
An Eva lua t ion o f DRete on C U P I D for OPS5 Match ing 

Michael A. Kelly and Rudolph E. Seviora 
Department of Electrical Engineering 

University of Waterloo 
Waterloo, Ontario, Canada N2L 3G1 

ABSTRACT 

Rising interest in production systems 
has led to a number of research efforts aimed 
at increasing their execution speed. The 
bottleneck in current implementations is the 
matching required during each production 
cycle. CUPID is a multiprocessor architec­
ture designed to execute OPS5 matching 
using DRete, a distributed version of the Rete 
matching algorithm. This paper describes 
CUPID and the DRete algorithm with 
emphasis on correctness and effectiveness in 
exploiting parallelism in the match operation. 
The Monkey and Bananas program was exe­
cuted on a CUPID simulator running the 
DRete algorithm. The results show that on a 
technology-independent comparison basis, 
and in measured execution speed, that the 
CUPID/DRete combination is several times 
faster than a commercial uniprocessor, a 
VAX 11/785, running compiled OPS83. 

1 . I n t r o d u c t i o n 
With the increasing use of production systems, there is 
growing interest in improving their execution speed. A 
number of researchers are working toward this goal, 
some concentrating on customized uniprocessor 
designs[Quin85,Lehr86] and others on multiprocessor 
architectures[Hill84,Stol84,Ramn86,Gupt87,Oshi87]. 

The work reported here involves the 
CUPID[Kell87] multiprocessor architecture running a 
distributed matching algorithm, DRete [Kell87b]. 
DRete and CUPID were designed in tandem, each tak­
ing advantage of characteristics of the other to ensure 
optimum performance from the union of the two. 
DRete is based on the Rete[Forg82] algorithm, a 
many-pattern/many-object matching algorithm 
designed for the OPS family of production languages 
running on a uniprocessor. The performance of 
CUPID executing DRete has been assessed with 
respect to expected performance and theoretical 

limitation,and using a test simulation. The simulated 
program is the Monkey and Bananas problem. It was 
chosen because it has been used in the past to grade 
the performance of several machines, although it does 
not contain a high potential for parallelism. The OPS 
program used is shown as an example in the OPS83 
User's Guide[Forg85]. As a basis for comparison, this 
program was also run on a VAX 11/785 using a stan­
dard OPS83 compiler. 

The next section contains a brief review of pro­
duction languages, the OPS family in particular, and 
the Rete matching algorithm. The following two sec­
tions describe the DRete algorithm and the CUPID 
architecture. Sections 5 and 6 give details of the simu­
lator and the simulation results and section 7 is a dis­
cussion of these results and their implications. 

2. OPS Produc t ion Languages and Rete 
Match ing 

A production system consists of three parts: 1) a set of 
rules, or productions, defining available operations on 
a problem state, 2) a set of data elements,or working 
memory, which describe the current problem state, 
and 3) a control mechanism which applies the rules to 
the data elements. Each rule is made up of a condi­
tion portion, describing the situation it applies to, and 
an action portion, describing operations to be per­
formed on the data. 

It is the responsibility of the control mechanism 
to determine which rules apply at a particular time by 
matching the data elements to the rule conditions. 
From the result of the match — the conflict set — the 
most appropriate rule is selected — conflict resolution 
— and fired. Firing a rule changes the data, which 
invalidates the match. The match must be recom­
puted before another rule can be selected and so exe­
cution proceeds in a cycle of match, conflict resolution 
and rule firing phases. 

Of the three phases described, the match phase 
is by far the most computationally expensive[Forg84]. 
The Rete algorithm reduces the actual number of 
match operations done by taking advantage of similar­
ities among rule conditions, and the fact that each rule 

84 Tools 



f i r ing generally changes only a small port ion of the 
data set. 

Employ ing the Rete algor i thm means compiling 
the rule condit ions in to a network of interconnected 
condi t ion and memory nodes. Condi t ion nodes may 
have one input for constant value tests, or two inputs 
to jo in data elements, subject to consistent variable 
bindings. Tokens representing changes to the problem 
state caused by f i r ing a rule are injected into the top 
of this network . Memory nodes store part ia l match 
in format ion for use in subsequent comparisons. 

Using the Rete algor i thm, the match phase 
becomes a large set of node activations. At the node 
level, act ivat ion results f rom the arr ival of a token 
representing one or more data elements on an input 
arc. A one-input node may or may not pass a token 
to the next level of nodes depending on the result of 
the constant comparison. A memory node stores an 
incoming token and indicates its arr ival to the two-
input node it is connected to on the next level in the 
network. A two- input node tests variable bindings 
between a newly arr ived token and each of the tokens 
stored in the memory node above it on the opposite 
side. For each successful comparison, a new token wi l l 
be sent fur ther down into the network. Tokens 
emerging f rom the bo t tom of the network represent 
fu l ly enabled rules. 

3 , T h e D R e t e M a t c h i n g A l g o r i t h m 

The DRete matching algor i thm is a distr ibuted version 
of the Rete a lgor i thm. In DRete the match phase is 
par t i t ioned at the token-to-token comparison level. 
The mot iva t ion for this method of par t i t ioning, and 
the expected performance of the resulting algori thm 
are derived f rom the data contained in [Gupt83] and 
[Gupt87b]. This work is an analysis of a number of 
wel l known product ion systems of various sizes. The 
characteristics of these programs related to communi­
cation requirements, and the quant i ty of data f lowing 
in the match phase are shown in Table 1. The differ­
ences between average and maximum values in this 
table ref lect the var iab i l i ty in execution characteristics 
typ ica l of product ion systems. 

DRete is designed to meet the requirements of 
the average data w i t h the f lexibi l i ty to manage the 
maximums. (These data, and the fo rm of DRete, 

guided the design decisions in the development of the 
CUPID architecture.) 

In DRete, par t i t ion ing of one-input nodes is not 
necessary since their activations do not involve any 
stored data. The part i t ioning is done at the two-input 
nodes where approximately 80% of the match phase 
t ime is spent. This part i t ioning is carried out in two 
stages. The f i rst step is to isolate the two-input nodes 
f rom each other by providing separate memory nodes 
for each input they are attached to, as shown in Fig­
ure 1. 

F i g u r e 1 : M e m o r y N o d e R e p l i c a t i o n 

Each two- input node wi th its two memory nodes 
is now an independent process w i th three ports. In the 
second par t i t ion ing step, the two- input nodes are repli­
cated; the number of replicated copies is equal to the 
number of tokens stored at the two memory nodes 
connected to i t . In this way, each copy of a two-input 
node is associated w i t h only one data token — either a 
left or a r ight token. One node copy on each side is 
designated the generative copy; it is responsible for 
storing new tokens. An example of this is shown in 
Figure 2. 

F i g u r e 2 : C o m p a r i s o n N o d e R e p l i c a t i o n 

It is impor tant to note that the size of the image 
of a two- input node is direct ly dependent on the 
amount of data associated w i th i t . Thus, the level of 

Kelly and Seviora 85 



parallelism associated with a node activation is deter­
mined by the amount of data it must process. 

The node copies are numbered as consecutive 
pairs; the left side is even-numbered and the right side 
is odd-numbered. This numbering scheme makes it 
easy to activate both sides of a node from a single des­
tination address, while allowing for a distinction of 
which side of the node the node copy represents and to 
which side the token is arriving. 

The operation of the node copies for an AND 
node is as follows: 

1) A positive or negative token arriving at a 
node copy on the opposite side to its stored token per­
forms a token comparison (if required) between the 
arriving and stored tokens. It passes a token of the 
same polarity further into the network if the com­
parison is successful. 

2) A positive token arriving at a node copy on 
the same side as the stored token will cause the gen­
eration of a duplicate node copy with the arriving 
token attached, if the node copy activated is genera­
tive. The generative quality of the activated node 
copy is then passed to the new node copy. If the node 
copy activated is not generative, the arriving token is 
ignored. 

3) A negative token arriving at a node copy on 
the same side as the stored token will cause the dele­
tion of that node copy if it is not generative, or the 
deletion of only its stored token if the node copy is 
generative. The negative token will be retransmitted 
if the node copy had been activated (not necessarily 
successfully) by a positive token from the opposite side 
earlier in the same match phase. This second function 
is performed to insure the correct formation of conju­
gate pairs by the node as a whole. 

For a NOT node, the activity is similar to that 
described above for the AND node (which keeps node 
interpretation code to a minimum), but a different 
node formation is used; it is a two-level structure 
involving three different types of node copy is used. 
In the top level, the left node copies (the positive side 
of the node) store tokens and the right side stores 
nothing. In the bottom level, only the right node 
copies, which store tokens potentially blocking the pas­
sage of left-side tokens, exist. In a NOT node, the 
retransmission of negative tokens as described above is 
not used. Instead, the bottom node copies are put in 
the path of tokens generated by the top portion of the 
node. The function of the bottom node copies is to 
transmit tokens cancelling positive ones sent by the 
top portion of the node, if data exists which makes the 
positive tokens invalid. 

Wi th two-input nodes partitioned as described, 
the storing of an arriving token and the comparison of 
this token with each opposite-side stored token can all 

be done in parallel. 

The level of parallelism available in the match 
phase as a whole using DRete is related to the product 
of the number of nodes activated and the number of 
tokens at each node — with an adjustment for the 
serial nature of some operations. It is approximately 
300, without hashing of tokens, as discussed in 
[Ke 1187b]. The effect of hashing is to reduce this 
number, but it provides an overall advantage in execu­
tion characteristics, as described in the next sub­
section. 

An important consideration in distributing the 
match operation is how to balance the workload over a 
set of processing elements. In DRete, node/token pairs 
are continually being produced and eliminated as new 
match state is computed. A dynamic load balancing 
algorithm[Kell87b] is used to move new node/token 
pairs away from the processing elements that created 
them. This increases the probability that node copies 
activated at the same time are processed in different 
places. 

Recall that new node copies, which are gen­
erated during a match phase, are completely indepen­
dent of each other and their generators. Load balanc­
ing, which is done while the host performs the conflict 
resolution and act phases of the production cycle, con­
sists of transfering the new node copies to other 
(nearby) processing elements in the multiprocessing 
environment. Since the generative attribute of a node 
copy is given to a new node copy before it is 
transfered to a new processing element, the source of 
new node copies is not fixed at one processing element. 

The load balancing scheme described above was 
chosen for its effectiveness but also because it is very 
simple to execute. A more complex load balancing 
scheme could be too time consuming and so reduce the 
value of speeding the match phase itself. The simula­
tions revealed that the amount of time spent in the 
load balancing phases of operation is never greater 
than 49% of the match time. Since the load balancing 
phases occur between match phases, overlapping con­
flict resolution and act phases, they have no serious 
effect on overall execution speed. 

The replication of node and token information 
and the demands of the load balancing algorithm make 
a concise encoding of this information very important. 
The size of a node copy is minimized by storing it as a 
template to be interpreted by a matching processor. 
The amount of token information stored is minimized 
by keeping only those values that are required for 
matching further down in the network. (For the two 
program simulated, the average node size is 11.9 16-bit 
words; the average token size is 6.6 16-bit words. In 
contrast, the compiled OPS83 versions of this program 
uses about 250 bytes to encode each comparison node 

86 Tools 



because it generates inline code instead of templates to 
increase execution speed.) 

3 . 1 . DRete and Hashing 

Recent research has shown that the number of 
comparisons between tokens that are necessary during 
a match phase can be reduced using hashing of 
tokens[Gupt87b]. Using this method of token parti­
tioning, a node's (node copy's) responsibility during a 
match phase is reduced from a case where it compares 
all incoming tokens to all stored tokens to a case 
where one hash bucket of tokens is compared with a 
corresponding hash bucket of tokens on the opposite 
side. (The responsibility for storing tokens is similarly 
divided.) Comparing an incoming token to only a frac-
tion of the corresponding tokens on the opposite side 
of the node both reduces the comparisons required 
and, very importantly, reduces the number of com­
parisons involved in a single node copy activation. 
Hashing, however, cannot be used in all cases of two-
input node types and cannot always be done in a way 
which results in equally sized buckets for all data 
cases. 

Using DRete to parallelize the match operation 
reduces the number of token-token comparisons done 
during a single node copy activation to one. Over an 
entire match phase, a node copy's responsibility is to 
compare all incoming tokens to one stored token. 
Hashing does not increase a node copy's activation 
expense significantly, and can be added to DRete at 
very little increase in storage expense since the size of 
a node's image is already dependent on the number of 
tokens with which it is associated. With a combina­
tion of DRete and hashing, a node copy's responsibility 
during a match phase is reduced to matching one hash 
bucket of tokens to only one other token. Overall, the 
level of parallelism in DRete is reduced from the 300 
previously mentioned, but the net effect is a beneficial 
one. 

DRete with token hashing is potentially much 
faster than either concept applied alone since it both 
reduces the total number of comparisons done, and 
exploits the greatest degree of parallelism available. 
The work done with DRete to date does not include 
hashing, but preparations are being made to explore 
this very promising alternative. 

4 . The C U P I D Arch i tec tu re 

CUPID is a matching processor attached to a host. 
The host executes the conflict resolution phase of the 
production cycle and fires the chosen rules. In firing a 
rule, the host sends changes to the current data set to 
CUPID. As the new match state is computed, CUPID 
responds with corresponding changes to the conflict 
set. 

The CUPID architecture is comprised of a large 
set of small processing elements connected by two 
independent communication schemes. The number of 
processing elements in the set is in the order of hun­
dreds to take advantage of the expected level of paral­
lelism available in large programs. The processing ele­
ments are arranged as a single two dimensional array, 
with all node information distributed evenly among 
them. 

One of CUPID's communication systems consists 
of a pair of unidirectional trees with the processing ele­
ments at the leaf positions in both trees. One of these 
trees is used to broadcast match information to all 
processing elements over parallel paths. This high 
speed path ensures fast activation of all network nodes 
by new match information. The second tree collects 
the responses of the processing elements to incoming 
match information. The data path width in this tree 
widens from serial at the processing element to word-
width at the root of the tree to accommodate the 
expected volumes of data at each level in the tree. 
Responses which represent data movement within the 
network of comparison nodes are fed back into the 
processing elements via a path between the roots of 
the collection and broadcast trees. Responses 
representing changes to the set of enabled rules are 
removed from this stream and sent to a host processor, 
which awaits such responses from the match phase. 

The second communication system is a set of 
serial links connecting each processing element with its 
four nearest neighbours. These links support the 
dynamic load balancing algorithm, carrying 
node/token pairs from those processing elements that 
have produced them to less busy processing elements 
during the inter-match phase interval. Local links are 
used for this purpose because they match the nature of 
the transfers: Node copies need not travel further than 
a nearest neighour and have only one destination. The 
destination of a node copy is not predetermined; it can 
be seated and processed anywhere in the processing 
element array. 

Figure 3 is a diagram of the CUPID architecture 
with a four-by-four array of processing elements. The 
broadcast tree is shown branching down to the top of 
each processing element, and the collection tree 
branching down from the bottom of each processing 
element. The local interconnect system is also shown, 
except - for clarity - the links joining opposing edges of 
the array. 

A CUPID processing element consists of a set of 
functional blocks which combine to satisfy all of the 
computational requirements of the match operation. 
Each processing element contains a CPU and local 
program ROM for interpreting node activations and 
performing both local and global memory management 

Kelly and Seviora 87 



4 . 1 . T h e C U P I D P r o c e s s i n g E l e m e n t 
funct ions, a local R A M area to store node/token pairs, 
and a C A M block w i t h entries indicating which nodes 
f rom the or iginal network are represented at this pro-
cessing element. A processing element also contains a 
set of state machines for handling data transfers over 
the various communicat ion ports. One state machine 
condit ional ly stores informat ion reaching the process­
ing element f rom the broadcast tree in R A M . The 
decision to store or ignore arr iv ing match informat ion 
is based on the C A M contents. An output state 
machine is used by the CPU to transfer the results of 
node activations onto the collection tree. F rom there, 
data is d ist r ibuted to either the host, the processing 
element array via the broadcast tree, or both. A set of 
five state machines handle incoming and outgoing node 
copy transfers over the local l inks. Interactions 
between these state machines and the C P U are 
managed by an in te r rup t protocol. 

A complete design of the C P U and R O M por­
t ion of the processing element has been done using an 
N C R two micron C M O S standard cell l ibrary. Pre l im­
inary designs of the individual communication state 
machines have also been done. 

The processor[Bond 88] is a three stage pipeline 
Harvard architecture design w i th a 16-bit wide data 
pa th . It is a RISC processor, satisfying the relat ively 
simple processing requirements of the match operat ion, 
and the need for a compact design. It supports two 
levels of in te r rupt ion — required by the communica­
t ion mechanisms — and two special instructions. One 

of these instruct ions is a variable condition branch 
instruct ion used in place of a sequence of fixed condi­
t ion branches. Th is instruct ion benefits pipeline 
operation by reducing the number of branches exe­
cuted. The second special instruct ion is included to 
assist in traversing the l inked list structure used in 
storing node/ token pairs in R A M . The increased com­
plexity of the processor caused by including these 
instructions is offset by a reduction in code size, result-
ing in an overall reduct ion in the size of a processing 
element. The C P U design required 1500 cells; the pro-
cessing element minus memories is comparable in com­
plexity to a commercial 8-bit microprocessor. 

Prefabr icat ion simulations of the CPU show a 
peak execution rate of 8.3 mips. Dynamic measure­
ments of instruct ion frequency f rom simulations of 
CUPID running DRete were used to determine 
memory reference frequency and branching charac­
teristics dur ing matching. It is estimated that the 
C P U wi l l execute the required software at 6.7 mips. 

4 . 2 . V A X 1 1 / 7 8 5 M i p s 

In order to compare CUPID results w i th those 
obtained on a V A X 11/785, it is necessary to establish 
the relative power of their respective processing units. 
As stated above, the CUPID C P U executes the DRete 
code at 6.7 mips. To normalize this to the V A X CPU 
speed, measurements were taken of the V A X running 
instructions corresponding to those in the instruction 
set of the CUPID C P U . The speed of the V A X exe­
cut ing each of these instruct ions is combined w i th the 
frequency of their occurrence in the CUPID processing 
element code to establish a speed for a V A X 11/785 
running CUPID software. Table 2 shows the execution 
speeds for four classes of instructions on the V A X and 
their relative frequencies in CUPID software. Instruc­
tions were run as par t of a long stream to ensure that 
the processor pipeline was fu l l dur ing their execution, 
except, of course, for the case of the successful branch. 
(The memory access instruct ion speed was calculated 
by mul t ip ly ing the speed of a memory update on the 
V A X by the equivalent number of instructions for a 
CUPID C P U per forming the same function.) 

F rom this data i t is calculated that the V A X 
11/785 would execute CUPID software at 2.7 mips. 
This is higher than the 1.5 mips rat ing for the machine 
and results f rom the el imination of complex 

88 Tools 



5 . T h e S i m u l a t o r 

The simulator was wr i t ten using N.2[Endo87], a com­
mercial ly available package. Register transfer level 
simulations of CUPID running DRete have been done 
to establish a coherent software structure for a pro­
cessing element. This includes both the match and 
load balancing algori thms as well as memory manage­
ment for all state machines. The results of these simu­
lations were impor tan t in terms of veri fying the basic 
DRete and CUPID concepts, but are too time consum­
ing to run all bu t the simplest of tests. The hierarchi­
cal nature of the simulator made it possible to move to 
a higher level of simulation using process times and 
communicat ion t im ing informat ion f rom the or iginal 
s imulator. Th is allows the simulation of larger test 
programs on arrays of 1-64 processing elements. The 
accuracy of the higher level simulator was verif ied by 
compar ing its responses to those obtained f rom the 
lower level simulations. The higher level simulator was 
tuned to agree w i t h the lower level simulator to w i th in 
1-2% between indiv idual responses, and to w i th in 0.2% 
over long (mixed) strings of process activations. 

It is by incorporat ing t iming values f rom the 
standard cell implementat ion of the processing 
element's components in to the simulator that a direct 
comparison of C U P I D execution time to that obtained 
on a standard commercial machine, in this case a V A X 
11/785 running compiled OPS83, was possible. 

In the simulations, only the match phase is simu­
lated; a dummy process is used in place of the host 
processor to in teract w i t h the processing element 
array. Changes to work ing memory caused by rule f ir­
ings are presented to the processing element array in 
the order established by running the OPS83 version of 
the same program. 

6. S i m u l a t i o n Resu l t s 

The Monkey and Bananas benchmark executes in 117 
mS on a V A X 11/785 wi th all output disabled. 
Est imat ing the match phase as 80% of this execution 
time[Forg84], it takes 94 mS. 

Table 3 shows the match execution times for the 
Monkey and Bananas program on the V A X and on 
CUPID for array sizes of 1-64 processing elements. 
Below these are the speedup factors of CUPID over 
the V A X . The next line in the table shows the 
estimated match t ime of CUPID wi th a CPU normal­
ized to the speed of a V A X . (This normalization does 
not take into account that communication time 
becomes less of a factor in the tota l match time as 
processor speed decreases.) The next line in the table 
shows the speedup obtained over the V A X on the nor­
malized CUPID. 

Because processor speed wi l l continue to 
increase as technology advances, it is a matter of 
theoretical interest to calculate the potential speed of 
CUPID as its C P U clock speed approaches inf ini ty. 
Speed is then determined by the effectiveness of the 
communication system and the quanti ty of data which 
must be exchanged between processing elements. The 
numbers for the speed of CUPID in this l imit ing case 
are shown at the bot tom of Table 3; they were calcu­
lated assuming that the communication clock remains 
at 10 MHz (although this too wi l l increase wi th time) 
but tha t serial paths are widened to word w id th . 

7 . C o n c l u s i o n s 

The CUPID matching time w i th one processing ele­
ment, f rom Table 3, shows that the CUPID processing 
element can execute the operations required by the 
match phase very effectively. This contrasts w i th 
other research efforts where a parallel algorithm sub­
stantial ly reduces match speed for the uniprocessor 
case. The speed of a single processing element is mul­
t ipl ied by the effect of using greater numbers of these 
processing elements in the CUPID array. 

Kelly and Seviora 89 



It should be noted that the Monkey and Bana­
nas problem does not contain a high degree of parallel­
ism and, in fact, is fairly sequential in nature. The 
diminishing returns from increasing the CUPID array 
size to 64 processing elements is an indication that the 
limit of parallelism is being reached. Further simula­
tions are under way, using programs which contain 
higher potentials for parallel execution, to better show 
the ability of the DRete/CUPID combination to speed 
match execution. 

An 23 fold increase in speed is observed in the 
eight-by-eight processing element array for the Mon­
key and Bananas program despite the low availability 
of parallelism. This verifies that a fairly simple pro-
cessing element implemented in a modest technology 
can provide sufficient processing power for production 
system matching. At the same time, it verifies that 
the DRete and load balancing algorithms do not intro-
duce an inordinate amount of overhead into the match 
operation. 

The increase in match execution speed provided 
by the DRete/CUPID combination results in a sub­
stantial increase in the overall production system exe­
cution speed. Executing the match phase on a compu­
tational element separate from the one executing the 
conflict resolution phase (the host) has the added 
advantage that conflict resolution can be performed 
partially in parallel with the match phase. Responses 
from the match phase can be incorporated into the 
conflict resolution calculation as they arrive 
throughout the match phase. The result of this is that 
the match phase still remains the dominant factor in 
production system execution time and so increasing its 
speed further merits additional effort. 

References 

[Bond88] Bond, D.C., Seviora, R.E., A Standard Cell 
Implementation of a RISC for Rule-Based Computing, 
submitted. 

[Endo87] N.2 User's Manual, Endot Inc., Cleveland, 
Ohio, 1985. 

[Forg8l] Forgy, C.L., OPS5 Users Manual. Technical 
Report CMU-CS-81-135, Department of Computer Sci­
ence, Carnegie-Mellon University, 1981. 

[Forg82] Forgy, C.L., Rete: A Fast Algorithm for the 
Many Pattern/Many Object Pattern Match Problem. 
Artificial Intelligence 19, 1982, pp. 17-37. 

[Forg84] Forgy, C.L., Gupta, A., Newell, A., Wedig, R., 
Initial Assessment of Architectures for Production Sys­
tems, Proceedings AAAI-1984, 1984. 

[Forg85] Forgy, C.L., OPS83 User's Manual and 
Report, Production Systems Technologies Incor­
porated, 1985. 

[Gupt83] Gupta, A., Forgy, C.L., Measurements on 
Production Systems, Technical Report CMU-CS-83-
167, Department of Computer Science, Carnegie-
Mellon University, 1983. 

[Gupt87] Gupta, A., Forgy, C.L., Kalp, D., Newell, A., 
Tambe, M., Results of Parallel Implementation of 
OPS5 on the Encore Multiprocessor, Technical Report 
CMU-CS-87-146, Department of Computer Science, 
Carnegie-Mellon University, 1987. 

[Gupt87b] Gupta, A., Parallelism in Production sys­
tems, Pitman Publishing, 1987. 

[Hill84] Hillyer, B.K., Shaw D.E., Execution of 0PS5 
Production Systems on a Massively Parallel Machine, 
Journal of Parallel and Distributed Computing 8, 
1986. 

[Kell87] Kelly, M A . , Seviora, R.E., A Multiprocessor 
Architecture for Production System Matching, 
Proceedings AAAI '87, 1987, pp. 36-41. 

[Kell87b] Kelly, M A . , Seviora, R.E., DRete - A Distri­
buted Matching Algorithm, 23 pages, submitted. 

[Lehr86] Lehr, T.F. The Implementation of a Produc­
tion System Machine, Proceedings of the Nineteenth 
Annual Hawaii International Conference on System 
Sciences, 1986, pp. 177-186. 

[Rile86] Riley, G.D., NASA Memo FM7(86-5l): Timing 
Tests of Expert System Building Tools, 1986. 
[Oshi87] Oshisanwo, A.O., Dasiewicz, P.P., A Parallel 
Model and Architecture for Production Systems, 
Proceedings International Conference on Parallel 
Processing, IEEE, 1987. 
[Quin85] Quinlan, J. A Comparative Analysis of Com­
puter Architectures for Production System Machines, 
Technical Report CMU-CS-85-178, Department of 
Computer Science, Carnegie-Mellon University, 1985. 

[Ramn86] Ramnarayan, R., Zimmermann, G., and Kro-
likoski, S., PESA-1: A Parallel Architecture for OPS5 
Production Systems, Proceedings of the Nineteenth 
Annual Hawaii International Conference on System 
Sciences, 1986, 1986, pp. 201-205. 

[Stol84] Stolfo, S.J. Five Parallel Algorithms for Pro­
duction System Execution on the DADO Machine, 
Proceedings National Conference on Artificial Intel-
ligence, 1984, pp. 300-307. 

90 Tools 


