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Abstract

The foundations of a class of logic programming
systems with the expressive power of full first-order
logic and a non-monotonic component is addressed.
The underlying refutation method is an extended
version of weak model elimination. The first ques-
tion addressed is how to compute answers with weak
model elimination when queries and programs are
sets of arbitrary clauses, which is completely settled
by a soundness and completeness result. The ques-
tion of computing only definite answers is also
settled. Then, the problem of computing answers is
rediscussed when the logic programs also include a
finite set of defaults.

1. INTRODUCTION

This paper addresses the foundations of a class of logic
programming systems with the expressive power of full
first-order logic and a non-monotonic component.
Systems in this class provide a direct generalization of
pure Prolog and they can be implemented using the
same technology as Prolog processors. The discussion
centers on the underlying refutation method, which is

an extended version of weak model elimination
(loveland [1978]) enhanced with defaults (Reiter
[1980]).

The first contribution of this paper consists in defining
an adaptation of weak model elimination (WME) that
is sound and complete with respect to computing
answers when the logic programs and queries are
expressed by sets of generic clauses. The proofs of
these two results are far more complex than the corre-
sponding results for SLD-resolution (see Lloyd
[1984]), the basis of Prolog systems. The question of
computing just definite answers is also settled, using a
new result about refutations in WME.

Negation within the scope of WME has the classical
meaning. The second contribution of this paper then
refers to extending WME with defaults to capture

non-monotonic reasoning. Within this broader scope,
the notion of an answer to a query posed to a logic
program raises interesting questions that are briefly dis-
cussed. Defaults provide a much more flexible mech-
anism than negation by finite failure (Clark [1978]),
the treatment of negation commonly adopted to
extend the expressive power of logic programs and
queries in Prolog.

A detailed account of the results reported here can be
found in Casanova et alii [1988] and Guerreiro et alii
[1989]. A logic programming systems based on model
elimination is also described in Silva et alii [1989].

The organization of this paper is as follows. Section 2
introduces the notions of program, query and answer.
Section 3 reviews the weak model elimination method
and extends it to compute answers, describing a vari-
ation for definite answers. Section 4 introduces an
adaptation of the method that deals with a special class
of defaults. Finally, section 5 contains the conclu-
sions.

2. PROGRAMS, QUERIES and ANSWERS

A program P is a finite set of clauses and a query Q is
a disjunction of conjunctions of literals, that is, a
quantifier-free formula in disjunctive normal form. A
query is definite iff it is a single conjunction of literals,
otherwise it is indefinite.

An answer A to a query Q over a program P is either
False or a dissjunction of instances of conjunctions in
Q over the alphabet of P and Q, that is, a disjunction
of conjunctions obtained from those in Q by substi-
tuting variables by terms of the alphabet used to write
P and Q. An answer is definite iff it consists of a
single conjunction, indefinite (Reiter
[1978]).

otherwise it is

An answer A to Q over P is correct iff P logically

implies VA, the universal closure of A. Finally, an
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answer A to Q over P is more general than an answer
B to Q over P iff A logically implies B. We let False
be an answer simply because it will be the most
general answer to any query over an inconsistent
program.

For example, the following set of clauses is a program,
that we call DIC:

1. program(a,fortran)
2. program(b,pascal)
3. program(c,fortran) program(c,pascal)
4. calls(a,b)

5. calls(b,c)
6. —calls (xy)
7. ~calls(xz)

depends(x,y)

~depends(zj') depends(x,y)

Thus, clause (3) indicates that c¢ is an ordinary'
program written in fortran or pascal and clauses (6)
and (7) indicate that x depends on vy if x calls y direct
or transitively. The formula below is a query, that we

call DEPJ[a]:
(depends(a,x) A program(x,pascal)) v
(depends(a,x) A program(x,fortran))

It asks for a program written in fortran or pascal

that the program a depends on. An answer A to
DEP[a] over DIC would be:

depends(a.b) A program(b,pascal)

Indeed, the conjunction in A is an instance of the first
It is in fact a correct answer
A second correct

conjunction in DEPJ[a].
since DIC logically implies VA.
answer to DEP[a] over DIC would be:

(depends(a,c) A program(cfortran)) v
(depends(a,c) A program(c,pascal))

3. COMPUTING ANSWERS WITH WME
3.1 Weak Model Elimination

To achieve completeness, the inference rules of WME
sometimes maintain the resolved literals within the
derived clauses and keep the literals (resolved or not)
ordered within a clause. To distinguish these extended
clauses from the ordinary clauses, they will be called
chains. Moreover, resolved literals in a chain will be
enclosed within brackets.

More precisely, a resolved literal (or a R-literal) is an
expression of the form [L], where L is a literal. An
element is a literal or a R-literal. An elementary chain
is any sequence of literals and a chain is any sequence

of elements. The symbol o will denote the empty
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chain, which is elementary by definition.  Fach cham
C represents, by convention, the universal closure of
the disjunction of its literals, in the sense that any
structure for the first-order alphabet in guestion satis-
fics C if and only if it satisfies the formula that C
represents.  Hence, the R-bierals of a chain do not
influence its semantics.  From these definttions, it
should be clear that clementary chains and clawses arc
one and the same concept and will be used inter-
changcably in this text.

The next definitions are basic for the inference rules of
the method and assume familiarity with the notion of
unification. In what follows, B'B” denotes the concat-
enation of two chains B” and B” and |L| indicates the
atomn of a literal L. Two hterals L” and L” can be can-
celled by a substitution O if and only if 0 is a most
general unifier (m.g.u.) of {{L°[,J)L"]} and L0 and L"0
arc complementary.

Let A be a chain and let A” be an clementary chain.
Iet B be a renaming of the vanables of A” such that
A”[} has vanables distinct from those of A", Let L be
the leftmost clement of A’ and suppose that L7 is a
literal. A chain A 1s an extension of A" by A" 3f and
only if there exists a literal L” of A” and a substitution
) such that L” and L"B can be cancelled by O and
A=B"B’, where B” is the chain A”B) with the literal
L“BE removed and B’ is a chain AQ) with the Lteral
L'0 replaced by [L°B].

Let A' be a chain. let L7 be the leftmost element of
A’ and suppose that L7 #s a Jieral. A chan A 1s a
reduction of A’ if and only i there exists a R-literal
[M’] of A” and a substitution (} such that L’ and M’
can be cancelled by 0 and A is A’D) with the Literat L0
removed.

A chamn A 15 a comtraction of a chain A’ if and only if
A 15 the chain obtained by removing from A’ all
R-litcrals that are to the lcft of the leftmost literal. If
A has only R-literals, the result becomes the empty
chain.

A chain A 1s a full extension of A’ by A” f and only if
A 15 the contraction of an extension of A” by A", A
chain A is a full reduction of a chain A’ if and only if
A 1s the contraction of a reduction of A’.

The weak model! elimination method, WME, works
with the class of all sets of first-order chains, it has no
axioms and two mference rules, full extension and full
contraction, defined as follows:



Full Extension:

if A" and A" are chains and
A is a full extension of A’ by A"
then denive A from A’ and A”.

Full Reduction:
if A’ is chain and

A is a full reduction of A’
then denive A from A7

A WMIL-deduction of a chain C from a set S of ele-
mentary chains 1s any finite sequence of chains
£=(Eq,....E,) such that C is the last chain of F, there
ts i 2 n such that Eq,..E;, the prefix of E, consists of
chains tn S and, for cach jeli+ 1,n], Ej 1s denived from
Ej.1. the parent chain of E;, by full reduction or full
¢xtension, n the latter casc using an auxifiary chain
from the prefix of £, The chain E; 15 called the initial
chain of E. A WMUI-refutation from a sct of clemen-
tary chains S 1s a WME-deduction of the empty chain
from S.

The WAME method defined above is slightly different
from the onginal version of Foveland [1978] but the
results therein can be casily adapted 10 establish that
HAE is refutationally sound and complete.

3.2 Computing Answers with WME

Given a WME-refutation R from the clementary
chains in a program P and in the clausal representation
of the negation of the existential closure of a query Q,
denoted by CL{73Q), 1t s possible to show that the
substitutions applied 10 the free vanables of chans in
CL{™3Q) duning the construction of K induce a
correct answer 10 Q over P, However, to recover such
substitutions 1$ not exactly simple since CL{ ™ 1Q)
may possibly contuin more than one chan, that may
also be reused in R, This section then redefines the
notion of chain and the inference rules of WAME to
register such substitutions, using answer hterals (Green
[1969]).

An activated chain is a pair of the form (C,L), where C
is a chain and L is a set of literals. The activation of P
is the set activate{P) consisting of the activated chains
(C,0), where CEP. The activation of a query Q of the
form Qqv..vQ, is the set activate(Q) of activated
chains (~Q;.{r;(x;)}), i=1,..n, where ~Q;, by con-
vention, is the chain consisting of the complement of
the literals of Q;, X ; is a bst of the variables of Q; and
r, is a predicate symbol, not in the original alphabet,
whose arity is equal to the length of x;. The literal
ri(X;) is the answer literal for Q; in the activation of Q.

The activation of a query Q therefore produces a
clausal representation of the negation of the cxistential
closure of Q, with cach elementary chain annotated
with an answer litcral whosc function will be to record
the substitutions applied to the variables of the chain.

But, to effect this recording, the inference rules of
WME had to be modified as follows.

An activated chain (A,L) is a full activated reduction of
an activated chain (A’L) of and only if A 15 a full
reduction of A” with mpu. () and L=L"6. An acti-
vated chain (A\L) 1s a full acifvated extension of (A’,L")
by an clementary activated chain (A”L") if and only if
A is a full extension of A” by A”, with mgu. 0 and
renanung ]3 of A and L=L{U U L"Bﬂ.

An answer A to Q over P 1s WAME-computed if and
only if there i1s an activated WMI:-refutation R from
activate{Py U activaie(Q) such that cither R terminates
in ([J.0), in which case A must be equal to False, or
R terminates in ({0 ,L), with L # ¢, and A is a disjunc-
tion of all conjuncts B such that there 1s
(~Q;.{r{(xp})E activate(Q) and r(t)EL such that B is
equal to Q0. where 8= {X, t}.

The foltowing ¢xample illustrates how the method
computes a definite answer to an indefinite query.
Consider again  the program DIC and the query
DEP]a] introduced in section 2. An  actuivated
WMI -refutation from the set of chains in the act-
vation of INC {chains | 1o 7) and the activation of
DEP[a] (chains & and 9) 1s:

(program(a,fortran), 0)
{program(b.pascal), 0
(programic,fortran) program(c,pascal), 0
(calls(a,b), O
(calls(b,c), M
( —calls(xy) depends{x). 0)
(—calls{x,z) —depends{zy) depends(xy), O)
( —depends(a,u) —programiufortran), {ry{u)})
{ — depends(a,v) — program{v,pascal), {ro(v)}}
. {—calls{ay) [ ~depends(ay}]
—program(y,pascal), {r,(+)}) (from 9 and 6)
. {—program(b,pascal), {ry(b)})
(from 10 and 4)
12. (0, {ry(b)}) (from 11 and 2)

O

—
=

—_—
—

Henee, A= depends{a,b)Aprogram(b,pascal) 1s a
WME-computed answer to DEP[a] over DIC since
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ra(b) in {12) indicates that the variable v of the chain
in (9} was substituted by b.

The WME method, modified as described above, is
sound and complete for computing answers in the fol-
lowing sensc:

Theorem 1: (Soundness and Completeness Theorem)

Iet P be a program and Q be a query.
(a) Every WMLE-computed answer to Q over P 1s
correct.

(b) Given any correct answer to Q over P, there 1s a
WMii-computed answer which is morc general.

We conclude this sechon with another vanation of
weak model climination that computes only defimte
answers.

let S be a set of activated elementary chains and T be
a subset of 8. We say that an activated
WME-refutation R from 8 has initial support from T
iff the imitial activated chain of R is in T and no acti-
vated chain in T is ever used as an auxiliary chamn in
derivations in K.

Let Q be a query to a program P. An answer A to Q
over P is WME-computed with initial support from Q
f there is an activated WME-refutation R from acti-
vate(P) U activaie(Q), with initial support from
activate(Q}, that computes A.  Note that, since just
one chain from activate{Q) is used in K, A is a definite
answer. In fact, we can prove that:

Theorem 2: (Soundness and Completeness Theorem
for Definite Answers)
Let P be a program and Q be a query.

{a) Let A bec an answer to Q over P that is
WME-computed with mitial support from Q.
Then, A is definite and correct.

(b) Given any definite correct answer A to Q over P,
there 1s a definite answer B to Q over P such that
B is WME-computed with imitial support from Q
and B is more general than A.

4. EXTENDING WME WITH DEFAULTS
4.1 Clausal Defaults

A clausal default is any expression of the form "A:C”,
where the prerequisite A of the default 15 a conjunc-
tion of hiterals and the consequent C of the default is an

elementary chain. A clausal default theory is a par
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A =(P,D), where P is a finite set of elementary chains
and D is a finite set of clausal defaults. We will denote
by consequent(D) the set of the consequents of all
defaults in D. We also accept :C” as a clausal default.

The clausal default “"A:C” should be understood as a
convenient way of expressing the open normal default

AME , in the notation of Reiter [1980], where F is a
disjunction of the hiterals in the clavse C. Thercfore,
since we will imit oursclves to clausal defaults, we will
be concerned with a particular case of open normal
defaults.

The semantics for clausal default theories follows from
the concept of extensions for open default theones.
Then, given a clausal default thecory A=(P.D), a
clausal default "A:C” 1in D should be mnterpreted as a
generator of the set of defaults “A0:CO”, for all substi-
tutions (0 of the variables in A and C by terms of the
Herbrand universe for the current alphabet.  The
clausal default “A0:CO” therefore reads: C8 can be
assurned “by default” if the prerequisite Al) is believed
and CH is consistent with the belicfs.

Let A=(P,D) bc a clausa) default theory and let Q be
a disjunction of conjunctions of literals. let
CL(—3Q) again denote a clausal representation of the
negation of the existential closure of Q. Intuitively, a
refutation with defaults from A and Q is a sequence of
WME-refutations  such  that  the first s a
WMI:-refutation from the chains in
P U CL{ ~ Q) U consequent(D) with initial chain in
CL({ —3Q) and, after the first, cach WMIi-refutation
intends 1o refute the negation of the conjuncuon of the
prerequisites of the defaults used on the preceding
WME-refutation, with the approprate substitutions,
from the chains in P U consequenti(D) (but not in
CL(—1Q)). The scquence should also satisfy a global
consistency test, verifying if the use of the defaults is
acceptable.

To record the substitutions affecting cach use of each
default in cach WME-refutation in the sequence, we
will use default literals in the same way we used
answer literals for computing answers. Ilence, the
indexing of A=(P.,D) is the set of pairs of the form
(Ci,ﬂ), where C,€P, or the form (Ci,{ﬁi(ii)}), for cach
default “A;:C;” in D, where X; 1s a list of the variables
occurring in A; and C; and &, is a ncw predicative
symbol whose anty is the length of X;. The indexing
of Q consists of the set of pairs (Ci,@), where
C,eCL{—3Q). Similarly to the answer literals, &;(X;)
will record the substitutions applied to the varables of



the default "A;:C;". For that purpose, the inference
rules of WME and the notions of WME-deduction
and WME-refutation are also modified to account for
dcfault literals similarly to what was described in
section 3 for answer lLiterals.

Let R be an indexed WME-refutation from the chains
in the indexing of A and Q. Suppose that R termi-
nates in ([1,8). A default y is returned by R iff there
is a pair (C;,{§{(X)}) in the indexing of A, corre-
sponding to some default “A;:C;” in D, and there exists
a literal of the form 8,(t) in S such that y can be
written as "A0:C;0”, where 0= {x/1}.

Let “A;:C” be a default in D and (C;,{8;(X;)}) be the
corresponding pair in the indexing of A. This default
18 fired in R iff exists an indexed chain in R denved by
indexed full extension with (C,,{8;(X}}) as auxiliary
chain. Then, cach default “A,:C;” fired 1n R, as well as
cach default comresponding to a default literal in the
initial chain of R, if any, gencrates a descendent default
in the sct of defaults retumed by R.

A WME-refutation sequence with defaults from
A=(P.D) and Q is a finitc sequence R=(Ry,...,Ry) of
indexed WML -refutations such that:

1) Ry is an indexed WME-rcfutation from the
indexing of A and the indexing of Q, with initial
chain in indexing of Q;

2) for 0% i =K, let D; be the set of defaults returned
by Rj, M; be the set of default literals corre-
sponding 1o the defaults in B;, D be the set of
defaults in D; which arc the descendents of the
defaults fired in R; and B; be the chain repres-
enting the negation of the conjunction of the pre-
requisites of all defaults in DUV, Then:

a) For 1£iSk, R, must be an indexed
WME-refutation, with  imtial  support
{{B;_1.M;_)}, from the indexed chains in the
mdc.xmg OfA u {(Bi-bMi-'l)};

by D = 9,

¢} (Consistency Test). let € be the set of the
consequents of all defaults occumng n Dy,
Then, therc is a substitution § of the variables
occurring in C by ground terms of Herbrand
universe over the current alphabet such that
P U C0 is satisfiable.

It follows from the results in Reiter [1980] and from
the soundeness and completeness theorem for com-

puting definite answers that the WME method,
adapted to account for clausal defaults as described
above, 1s refutationally cormrect and complete.

4.2. Computing Answers with Defaults

A program with defaults is a pair A= (P,D), where P is
a finite set of elementary chains and D is a finite set of
clausal defaults. The notions of query and answer are
not modified. The notion of comrect answer is now
based on the notion of extensions of default theones.

The computation of answers now combines the two
notions described in sections 3.2 and 4.1:  activation
and indexing. Then, the inference rules now work
with tripics of the form (C.LLM), where C 1s a chain, L
1s a set of answer hterals for computing answers of a
query, following the description 1n the section 3.2, and
M is a set of default hterals for monitonng the defaults
used in a refutation, as described in section 4.2,

The defintion of the WME-refutation with defaults
immediately induces the following notion of computed

answer. Let A= (P D) bc a program with defaults and
Q bec a query 1o A, An answer A to Q over A is
WME-computed by defaults ff there exists a
WMI-refutation with defaults R from the activation
and indexing of A and Q such that the last refutation
in R terminates with (3,S,E), the consistency test for
R uscs the substitution 0 and either $=0, in which
case A must be cqual 1o False, or $*@ and Ais a
disjunction of all conjuncts B such that there 1s
(~Q.{r;(x)}.0) in the activation and indexing of Q
and there is r(1)eS such that B is equal to Qv0,
where ¥ = {Ei,’f}.

This defiution is not reasonable, though, because 1t
admits answers with arbitrary instanciations, coming
from the substitution O generatcd for the consistency
test. On the other hand, by the semantics itself of
open defaults, it is not possible to abandon such sub-
stitution under the nisk of invalidating the correctness
of WME-refutation sequences with dcfaults.  For
example, let A=(PD) be a program, where
P = {bird(z), —{ly{penguin), —fly{ostrich),
yellow{canary)} and D= {bird(3):fiy(y)}. Consider
the query Q="fly(x). Consider the WME-refutation
sequence with defaults R=(Rg,Ry), from A and Q,
constructed as follows. First, Ry is an indexed and
activated WME-refutation from the activation and

indexing of A and Q:
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{from A)
{from Q}
(from 0.2 by 0.1)

0.1 {fly(),0,{8(3»})
0.2 ( ~fly{x).{r(x)}.0)
0.3 (O.{r(x)}.{8(x)}

Note that Ry returns the default “bird(x):fly(x)".
Hence, Ry must be an indexed and activated
WME -refutation from the chains in the indexing and
activation of A and the chain representing the negation
of the prerequisite of “bird{x) : fly(x)” (the chain
(1.2) below):

1.1 (bird(z).0.0) (from A)
1.2 (— bird{x),{r(x)}.{8(x}})

(from the negation of the prerequisite)
1.3 (L. {r(x)}.{d(x)}) (from 1.2 by 1.1)

Note that the chamn in 1.2 carnies on the set of answer
litcrals and the set of default literals from the chain 0.3.
This is necessary to cotrectly compute answers.

By the definition of WME-refutation sequence with
defaults, we must also test the consistency of the set E
= {bird{z), ~—fly{penguin),  —fly{ostrich},
yellow(canary)} U {fly(x)0}, for some substitution
0 of x by a term of the Herbrand universe of the
alphabet 1n  question. Indecd, by taking
0= {x/canary}, the set E becomes consistent. Hence,
fly{canary} is the answer WME-computed by the ref-
utation R, for this choice of 0.

Note that the choice of 0 is entirely arbitrary. On the
other hand, it 15 not possible to ignore 0, since the set
{bird(z), —fly(penguin), ~fly{ostrich),
yellow(canary}} U {fly(x)}, is not satisfiable. Intu-
itively, the default in D cannot be fired for a substi-
tution of x by, for example, penguin.

To solve the above dilemma, we propose to always
base the consistency test on a class of substitutions
that change each variable by a new constant not in the
original language, whose semantics would be "the
typical individual such that ...". In the current
example, we introduce the new constant Py, under-
stood as "the typical bird". Consider again the
WME-refutation with defaults R, except that the sub-
stitution of the consistency test is now, by definition,
0= {X/Po}. Since, for this choice of 0, the set
(bird(z), ~flyfpenguin), -flyfostrich),
yellow(canary)} U {fly(x)0}, is consistent, we have
that fly(Po) is the new computed answer by the

WME-refutation R. Intuitively, this answer indicates
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that "the typical bird" flies. Note that the introduction
of Py is similar to the Skolemization of the formula
3x(fly(x)), except for the intuitive interpretation of the
Skolem constant introduced.

Using the idea of "typical individuals" we can extend
our concepts to consider answers that, in addition to
indicating the appropriate substitutions as before, pos-
sibly including "typical individuals", point out some
"atypical individuals" or even all "atypical individuals".

5. CONCLUSIONS

Weak model elimination offers an interesting alterna-
tive for the development of logic programming systems
since it works with classes of programs and queries
which are more general than those commonly consid-
ered. Section 3 established soundness and complete-
ness results for computing answers. Section 4
extended these results to a special class of defaults. In
this case, the notion of answer must be appropriately
revised to include the concept of "typical individual”
thus avoiding arbitrary components.
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