for query-answering
systems extensively used in deductive databases, logic
programming and synthesis problems such as plan-
ning. These techniques rely on resolution-based theo-
rem provers that attempt to prove the query while keep-
ing track of the information generated during the proof
Theorem provers can decide whether a query follows
from a given theory, and thus answer questions such
as "ls there a coffee cup?"; the corresponding query-
answering procedure computes the instance for which
the query holds and can provide answers to questions
such as "Where is the coffee cup?".

This paper addresses the query answering problem for
logic databases augmented with a circumscription axiom
[McCarthy, 1986] and related nonmonotonic formalisms.
As in the first-order case, the answering procedure we
present extracts information from a proof of the query.
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Inoue

We build on existing proof procedures for circumscrip-
tion that have recently been developed [Przymusinski,
1989; Ginsberg, 1989; Inoue and Helft, 1990].

While existing theorem provers for circumscription
can correctly answer whether or not a formula follows
from a circumscription, Green's techniques, although
necessary, are not sufficient to provide answer extrac-
tion. The reason is the following. Circumscriptive theo-
rem provers are based on finding explanations, or argu-
ments, for the theorem to be proved, and showing that
these explanations cannot be refuted. In general, many
explanations compete in supporting the theorem, and a
certain combination of these has to be found. We show
that to an informative answer corresponds a particular
combination of explanations, and present a procedure to
find these combinations, together with results to search
this space and carry out significant pruning.

Although we focus on circumscription, the results we
present obviously apply to its restrictions, as for exam-
ple logic databases using different types of closed-world
assumptions, and similar default reasoning systems hav-
ing explanation- based proof theories [Geffner, 1990;
Poole, 1989],

The next section is a summary of results concerning
circumscription and its theorem provers. Section 3 illus-
trates the problem through an example, and Section 4
provides the main results on extracting answers from a
proof.

2 Background

This section gives a very brief survey on circumscription
and its proof procedures. Additional background can be
found in [McCarthy, 1986; Lifschitz, 1985].

2.1 Circumscription

The circumscription of a first-order theory T is its aug-
mentation with a second-order axiom CIRC(T; P:2),
where P and Z denote sets of predicate symbols of T,
whose model-theoretic characterisation is based on the
following definition and result.

Definition 2.1 Let M\ and M2 be models of T. Then
M; <p,z Mi if M\ and M, differ only in the way they
interpret predicates from P and Z, and the extension of
every predicate from P in M, is a subset, of its extension



in My. A model M of T'1s (2, Z)-minimal if for no other
model M’ of T' it is the case that M’ <p, M !

The predicates 1n P aresaid to be mintmized and those

in £ to be variables; } denotes the rest of the predicates,
called paramelers.

Theorem 2.2 CIRCT; P;ZYE Fifand only if M
I, for every (P, Z)-minimal model M of T

2.2 Theorem Proving Results

(General circumscription is highly uncomputable [Schlipf,
1986], and existing theorem proving results apply to
restrictions of circumscriptive theories. From now on,
‘T is a first-order theory without equality, consisting of
ffinitely many clauses, each of which is a disjunction of
possibly negated atoms called literals, augmented with
the Unique Names Assumptions, that is, different ground
terms denote different elements of the domain. We also
assume that the Domain Closure Assumption is satis-
fied since this is necessary to guarantee the soundness
of the query answering procedure described in this pa-
per. Queries to be answered are restricted to existen-
tially quantified formulas (note that this includes ground
formulas).

Theorem proving techniques for circumscription are
based on the following results [Gelfond et al., 1989;
ftzymusmsKi, 1989; Ginsberg, 1989].

Definition 2.3 Let T be a theory, CIRC(T; P: Z} its
circumscription, ¥ a formula, and let P+ (£7) denote
the set of positive (negative) literals whose predicate
symbol belongs to P.

1. P~ + Q2 is called the ezplanation vecabulary.

2. A finite conjunction E of hiterals from the explana-
tion vocabulary is an elementary explanalion for F
relative to T'f

(a) T+ E |= F, and
(b) T + E is consistent.

A disjunction of elementary explanations 1s called
an cxplanation.

3. Let £ be an explanation. An elementary explana-
tion for =& 1s called a counter to £,

4. If an explanation has no counters it 1s valid.

5. A valid explanation E is mirimal if there 1s no other
valid explanation £’ such that £’ |= F.

Theorem 2.4 CIRC(T; P;7Z) k= F if and only 1f there
exist a valid explanation for F relative to the theory 7'

Example 2.5 Consider the theory
T =1 Yz bird{z) A—-ablz) D flies(x),
bird(lweely) ),

where P = {ab}, Q@ = {bird} and Z = {flies}, so thai
the explanation vocabulary is {ab}~+{bird}* +{bird} .
[.et us consider the query

F = flies(lweety).

"We will often just say minimal models, P and Z being
clear from the context.

*k= is classical first-order.

*We identify Q@ with the set of all literals whose predicate
symbhols are parameters.

Now, —ab({tweely) 1s an explanation for F', as it im-
phes /' iogether with 7' and belongs to the explana-
tion vocabulary. It has no counters, as no formula from
the explanation vocabulary can be consistently added
to T to deduce ab({lweetly). F is thus a theorem of
CIRC (T; {ab},; {flies}).

Next, let

T' = T'U { ab(tweety) V ab(sam) }.

Then —ab(sam) is a counler to —ab{{weety) relative to
T’. As no other valid explanation for ¥ exists, F is not
a theorem of the circumscription of 77

2.3 Query Answering Procedure

In line with the above results, the task of a query an-
swering procedure for circumscription 18 to search for
explanations of the query and test their validity.

To do so, the answering procedure can rely on an
explenation-finding algorithm. Such an algorithm is pro-
vided with a set of clauses T, a clause F', and a vocabu-
laty, and returns an explanation E, that is, a conjunction
of hiterals from the vocabulary, consistent with T, such
that T+ E & . The computation of explanations is
based on the observation that such 7', F' and E verify

(a) T+ -F | —-F, and
(b) T} F.
Explanations can thus be obtained by computing the set
New(T,-F)=ThT + -F)-ThT)

that belong to the vocabulary P+ 4 Q. We call these the
new theorems of ~F relative to T4 The negation of each
of such clauses (a conjunction of literals fromn the expla-
nation vocabulary) is an elementary explanation and any
disjunction of these 1s an explanation.

Testing the validity of an explanation represents the
same computational problem: if an explanation E has
no counter, then there 1s no new theorem of F relative
to T', belonging to the vocabulary Pt 4+ Q. In symbols,
given an algorithm to compute the set New(T, '), we
are interested in

Explanations(T, F) = ~New(T, ~F)

and
Valid(E,T) & New(T,E) = 0.

Algorithms based on ordered-linear resolution [Chang
and Lee, 1973] are known to perform this computation
[Przymusinski, 1989; OxusofT and Rauzy, 1989; Siegel,
1987; Inoue, 1991], and are used in many abductive pro-
cedures [de Kleer, 1986; Poole, 1989]. The explanation-
finding algorithm is not a concern of this paper. The
results we present concern how to combine explanations
in order to extract answers from a proof. We thus as-
sume such an algorithm exist and return the correct ex-
planations, and concentrate on the query answering pro-
cedure. The following one has been shown to correctly
return yes/no answers, and is used in [Ginsberg, 1989;
Przymusinski, 1989].

* Note that New(T,*F) does not include clauses implied
by T alone because their negations are inconsistent with T
and they cannot be counters> The predicates of P have their
sign changed because we look for the negation of E.
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Algorithm 2.6

Step 1. (Generate Elementary Explanations)
Compute elementary explanations of F relative to

I,

Step 2. (Combine Elementary Explanations)
Set the explanation E to the disjunction of all ele-
mentary explanations, and represent it in conjunc-
tive normal form (i.e., as a set of clauses).

Step 3+ (Test Validity)
Test if E has no counter, in which case answer
"Yes": otherwise answer "No".

(Yes/No Answering Procedure)

This query answering procedure is not an exact imple-
mentation of Theorem 2.4 in one respect. The Theorem
stipulates the need for an arbitrary valid explanation,
while the answering procedure, in Step 2, only tests one
for validity, namely the disjunction of all the elementary
ones generated in Step 1. This is enough to return yes/no
answers. The reason is that if a certain disjunction of
valid explanations exist, then the maximal disjunction is
valid. This maximal disjunction is then tested for valid-
ity. The example we present next illustrates the inability
of this procedure to provide answer-extraction.

3 Example

| have to do some Prolog and Lisp programming this
morning, and 1 need the manuals Asking people around,
1 collect information about who has recently been using
them. 1 know the office number of my colleagues, and
\ also know that normally people leave books in their
offices, However, there are exceptions to this rule: for
example, some of my colleagues work at home and don't
bring back the books to the office. The information 1
have can be expressed with the following theory T, where
predicate symbols and constants have obvious intended
Interpretations:

Ve YyVz hadiz, y) A office(x, 2) A —ab{z) D at(y, 2),
had( fred,prolog-manual) V had(mary,prolog-manuel),
had(harold, prolog-manual),
had(kurt, hsp-manual),
office( fred, EJ225),
office(mary, EJ230),
office(harold, £'J235),
office( kurt, E£J240),

Vo VyVz differeni(y, z) D —at(x,y) V ~at({z, 2),
different( £ J225, EJ230)A - -

- A different{ £ ] 235, E.J240).

Where should ] look for the manuals? Suppose | sub-
niit to the theorem prover the query

F =3z 3dyat(z,y).

I aimnm not really interested in knowing whether F is true
or not. I would like to know how {o get the manuals back,
and do so without inspecting all the offices around.

If we set P = {ab} and let the rest of the predicates
vary, thte mimmal models of T can be divided in three
groups, tn each of which exactly one of —ab{haroid),
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—ab(mary) or —ab(fred) is true. In the first group of
thesge

at(prolog-manual, £EJ235)
holds. In the second and the third groups,

at(proleg-manual, EJ223) V at(proleg-manual, £ J230)

holds. Thus

at(prolog-manual, EJ225) V at(prelog-manual, £J230)
V at(prolog-manual, £J235)

holds 1n all minimal models, and no subdisjunction does,
Moreover, 11 all minimal models ~ab(kurt) is true, which
means that

at{ hisp-manual, £ J240)

15 another theorem of the circumscription. These two
smallest disjunction of answers provide me with infor-
mation about where the manuals are.

However, Algorithm 2.6 produces the following.

Step 1. Three elementary explanations are computed:

El = =ab(fred) A —ab(mary)
EF2 = —ablhareld)
E3 = =ab{kurt)

Step 2. The disjunction £1v E2V E'3 is transformed to
conjunctive normal form. This 1s the conjunction of
the following clauses:

~ab( fred) vV »ab(harold) vV —ab(kurt)
—ab(mmary) V -ablharold) V ~ab{kurt)

Step 3. These clauses, when added to T, produce no
new thecrem n the vocabulary of positive ab pred-
icates, showing that the disjunction of explanations
15 valid, as 1t has no counters. The procedure cor-
rectly answers “Yes”.

There ts no way instances of the query can be returned
with this procedure. The reason is that the actual sub-
stitution for the variable in the query 1s lost 1n step 2,
when the explanation 1s converted from disjunctive to
conjunctive normal form. The rest of the paper de-
scribes a methodology and results on how to combine
celementary explanation in a more careful way in order
to produce the informative answers.

4 Answer Extraction

We consider informative answers to a query F relative to
a circumscription CIRC (T'; P; Z) to be the most specific
instances of F entalled by the circumscription; in the
sequel we simply call them answers to the query.

Definition 4.1 Let CIRC(T; P; Z) be a circumscniptive
theory, F* an existentially quantified query. An answer
lo F' 1s a formula A such that

1. CIRQT;P,Z) E A,
2. AE F, and
3. No A’ different from A satisfies (1), (2) and A’ = A.

We now shiow how to produce such answers.



4.1 Obtaining Instances of the Query

As we said before, we assume that an explanation-finding
algorithm returns explanations for the query. The prob-
Jlem we address 1s that of finding answers, that is, most
specific disjunction of instances of the query entailed
by the circumscription. To compute such instances of
the query, we use Green’s techniques for first-order logic
[Green, 1969a; Green, 1969b], that consist of associating
with F the clause

F' = =FV Ans(x)

where x = =zy,...,7, stands for the variables ap-
peartng m F. During the proof of F, Ans keeps
track of the substitutions for which F holds at no ex-
tra cost. 'The explanation-finding algorithm 1s thus
the same resolution-based algorithm used by existing
theorem provers for circumscription [Ginsberg, 1989:
Przymusinski, 1989), but instead of supplying the nega-
tron of the query F to compute ~New(T, ~F"), we sup-
ply F' and compute New(T, F’').”> Accordingly, instead
of obtaming explanations

for /', we obtain

I{:l :) ‘4”_,‘;1 P ey En —_-:' f'l”--'?"u !

where each Ans; keeps the substitutions for a disjunc-
tion F; of instances of F' explained by E;, that is,

T+ E;e=li(=1,...,n)

4.2 Computing Answers

Given a query, the explanation-finding algorithm can
compuie the candidate answers I'), Iy, . .., the explana-
tions for each of these £y, £a,..., and thewr counters
C111, Clyo, .. .. An answer 15 a shortest disjunction of F|
that has a valid explanation, that 1s, for which at least
one explanation exists with no counter.

Suppose two mstances of the gquery ) and Fs have
elementary explanations E; and E4, neither of which 1s
valid. F| and FE. thus have counters ("; and (.. Now
(" = (" A5 1s a candidate counter for [ = Iy vV Es
the sense that as T4 (; b= K5, obviously T+, ACs
=k, But still C might not be a counter to £ because,
although each C; is consistent with ', ¢’ mught not be.
If (715 not consistent with T, and no other counter exist,
E will be a valid explanation for /| VvV F.

Thus while certain explanations may liave counters,
their disjunction might not, as the corresponding con-
juniction of potential counters i1s inconsistent. Thus, comn-
pared with theorem provers that relurn yes/no answers,
the enly additional compulaiion needed 15 the consestency
check on combinations of counlers.

So the search problem consists of finding the dispune-
tions of instances of the query such that the poten-
tial counters of their explanations are inconsistenh. A
counter (7 is inconsistent with 7' if and only if 7' | ="
and such counters belong Lo a particular vocabulary. I
i1s thus rewarding to compute the following set of clauses.

>The answer predicate Ans is added to the vocabulary

Pt 1+ 0.

Defimition 4.2 Let CIRC(T; P; Z) be a circumseriptive
theory. A charactersstic clause of CIRC(T,P,Z) is a
clause (' that satisfies the following,

1. Every Iteral of CC belongs to P+ + ().
2. TEC.
3. No other clause (’ satisfies (1), (2) and (7" |= (.

These are the restriction of the prime implicates [Re-
iter and de Kieer, 1987) of T" to a particular vocahulary.
They can be computed with the same linear resolution
algorithm used by the explanation-finding procedure, as
shown by {Inoue, 1991].

We can take advantage of this set I at least the fol-
lowing ways.

1. Let £ be an elementary explanation. and (' a
counter to £. Then T + (' = —F, and thus
T E -C v =E. As the explanation-finding algo-
rithm returns the shortest of such clauses, ~(7v = F
1s a characteristic clause of the circumscription. In
other words, to compute counters to an explanation,
we constder the negation of tis elementary compo-
nents. The counters are the negation of the comple-
ment within a characteristic clause.

2. If T+ C is inconsisient, and thus T' = -7, then
(" 1s implied by a characterisize clause of the cir-
cumscription. This means that the cousistency test
on a combination of counters can be performed by
entallment tests on the characteristic clauses.

The above ideas can be implemented using different
search strategies, which are not our concern. The {ol-
lowing 1s a possible implementation of an algorithin® to
return informative answers to a query in a circuImscrip-
tive theory.

Algorithm 4.3 (Query Answering Procedure;)

Step 1. (Compilation)
Compute the characteristic clauses of the cirruin-
scription.

Step 2. (Generate Elementary Explanations)
Compute elementary explanations of F relative to
T.

Step 3. (Compute Counters)

A counter to an explanation is the complement of
its elementary components within the characteristic
clauses. If an explanation has no counters, output
the instance of the query explained by it.

Step 4 (Combinations of Counters)

Compute the conjunctions of routiters whose nega-
tion is entailed by a characteristic clause. Such a
conjunction of counters is inconsistent with T, and
the corresponding disjunction of elementary expla-
nations is valid. If such an explanation has no other
counters, the corresponding disjunction of instances
of the query is an answer.

°Strictly speaking, this is not. an "algorithm". The rea-

son is, in Step 1 or 2, it may produce an infinite number of
characteristic clauses or elementary explanations.
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4.3 Example
We consider again the example of section 3.

Step 1. Since ab is the only minimized predicate, the
only characteristic clause of the circumscription is:

ab{harold) vV ab{ fred) V ab(mary).

Step 2. We provide the explanation-finding algorithm
with the clause

-at(x,y) Vv Ans(z, y),

and the answer predicate Ans.

Then we obtain the new clause
ab( fred} V ab(mary)
V Ans(prolog-manual, £J225)
V Ans{prolog-menual, £'J 230},

indicating that
Ey = =ab(fred) A —ab(mnary)

explains

Ay = at(prolog-manual, £J225)

V at{prelog-manual, £J230).
In a sitmlar way,
E4 = —ab(harold)

explalns
Aa = at{proleg-manuel, £J235),

and
E3 = —ab{kurt)
explalns

Az = at(hsp-manual, £J240).

Step 3. C'y = ~ablharold), is a counter to E,.
Ca = ~ab( fred) A ~ab(mary), 1s a counter to E5.
F3 has no counters, thus Az is output.

Step 4. The only characteristic clause subsumes (in
fact, 15 equivalent to} the disjunction of the nega-
tion of the two counters €'; and Cy. This indicates
that T 4 Cy A (s 1s 1nconsistent, and as F, V E,
has no other counter, it is a vahd explanatton for
Al V As.

5 Conclusion

Nonmonotonic theorem provers often consist in a two-
step classical deduction — making a default proof in
which explanations are collected and checking validity
of the explanations. We showed that the substitutions
needed for query answering are lost in this process, and
a combination of theses need to be found to produce the
required answers.

We presented a procedure for combining explanations
in order to obtain informative answers, and results that
enable an answering procedure to return the interesting
answers with minima) search.

The importance of the results presented lies in their
applicability to a wide class of systems that are either
a restriction of circumscription, for example, databases
using different types of closed-world assumptions (see
[Przymusinski, 1989; Gelfond et al., 1989]), or similar de-
fault reasoning systems having explanation-based proof
theories [Poole, 1989; Geffner, 1990].
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