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Abstract

Circumscription on the one hand and autoepis-
temic and default logics on the other seem to
have quite different characteristics as formal
systems, which makes it difficult to compare
them as formalizations of defeasible connmon-
sense reasoning. In this paper we accomplish
two tasks: (1) we extend the original semantics
of autoepistemic logic to a language which in-
cludes variables quantified into the context of
the autoepistemic operator, and (2) we show
that a certain class of autoepistemic theories in
the extended language has a minimal-model se-
mantics corresponding to circumscription. We
conclude that all of the first-order consequences
of parallel predicate circumscription can be ob-
tained from this class of autoepistemic theories.
The correspondence we construct also sheds
light on the problematic treatment of equality
In circumscription.

1 Introduction

The relations between the major nonmonotonic logic for-
malisms of Al — default logic, autoepistemic logic, and
circumscription — is of some importance, since all of

these logics have been proposed as formalisms for vari-
ous types of commonsense reasoning. The basic formal
equivalence of default and autoepistemic logic has al-
ready been shown (see [Konolige, 1987]), but the relation
between circumscription and default or autoepistemic
logic remains obscure. Mostly this is a consequence of
the different foundations of these logics: circumscription
Is based on a minimal-model semantics (see [Lifschitz,
1985]), while the others use more proof-theoretic tech-
nigues (default logic [Reiter, 1980]) or an epistemic op-
erator (autoepistemic logic [Moore, 1985]).

In trying to express autoepistemic or default, logic in
circumscription, researchers have found the basic prob-
lem to be that a minimal-model or even prefered-model
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semantics simply does not have the capability of rep-
resenting the requisite proof-theoretic or epistemic con-
cepts (see [Shoham, 1987]). We agree with this assess-
ment, and say nothing further about it here.

On the other hand, there have been several results on
expressing circumscription in default logic. These results
are summarized in [Etherington, 1986]; they apply to the
restricted case of predicate circumscription with no fixed
predicates and with a finite, fixed domain.

From a model-theoretic point of view, the predicate
circumscription Circum(,4; P; Z) of a first-order sentence
A picks out those models of A in which the extension of
the predicate P is minimal. The comparison is across
models with the same domain and denotation function,
but which might differ in the extensions of the predicates
Z. All predicates other than P and Z are fixed, that is,
cannot vary in a comparison of models. It was recently
shown (see [de Kleer and Konolige, 1989]) that fixed
predicates are inessential in predicate circumscription,
that is, there is a simple translation from any circum-
scription with fixed predicates to one without. Hence
fixed predicates no longer present an obstacle to rep-
resenting circumscriptions in default or autoepistemic
ogic.

The problem of finite domains remains, however. In
this paper we provide a solution to this problem, by first
extending autoepistemic logic to a language which al-
lows quantifying into the epistemic operator, and then
showing that a certain class of autoepistemic theories,
the MIN= theories, express all of the first-order conse-
quences of predicate circumscription.

2 Semantics of Quantifying-in

Autoepistemic (AE) logic was defined by [Moore, 19835]
as a formal account of an agent reasoning about her
own beliefs. The agent's beliefs are assumed to be a
set of sentences in some logical language augmented by
a modal operator L. As originally defined, and extended
iIn [Konolige, 1987], its language does not permit vari-
ables quantified outside of a modal operator to appear
inside. In this section we further extend AE logic to deal
with quantifying-in.

2.1 Logical preliminaries

We begin with a language C for expressing self-belief,
and introduce valuations of C. The treatment generally
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follows and extends [Konolige, 1987]

Let L, be a first-order language with equality and
functional terms. The normal formation rules for for-
mulas of first-order languages hold. A sentence of L is
a formula with no free variables; an aftom is a sentence of
the form P(t1, * <+, tn). We extend Ly by adding a unary
modal operator L; the extended language is called L. £
can be defined recursively as containing all the formation
rules of L, plus the following:

If ¢ is a formula of L, then so is L. (1)

An expression L¢ is a modal atom. Sentences and
atoms of Ly are called ordinary. Note that nestings such
as L.[.¢ are not allowed; we consider only a single level of
nesting here. Because the argument of a modal operator
can contain free variables, there may be quantifying into
the scope of a modal atom, e.g., dxl.Pxz is a sentence.
Often we will use a subscript "0" to indicate a subset of
ordinary sentences, e.g., I'o = I' " Ly.

Let us restrict ourselves for the moment to modal
atoms which do not contain free variables. From the
point of view of first-order valuations, the modal atoms
L¢ are simply nilary predicates. Our intended interpre-
tation of these atoms is that @ is an element of the belief
set of the agent. So we will consider valuations of L to
be standard first-order valuations, with the addition of
a belief set T. The atoms L¢ are interpreted as true
or false depending on whether ¢ is in T. To distinguish
these valuations, we will sometimes call them L valua-
tions.

The interaction of the interpretation of L with first-
order valuations is often a delicate matter, and so a per-
spicuous terminology for talking about L valuations is
necessary. In particular, it is often useful to decouple
the interpretation of modal and ordinary atoms. First-
order valuations are built upon the truthvalues of atoms:
for ordinary atoms, truthvalues are given by a structure
(U,v,R), where v is a denotational mapping from terms
to elements of the universe U, and R. is a set of rela-
tions over U, one for each predicate. We will refer to
any such structure as an ordinary index, and denote it
with the symbol |. Modal atoms are given a truthvalue
by a belief set T, which is called a modal index. Note
that, because modal operators are not nested, only the
ordinary sentences of the modal index V are important.

The truthvalue of any sentence in L can be determined
by the normal rules for first-order valuations, given an
ordinary and modal index. We write }:Lr ¢ if a val-
uation (/, T) satisfies ¢. The valuation rule for modal
atoms can be written as

=rr Lo ol . (2)

A valuation that makes a every member of a set of
sentences true is called a model of the set. A sentence
that is true in every member of a class of valuations is
called valid with respect to the class.

We use Cn(X) to mean the first-order consequences of
a first-order set of sentences X.

if and only if

2.2 Autoepistemic Extensions

In [Konolige, 1987], we informally defined an extension
of a set of sentences A as those consequences of A which
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an agent, should believe. The formal counterpart is given

by:

DEFINITION 2.1
the  equation

Any set of sentences T which salysfie.s

71 s {d) , /"] — T Q’)}

IS an autoepistemic extension of A.

This is a fixed-point equation for a belief set /', and
IS a candidate for the belief set of an ideal introspective
agent with premises .4. It differs slightly from the origi-
nal definition of [Konolige, 1987] in that the modal index
consists of the ordinary part (the kernel of 7'), this suf-
fices because the language of T does not include nested
modal operators.

Note that we are considering all models of A in which
the interpretation of L¢ is the belief set of the agent
itself, that is, the valuations we consider all have a modal
index that is the belief set of the agent, following Moore,
we call such valuations autoepistemic (or AE) valuations.

2.3 Quantifying-in

We would like to extend the language of autoepistemic
logic to include variables which are quantified outside,
the scope of the modal operator, but can appear inside,
e.g., Jo.LFPr. The problem is that it is not obvious how
to extend the semantics of the logic to deal with these
"quantified-in" expressions. Recall that the belief set T
iIs a set of sentences that form the beliefs of an agent.. To
interpret [.¢, we simply ask whether the expression @is
in T. But with the quantified-in language, we must also
be able to interpret L¢(z), w h e¢(x)i s the proposition
that the individual x has the property ¢. In order to
construct a propositional expression whose meaning is

¢(x), we must have some way of refering to individuals
in the domain.

The simplest, scheme for reference to domain elements
Is to use the denotation map v already present in the
first-order mterpretion /. In place of the valuation rule

for modal atoms given above, we use:

t'::],[* Ld)(.L) Iff

for some term / such that (3)
v(t) =z, ¢(t) € 1.

That is, we say that <g>(x) is believed if x has a name /
such ¢(t) is believed.

Given this addition to the valuation rule, we can use
the definition of autoepistemic extension above for the
case in which A contains quantified-in expressions. How-
ever, we will make one technical stipulation that will be
useful in later developments, to insure that there are
enough "free" names in the language L[:

The language L contains a
constants C which cannot
set A of an extension.

count ably infinite set of
be wused in the premise (4)

A given individual x may have none or many names
iIn a model, a circumstance which leads to some inter-
esting behavior of the fixed-point equation of Definition
2.1. To explore some of these, we first make the observa-
tion that the revised definition of satisfiability for modal
atoms does not perturb the extensions of any set A that
contains no quantified-in expressions.



EXAMPLE 281 Let A = {Pa}). There is a single exten-
sion T of .4, with To - ('n(Po). Therefore, we know
that LPa and —LPb are in T. By the valuation rule
for modal atoms (3), Ja.LPx will be true in (I,To)
if there is some individual x such that x — v(a). Ev-
ery interpretation / has some such individual, and
hence Jx.LI?x 1s true in every (/,7b) model of A,
and hence in 7\

Another interesting sentence contained in T is s
Vr.x#a O —~LIPx. To see why this is so, let x be
an individual with ,#wv(a). Since Pa is the only
ground occurrence of the predicate in 7b, it must
be the case that LPx is false in any model (7,7b)
of A; and hence s is an element of T.

On the other hand, consider a similar sentence .% :
Ve.x = b D --LP2z. It might be suspected that s’
is a member of 7', but this is not the case. For
although x is the denotation of/;, it may also be the
denotation of a in some first-order interpretation,
and for (his interpretation, LPx will be true. So s’
will not be true in all (/,7b) models of A

This example highlights a curious situation that oc-
curs when knowledge of properties of individuals hinges
on having a name for that individual: the epistemic op-
erator expresses knowledge of the intension of a term.
Let, us take P to be the property of being rich, a to be
the mayor, and b to be the former police chief. We have
proof thai the mayor is rich (L FPa) and no evidence that
the former police chiefis (m/L FPb). These are statements
about the intension of the terms a and /;, that is, the
mayor, whoever he is, is rich. On the other hand, the
expression LPx when x is a quantihed-in variable says
that we know Pc to be true for some intensional concept
r whose denotation is x. Now Iif we were to know that
a particular individual x is the former police chief, we
still cannot, say that we have no evidence that x is rich,
because x may also be the mayor.

Another consequence of the intensional nature of the
epistemic operator is that even though a universal state-
ment may be true in an AE valuation, its substitution
instances may not. Consider the valuation (7,T), where
=) a=bAVe. Px O xz=a and r = Cn(Pa). We must
have =; r Vo .(I.PaV ~Pz), because if x = vla), LPa is
true; and if not, 7 Px is true. However, the substitution
iInstance LPbV ~Pb is not true in this valuation: LPb is
not a member of V, and Pb is true in 7 because a—ob.

Finally, we note that the Barcan formula VeLPx D
LV2rPa is true 1n every AE valuation, while the converse
INxPx D Vxl.Pa2 may he false. The reason for the latter
Is that even though every individual x has the property
P, some individuals may not be given a name in the AE
valuation, and so LPx will he false.

This scheme for extending the semantics of L valu-
ations to the quantified-in case is similar to that pro-
posed for the simple epistemic operators in [Konolige,
1984]. It differs from the approach of [Levesque, 1982,
Levesque, 1987] in that it is based on the intension of
terms rather than their denotation. Nevertheless there
are many points of similarity between the two approaches
that we have not investigated.

3 MIN Theories

So far we have only looked at extensions of sets of first-
order sentences. The normal definition of extension
(2.1) earned over to the extended language, with only
a change in the valuation rule for modal atoms, and
a slight restriction on the constants appearing in the
premise set, We now examine a class of first-order sen-
tences that we call MIN theories. Any such theory has
the form

W J{Va(=LPiz D - Px)}, (5)

where W is a finite set of first-order sentences and the P,
are a sequence of predicates. We write M(W; P1, .. . P,)
to indicate the MIN theory of W over the predicates P;.

The idea behind MIN theories is to select AE valua-
tions in which every individual not known to have the
property P/ does not have this property, i.e., to minimize
the extension of each Pi.

EXAMPLE 3.1 Let 7% = {Fa}, and let S -
Cn(Ve.Px = r=a). Every valuation (IS) which
satisfies M(IT; P) makes Px true for x — v(a), and
false for every other x. Thus, if we define T by

T = {p|M(W; P) k=g ¢’} )

it is clear that 7b — S, and hence T is an extension
of M(IT; P). In fact it is the only extension.

Let IT - {Pu V P/;}, and as before let &5 =
Cn(Vae.Pax = x—a). Again we can show that ev-
ery valuation (I, §) satisfying M(W,P) satisfies
Ve Pr = x=a, and so S is the kernel of an AE
extension of M(W'";P). In this case the extension
IS not unique, there is another one whose kernel is
Cn(Vx\Px,* = x.—h). The sentences which these two
extension have in common are all first-order conse-
quences of (Va.Pa=x = a)V (V. Pz =z = b).

Let W - {JaPx}, and let S = Cu(Vz. Pz = z=a).
Again we can show that every valuation (7,5) sat-
isfying M(IT;P) satisfies Vx.Pa: = z~a, and so S
generates an AE extension 7'. But the choice of
the constant a was arbitrary, and we can use any
other constant in defining S. fience there are an
infinite number of extensions of M(W;P); the sen-
tences they have in common are the first-order con-
sequences of F'x Pur.

These examples are very suggestive of a correspon-
dence between MIN theories and the minimal models of
W. However, there is one essential point of difference.
A model / of W is minimal in P; if there is no other
model with, the same universe and denotation function
whose extensions of /\ are properly included in those
of I. (Note that we are assuming here that the exten-
sions of all predicates oilier than the Py can vary across
compared models. In the next, subsection we consider
the case of fixed predicates.) Comparisons are not made
between models with different domains and different de-
notation functions, and hence choosing only the minimal
models of W will not lead to any conclusions about the
equality relation or the size of the domain not already
apparent in W (this point lias been noted in [Etherington
and Reifer, 1984]). On the other hand, this is not true
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of the extensions of MIN theories: an extension can con
tain conclusions not present in \V about equality anions,
terms. For example, the set W = {7Pa) a — b} does
not have a = b among its fust-order consequences, Vyet.
the single extension of M(W, P) does. To get the cor-
respondence between MIN theories and minimal models
correct, we need to fix the interpretation of equality in
the former.

3.1 Fixing predicates

We extend MIN theories by adding a set of predicates,
the fixed predicates, to the original definition. A MIN
theory now has the form

VV 1 {V.’E(""LP;J‘ :) "'\Pz‘.’lf)}
Ui {V2(=LQz D =Q;x)) (
;s {VI(""!L“""‘IQJT D QJJ)} ,

where the Q; are a sequence of predicates. We write
MW; P1, ... P,,Qf1,..... Qm) to indicate the M1N theory
of W over the predicates P; with Qj fixed.

Note that, to fix Q, both Q and its negation —~Q are
minimized. In general this will lead to multiple exten-
sions in which various combinations of Qx and —Qx hold
for each individual x.

—
“—
b

EXAMPLE 3.2 Let W = {-ﬂPaD Qa}. The M1N the

ory M(W'P\Q) has two classes of extensions: one
class contains {7Pa,Qa}), while the other contains
{7Qa,Pa)}. Thus the minimization of P does not
force the acceptance of Qa in every extension.
The presence of a fixed Q actually creates an infi-
nite number of extensions because of the presence
of the countable set C of constants in L We will
consider extensions to be equivalent if they differ
only in sentences containing these constants; in this
case, there are just two nonequivalent extensions.

The equality predicate can be fixed, just as any other
predicate, and it is the class of MIN theories M(W; P\—)
that we consider in relating extensions to minimal mod
els: call these MIN= theories. We now develop the re-
sult that a first-order sentence is true in the P-minimal

models of W just in case it is true in every extension of
W((W,;P-=).

3.2 Parameter models

A first-order interpretation in which every individual x
IS denoted by some term is called a parameter interpreta-
tion. Herbrand interpretations are one type of parameter
interpretation, in which every term denotes itself. Pa-
rameter interpretations are more general than Herbrand
interpretations, since in the former two terms can refer
to the same individual.

Just as Herbrand interpretations are a sufficient se
mantics for universal prenex sentences, so too parame-
ter interpretations suffice for sets of first-order sentences.
By "suffice" we mean that any such set W has a model
if and only if it has a parameter model. Note that this
statement is not true in general if W can contain mem-
bers of C: for example the set {3z—Pzx, Pcy, Pco, ...},
in which Pci is asserted for every constant ¢; € ', has a
model but no C-parameter model.
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A second interesting property of parameter models is
that the Pminimal parameter models of a. finite set W
are sufficient, for minimal entailment, as we now show.'

PROPOSITION 3.1 Let ¢ he a sentence ofLy —C (the

base language, with out the constants C), and W a
set of sentences of the same language. Then ¢ € L
is true Iin all P-minimal countable models of Wif

and only if it is true in
models.

all  P-minimal parameter

Proof. =~ Suppose ¥+ ¢ has aP-minimal count-
able model /. Let the constants C' be those
members of C not mentioned by <p). We are
free to construct a model V that is the same as
[/, but in which all elements of / are denoted
by one of C. V must be minimal; if it were
not, then there is another model /" with the
same denotation function and universe as I,
but with a smaller extension of P. We can con-
vert |”" into a model with the same denotation
function as /, which must then be less than /,
a contradiction.

In the converse direction, if W + ¢ has a
minimal parameter model, it obviously has a
minimal countable model.

Finally, as the next proposition shows, parameter
models are the only ones we need consider in forming
extensions of MIN= theories.

PROPosITION 3.2
of a MIN=
eter model.

Any interpretal1on (/, T) is a model
theory M(W; P, —) only if | is a param-

Proof. Suppose / isn't a parameter model.
Then there is some element e of the universe of
17 such that ¢ is not denoted by any term. Thus
both -Lx =y and ~Lx#y are true for x=e, and
this leads to a contradiction in M(W,.P;=).

3.3 The main theorem

For any P-mininial parameter model / of W, we call the
P-diagram of / the set of ground literals in P and = that
are true in |. We first, show that the diagram of / picks
out a unique extension of M(W;P;=), for which / is a
model.

PROPOSITION 3.3 Let D be the diagram of a P-
minimal parameter model | of W. Then (I, D) is a
model of some extension of M(W; P; =).

Proof. This is a sketch of the proof. Let

S={¢ € Lo[M(W;P;=) =D ¢}

We first show that the restriction of S to ground
P and equality literals is exactly the set D.
Note that D is complete with respect to equal-
ity literals: for all terms a and 6, either a=b
or a#b is in D, but not both. From the
fixing of equality in M(W,;P,;=), all of these
are also contained Iin 5. D is also complete

Note: we will often use a single minimized predicate P
In propositions in the rest of this paper; the extensions to
multiple predicates is obvious.



with respecet to P-literals. From the sentence
Ve LPPr D =Pr S contains all negative -
stances of the P literals of 1. It also must
contain all positive instances; if 1t did not., we
could construct a parameter model of W whose
[’-cxtension 1s less than that of 1, a contradic-
tion. Fially, 5 s consistent because (J, D) is
a model of M(W; P;=).

(‘onsider the equation

I'= {$IM(W; P;=) 5 ¢).

Simce S and 1) agree on P and =, the 735 must
he equal to S, Hence T' 1s an extension of
MW 2, =), and (1, D) 1s a model of it.

oxanment 3.3 This example s from David Kueker (as
reproduced in [Perlis, 1986)). Let W be the set
{Pa, Yo Pz = Ps(x), Ve.a#gs(z), s(z)=s(y) D
r=y}. A P-mimmal parameter model I satis{ying
thisis the Herbrand model with Pz true for a and all
terms of the form s(s(s(. .. s(a)...)), and false for all
other terms. s isomorphic to the natural numbers,
hence the sentence Ve Px D ((-3dy.z=sy) D z=a))
s satisfied by . In fact, this sentence 1s 1 every
extension of the MIN= theory of W.

We now prove a smtable converse of the above propo-
sition, namely, that the models of every extension of
MV 2 =) are nimmmal in P,

PROPOSITION 3.4

Let T be an caxtension of the theory
N(W =), If (1, Ty) s @ model of M(W; P =),

then I s a P-mimimal parameter model of W,

Proof.  'I'lus 1s a proof sketch. I'irst we show
that Ty 1s complete with respect to equahity and
I>-literals. For equality, if Ty doesn’t contain
a=0, then 1t must contain a#b by the equality-
fixing sentence of M(W; P;=). For P-literals,
if Ty doesn’t contain ?a, 1t must contain ~Pa
by the £2-minimizing sentence of M(W; P; =).
I'rom Proposition 3.2 we know that [ must
be a parameter model. Suppose 1 1s not P-
nunnnal, and 7’ 1s a similar parameter model
of W less than 1. Then (I',13) 1s a model of
M(W, P; =), because the equality sentences are
satisfied, and the P-minimizing sentence also 1s.
But then the fixed-point equation for 1" does
not. hold, since 1y 1s complete with respect to
P-literals, and I’ does not satisfy Typ.

By Proposition 3.3 above, every P-minimal parame-
ter model of W satisfies the kernel of some extension
of M(W;P=). Conversely, by Proposition 3.4 above,
the kernel of every extension of M(W;P;=) are the sen-
tences true of some class of P-minirnal parameter models
of W. Given the sufficiency of parameter models for min-
imal entailment (Proposition 3.1), we have the following
theorem.

THEOREM 3.5

The first-order
ofM(W,; P;=)
P-minimal

sentences S ftrue In every extension
are exactly those sentence ftrue in the
models of W.

Remarks. From the above theorem we can clarify the
relationship between predicate circurnscription and au-
toepistenmie logie. 'The semantics of the second-order cir-
curscription scherma Circum(A4; P; Z), with every pred-
icate other than /7 1 the tuple of varying predicates
7,8 griven by the Pomimimal models of A. Thus, the
lirst-order conscquences of a predicate circumscription
of this form are exactly the sentences common to all ex-
tensions of a corresponding MIN= theory M(W; P, =),
holding equality fixed. This result could be extended to
the parallel circumseription of a tuple of predicates in an
obvious way,

'rom the results of [de Kleer and Konolige, 1989],
we know that fixed predicates are messential, and that
any crcumsceription mvolving fixed predicates can al-
ways be reduced (o one without. For example, the cir-
cumscription Circnm(A; P2, 2) with Q € Z 1s equiva-
lent to Circum(A A Q'=-Q; P, Q,Q"; 7)), where Q' 1s
a new predicate constant. The corresponding construct
lor MIN= theories is to fix ¢ using M(W; P, =, Q) (note
that there 1s no need to mtroduce a new predicate con-
stant. for =(Q). Hence the first-order consequences of par-
allel predicate circumsenption with fixed predicates are
given by the corresponding MIN= theory.

On the other hand, there 1s no way to translate in gen-
cral from autoepistenne theories to circumscription. The
basic problem (noted in [Tmiehnski, 1987]) 1s that cir-
cuinscription cannot distinguish between the epistemic
idea of knowing PP and the simple truth of Px. Thus,
cven without the complications of quantifying-in, there
15 1o adequate circumscriptive translation for sentences
such as LPa A ~L-Qa D Qa. Further, even 1n the re-
stricted MINT theories which have a natural correspon-
dence to arcumscription, AL logic is finer-grained than
circumscription. Ihach extension of a MIN~ theory yields
a scl of sentences true in an equivalence class of some
minimal model of A, not all of them.

In the next section we use Theorem 3.5 to explore some
1ssues of reasoning about equality 1n circumscription.

4 Reasoning about Equality

In defining P-minimal interpretations, we have specified
that two interpretations must have the same domain and
denotation function in order to be comparable. This cor-
responds to predicate circumscription with a fixed inter-
pretation of terms.

ExamprLr 4.1  Consider a simple abnormality theory
(sce [McCarthy, 1986)), with W = {Vz.Pz A
—ab(z) D Qz, Pa, »Qb} (this is a variation of an
exar.ple in [Perlis, 1986]). We would expect Qa to
be a consequence of Circum(W; ab; @), but it is not.
The reason 1s that there are ab-minimal models of
W in which b and « refer to the same individual,
and —Qa 1s true.

This example is typical of the way in which circum-
scription handles equality: it does not allow any new
conclusions about equality, because the denotations of
terms are fixed across comparable models. However, it
Is also possible to compare models with different denota-
tion functions; the corresponding predicate circumscrip-
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tion allows functions to vary, as well as predicates (see
[Lifschitz, 1984]).

EXAMPLE 4.2 Consider a simple abnormahty theory
with W = {Vaz.P2 A —ab(z) D Qu, ab(a), ab(h)}.
In tins case, a=b 15 a
Circum(W; ab; (,a, b). The reason s that, 1f we al-
low mterpretations with different denotations for «
and b to be comparable, the interpretations in wihach
a and b are 1dentical are obviously mimunal i ah.

From the above example, it seems that allowing terms
to vary leads to the danger of unexpected identification
of terms, at least if we do not have axioms that explicitly
say that differing terms refer to different individuals We
would like to treat equality among terms somewhat in
between the two extremes of fixed and varying denota-
tions: to remain agnostic about the equivalence of terms,
but still be able to draw basic default conclusions.

The MIN~ theories, because of their relation to /m'-
minimal models, always leave the denotations of terms
fixed, and so fall prey to the same problems with equal-
ity as circumscription with fixed terms. However, we
can relax the restriction on denotations by using M1N
theories, without the sentences fixing equality.

EXAMPLE 4.3 Redoing the previous examples, let

W = {Vz.Px A -ab(z) DO Qx, Pa, -Qb}. There
1s one extension of M(W;ab), whose kernel s
Cn(W, Az. Pz D z=a, a#b}. lere the lack of
equahty fixation leads to the conclusion that « and
b are different individuals.
For the abnormality theory W = {Va. PuA—al(x) O
Qz, ab(a), ab(b)}, on the other hand, the exten-
sions of M(W;ab; =) and M(W;ah) are the same:
getting rid of the equality-fixing sentences does not
lcad to the 1dentification of a and 0.

MIN theories without equality fixation are thus inter-
mediate between a fixed and varying interpretation of
equality, and seem to be the right level of variation for
commonsense reasoning in abnormality theories.

5 Conclusion

We have extended the language and semantics of au-
toepistemic logic in a natural way to the case of
quantified-in variables. By looking at a class of A10 the-
ories, the MIN~ theories, we showed that all of the first-
order consequences of predicate circumscription could be
expressed Iin a simple way in autoepistemic logic. This
is the first result on the relationship of these two logics
for the case of nonfmite domains. The results have been
used to shed some light on the treatment of equality in
commonsense reasoning.
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