
Plausible Inferencing Using Extended Composit ion 

M i c h a e l N . H u h n s 
MCC 

3500 West Balcones Center Drive 
Austin, Texas 78759 

L a r r y M . Stephens 
Center for Machine Intelligence 

University of South Carolina 
Columbia, South Carolina 29208 

A b s t r a c t 

Th is paper considers the composi t ion of tuples 
f rom two relations in order to derive addi t iona l 
tuples of one of these relat ions. Our purpose 
is to determine when the composi t ion is p lau­
sible and for which relat ion the new tuples are 
derived. We f irst present a fo rma l def in i t ion of 
composi t ion and our extension to i t . We next 
define condit ions on the domains and ranges of 
the relations that are necessary for extended 
composi t ion to occur. We then show how a set 
of under ly ing at t r ibutes, independently speci­
fied for each re la t ion, is sufficient for determin­
ing plausible composi t ion, when the pr imi t ives 
are combined according to an algebra. F inal ly , 
we apply our method for extended composi t ion 
to a representative group of semantic relations 
and evaluate the results. 

1 Introduction 
The construction of a large knowledge base is diff icult 
and requires techniques that can faci l i tate knowledge ac­
quisi t ion. Rather than requir ing that all knowledge in 
the base be entered expl ic i t ly, a system could be provided 
wi th a basic set of facts and an inference mechanism for 
inferring addit ional facts from these [Baker et al, 1987]. 
An ideal system would be able to generate all valid and 
no invalid inferences. One way to approach this ideal is 
to provide a set of specialized inference procedures that 
collectively generate a valid set of inferences. In this pa­
per we develop one such procedure, based on an extended 
composition of semantic relations f rom a knowledge base. 
Figure 1 contains examples of this type of composit ion. 
The procedure has the effect of constructing new infer­
ence rules, which, when executed, generate extensions to 
the knowledge base. 

2 Extended Composition 
A binary relation R consists of a set A (the domain), 
a set B (the range), and a mapping that specifies the 
set of tuples (a, b) belonging to R, where and 

The mapping may be explicit by l ist ing all the 
tuples in R or impl ic i t by providing rules for selecting the 
tuples. In a large frame-based knowledge system, such 

as C Y C [Lenat et a/., 1986, Lenat and Guha, 1988], the 
mapp ing for a relat ion is only par t ia l l y specified; other 
tuples for the relat ion are added as knowledge is entered. 
The procedure for composing relat ions out l ined in this 
paper provides a means of in ferr ing add i t iona l tuples be­
longing to an imp l i c i t l y defined re lat ion. 

A composite relat ion results f rom apply ing the bi­
nary operat ion of composition to two binary rela­
t ions. Th is operat ion has the fo l lowing def ini t ion 
[Stanat and McAl l is ter , 1977]: 

D e f i n i t i o n 1 Let Ri be a relation from set A to set B 
and Rj be a relation from set B to set C. The composite 
relat ion f rom A to C, denoted Ri ■ Rj, is 

Extended composition can also be shown to be associa­
tive and not commutative. 

We would like to have an algori thmic way of deter­
mining when is nonempty and whether it is a 
subset of Ri or Rj or neither. Our method for making 
this determination is based on two premises: 

• the domains and ranges of the two relations must 
be type-compatible, and 

• the primitives (defined below) of the relations must 
combine compatibly. 

If the first premise is satisfied by relations Ri and Rj, 
then the primit ives of the two relations can be combined 
to yield the primit ives of the composed relat ion, 
The primit ives of can then be compared to those 
of Ri and Rj to determine if is a subset of R i, 
Rj, both , or neither. 
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The type compat ib i l i t y specified by the first premise 
results in the fo l lowing necessary condit ions for the ex­
tended composi t ion of relat ions: 

1. The intersection of sets B and C must be nonempty; 
otherwise, the relat ion Ri © Rj w i l l be empty. 

2. For the derived tuples to be elements of R i, the 
intersection of sets B and V must be nonempty. 

3. For the derived tuples to be elements of Rj, the 
intersection of sets A and C must be nonempty. 

These condi t ions, represented using Venn diagrams in 
Figure 2, e l iminate many of the possibil i t ies for extended 
composi t ion. An algebra based on pr imi t ives of the re­
lat ions el iminates addi t iona l implausible composit ions. 

3 Pr imi t ives for Semantic Relations 
The second premise above requires a set of pr imi t ives 
tha t describe each relat ion and a set of rules for com­
b in ing pr imi t ives. We have postulated a group of ten 
pr imi t ives , based on a l i terature survey [Chaffin and 
Her rmann, 1987, Cohen and Loiselle, 1988, Wierzbic-
ka, 1984, W ins ton et a/., 1987] and an analysis of nu­
merous semantic relations in the C Y C knowledge base 
[Lenat and Guha , 1988]. These pr imi t ives are indepen­
dently determinable for each relat ion and relat ively self-
explanatory. They specify a relat ionship between an el­
ement of the domain and an element of the range of the 
semantic re lat ion being described. The pr imi t ives, de­
scribed next , have values f rom the set X = {+, 0, —}, 
where + indicates tha t the relat ionship holds, — that i t 
does not , and 0 tha t it is not appl icable. 

C o m p o s a b l e : Some semantic relations can never be 
meaningfu l ly composed w i th other relations due to 

their fundamental characteristics. For example, at­
tr ibutes are not generally transferable through other 
relations. 

F u n c t i o n a l : The domain of a Funct ional relat ion is 
in a specific spatial or tempora l posit ion w i th re­
spect to the range of the re lat ion. For example, in 
an instance of the componentOf re lat ion, such as 
Wheel.component Of.Car, the Wheel is in a specific 
spatial posit ion w i t h respect to the Car. This prop­
erty does not hold for Juror .memberOf .Jury . 

H o m e o m e r o u s : In each instance of a Homeomerous re­
la t ion, the element of the domain must be the same 
k ind of th ing as the element of the range, e.g., in 
P ieS l i ce .p iece of .Pie, the slice is the same stuff as 
the pie. 

S e p a r a b l e : The domain of a Separable relat ion can be 
temporal ly or spat ial ly separated f rom the range, 
and can thus exist independently of the range. For 
the above componentOf example, the Wheel can be 
separated f rom the Car and can exist independently. 
For Wheel.made Of Aluminum, the Aluminum cannot 
be separated f rom the Wheel if the Wheel is st i l l to 
exist. 

S t r u c t u r a l : The domain and range of a Structura l re­
lat ion have a hierarchical relat ionship in terms of a 
physical structure. For example, in Wheel.compo­
nentOf Car, the hierarchical structure is f rom part 
to whole and the Structural property of compo­
nentOf has a — value. 

T e m p o r a l : The domain and range of a Temporal rela­
t ion are ordered in regard to a temporal structure. 
For example, there is no not ion of t ime in the rela­
t ion pieceOf indicated by a value of 0 for Tempora l ; 
in causedBy, a value of — indicates that the range 
element precedes the domain element. 

I n t a n g i b l e : The domain and range of an Intangible re­
lat ion have a hierarchical relat ionship in terms of 
ownership or mental inclusion. As an example, the 
relarion ownedBy has a value of — for Intangible, 
because the element owned is in tangib ly included in 
the owner's sphere of influence. 
(Note: values of the last three pr imi t ives for the 
converse of a relat ion are opposite to those for the 
forward relat ion.) 

N e a r : The domain of a relat ion w i t h property Near is 
physically or temporal ly close to the range. 

C o n n e c t e d : The domain of a relat ion w i th property 
Connected is physically or tempora l ly connected to 
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the range. A connection, which may be indirect, is 
indicated by +; no connection is denoted by —. 

I n t r i n s i c : A semantic relation has the property In t r in ­
sic if the relation is an at t r ibute of the stufflike na­
ture of its domain or range. For example, the re­
lat ion hasDensity is an intrinsic property of its do­
main , so that if Aluminum.has Density.5, then every 
piece of Aluminum inherits this value for its density. 

To test our hypotheses, we have selected a represen­
tative set of relations (Table 1), including part-whole, 
subclass, ownership, causal, and at t r ibut ion relations. 
For each of these relations, Table 2 shows the values we 
have assigned to the above primit ives. The domains and 
ranges of the relations, shown in Table 1, are also needed 
to determine plausibi l i ty. 

4 Algebra of Relat ion Pr imit ives 
We assume that the results of composing two semantic 
relations can be determined f rom the results of combin­
ing their ten relation pr imit ives (the accuracy of this 
assumption is evaluated below) as follows: 

(1) 
where and o is the combi­
nation operator. Tha t is, for the purposes of relation 
composit ion, each relation can be represented solely by 
a vector of values for its ten relation primit ives. It thus 
becomes necessary to define precisely how two of these 
vectors combine. 

We assume that the primit ives are orthogonal and 
form a linear basis for the set of relations. The combina­
t ion operator o can thus be defined in terms of a separate 
operation table for each pr imi t ive, as shown in Table 3. 
Each operation table is symmetric and has been derived 
f rom empirical ly determined rules for relation composi­
t ion, such as the fol lowing: 

• In order to compose, two relations must have the 
same hierarchical direction for their Structural , 
Temporal , and Intangible pr imit ives. 

• If Ri has the property Connected and Rj does not, 
then (and cannot have the property 
Connected. Therefore, is not 
a subset of Ri. 

• If Ri has the property Separable and Rj does not, 
then has the property Sepa-
rable. Therefore, may be a 
subset of Ri. 

The resultant algebra enables the primit ives of the 
composed relation to be derived. If these derived pr im­
itives match the primit ives of one (or both) of the com­
posing relations, then a tuple of one (or both) of these 
can be instantiated; else, the knowledge base can be 
searched to find all relations that match the resultant 
primit ives, and, if not already instant iated, these can 
be presented to a user as potential new tuples for the 
knowledge base. 

As an example of this inference procedure, assume 
that a user has entered the assertions Wheel.compo-
nentOf.C&r and Car.ownedBy.Grover. Combining the 
primit ives f rom Table 1 for componentOf and ownedBy 
according to the combining rules in Table 3 yields the 
fol lowing vector of primit ives for the resultant relation: 

Because 
this vector matches the primit ives of ownedBy and does 
not match those of componentOf, the inference is that 
Wheel, own edBy.Grover. 

The plausibi l i ty of this result is checked by compar­
ing the types of the domain and range of this rela­
t ion instance wi th the types specified for ownedBy in 
Table 2. To do this, a taxonomy of types is needed 
that enables the intersection of domains and ranges 
to be determined. Such a taxonomy is typical ly part 
of frame-based knowledge-representation systems. The 
types used for our examples are f rom the C Y C on­
tology [Lenat and Guha, 1988]. Using this ontology 
and Table 2, we find that Wheel is an instance of 
I n d i v i d u a l O b j e c t , Grover is an instance of T a n g i -
b l e & I n t a n g i b l e O b j e c t , and these match the domain 
and range of ownedBy. The resultant inference is thus 
deemed plausible. 

5 Results 
The above inference procedure was applied to the set 
of relations shown in Tables 1 and 2. The results, in 
the form of a composition mat r i x , are shown in Table 4. 
Each entry in Table 4 is equivalent to a rule of the form 

(2) 
The results reflect the order of composit ion, e.g., 
as well as which was not addressed in either 
[Cohen and Loiselle, 1988] or [Winston et a/., 1987]. Be­
cause each of the operators for combining primit ives is 
symmetric, the composition mat r i x is nearly symmet­
ric. The only exceptions result f rom type compatibi l i ty, 
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which sometimes excludes a composi t ion f rom occurr ing. 
For example, because the inter­
section of the range of / w i t h the domain of / is empty. 

The fo l lowing are specific examples of plausible infer­
ences predicted by the extended composi t ion of relations 
(where —> denotes logical imp l i ca t ion ) : 

6 Discussion and Conclusions 
The inference procedure and results presented in this 
paper extend the work of previous researchers. Chaff in 
and Her rmann [1987] ident i fy a set of relation elements 
(relat ion pr imi t ives) tha t can be used to describe and 
classify relat ions. Each relat ion element is a fundamenta l 
property tha t holds between the domain and range of the 
re la t ion. 

W ins ton et al. [1987] define three independent re lat ion 
elements, inclusion, connection, and similarity; these are 
used to describe spat ial inc lusion, meronyin ic inclusion, 
and class inclusion. When any inclusion relat ion is com­
bined w i t h another, they f ind that a val id inference can 
be made and that the resultant relat ion is the one hav­
ing the fewest re lat ion elements. In add i t ion , Wins ton et 
al. ident i fy three dependent elements of connection t ha t 
explain the t rans i t i v i ty , but not the composabi l i ty, of six 
meronymic relat ions. 

Cohen and Loiselle [1988] ident i fy two deep structures 
for relat ions: hierarchical and temporal, each having a d i ­
rect ion. Each re lat ion is hierarchical, tempora l , or bo th . 
When two relat ions are composed, the resultant rela­
t ion may have any of several possible deep structures, 
depending on the properties of the composing relations. 
They found tha t inferences are most plausible when ei­
ther the hierarchical or tempora l directions of the two 
composing relat ions are the same as tha t in the com­
posed re lat ion. Like Wins ton et al., they do not consider 
type consistency in composing relat ions. 

We extend the research efforts cited above by basing 
relat ion composi t ion on set theory. On this basis, we 
conclude tha t t yp ing of the domain and range elements 
may restr ict composi t ion, independently of any relat ion 
a t t r i bu te restr ict ions. In add i t ion , we extend the work 

1424 Knowledge Representation 

of [Wins ton et al., 1987] by exp l ic i t l y considering the h i ­
erarchical nature of the inclusion relat ions, as suggested 
by [Cohen and Loiselle, 1988]. Th is leads to a means of 
def ining the p r im i t i ve a t t r ibutes of the converse of a re­
la t ion and, consequently, of composing a converse w i t h 
other relat ions. 

We provide a vector of ten pr imi t ives for each of 21 
typ ica l relat ions. Th is vector representation provides a 
more powerful basis for rank ing and classifying relations 
than does the l inear order ing in [Wins ton et al., 1987]. 
Since there are three possible values for each of the ten 
pr imi t ives , our representation provides for 31 0 = 59,049 
different basis vectors tha t can be used to represent rela­
t ions. The number of relat ions tha t could be represented 
is actual ly much greater because of the large number of 
types tha t could be chosen for the domains and ranges. 

The inference procedure we developed for relation 
composi t ion is based on several assumptions. The fore­
most of these is tha t relat ion composi t ion is equivalent to 
a combinat ion of the corresponding vector of pr imi t ives. 
The correctness of this assumption is borne out by the 
p lausib i l i ty of the predicted inferences, shown in Table 
4. A second assumption is tha t each relat ion p r im i t i ve 
is or thogonal to the others. Th is s impl i fy ing assumption 
great ly increases the efficiency of the inference proce­
dure by y ie ld ing operat ion tables (see Table 3) that are 
independent of each other. A l though the val id i ty of the 
results supports this assumption also, there is some ev­
idence tha t the chosen pr imi t i ves are N O T orthogonal . 
For example, the pr imi t ives Connected, Homeomerous, 
and Intr ins ic combine dependently according to the fol­
lowing rule to y ie ld composit ions w i t h a t t r ibu te relations 
not predicted by our algebra: 

Such a rule would yield the val id inference densi-
densityOf, which does not result f rom 

our relat ion algebra. It could be applied after extended 
composi t ion and viewed as an addi t ional inference mech­
anism. 

Other val id inferences are missing f rom Table 4, in­
c luding memberOf isA memberOf and compo-
nentOf attribute Of attribute Of. However, we feel 
that these omissions do not d imin ish the u t i l i t y of our 
results, in tha t our procedure is designed for correctness 
instead of completeness. In add i t ion , many knowledge-
based systems have other inference mechanisms that 
could generate these missing inferences. For example, 
an automat ic classifier [L ipk is , 1981] would generate the 
inference memberOf memberOf 

The potent ia l for generat ing new inferences in a large 
knowledge base, such as the one in C Y C , is enormous. 
C Y C , current ly w i t h relat ions, could have approx­
imate ly sixteen mi l l i on possible composit ions. Of these, 
20% are predicted to be plausible, based on the percent­
age of val id entries in Table 4. For a l l possible values 
of relat ion pr imi t ives, no more than 3 1 % could be com­
posed val id ly due to prohibited entries in the operat ion 
tables for combin ing pr im i t i ves . The one mi l l i on asser­
t ions now in the C Y C knowledge base can be combined 



using the predicted composit ions to yield many new in­
ferences. 

However, there are two major problems w i th extended 
composi t ion. F i rs t , reason maintenance for the resultant 
inferences is computa t iona l ly problemat ic , because the 
inferences depend not only on the relations being com­
posed, but also on the relat ion pr imi t ives for all of the 
relations involved. Second, assigning values for the rela­
t ion pr imi t ives is conceptual ly problemat ic. The values 
are subject ive and must be entered manual ly for each 
relat ion in a knowledge base. The val id i ty of the in­
ferences generated by extended composit ion are directly 
dependent on these values. 

Nevertheless, we expect tha t the relat ion pr imi t ives 
can be used for classifying relations, as well as generat­
ing new inferences, and for suggesting plausible analo­
gies. The procedure for extended composit ion appears 
to be a viable technique for increasing the informat ion 
in an exist ing knowledge base. Because the procedure 
has the effect of generating new inference rules and then 
apply ing t hem, i t yields plausible inferences that are not 
w i th in the deductive closure of the or ig inal knowledge 
base. 
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