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ABSTRACT 

In this paper, an algorithm for identifying an object 
from a set of known objects is presented and justified. 
The novelty of this algorithm, called Mask, for object 
identification is in its use of three-dimensional data which 
has been obtained from projection of parallel laser light 
planes. The knowledge that laser light planes are parallel 
to each other allows automatic discovery of two con­
straints from the three-dimensional data. The first con­
straint is based on colinearity between various points and 
the second constraint on coplanarity between various 
segments of the three-dimensional data. These automat­
ically derived constraints, then, are used by Mask in a tree 
search algorithm for object identification. Mask has been 
implemented in Prolog and sample applications to various 
objects are presented. 

INTRODUCTION 

Suppose a specimen object is selected from a set of 
known objects. It is assumed that all objects are 
polyhedral (possibly nonconvex). The specimen object 
may have up to six degrees of freedom relative to the 
sensors. How can a robot recognize the specimen object? 
Recognition in this context means (1) identifying the ob­
ject as one, or none, in the set of known objects and (2) 
finding the exact location and orientation of the specimen 
object. The robot knows about an object if it has access 
to a polyhedral model of the object. A polyhedral model 
of an object consists of (1) a name for the object, (2) a list 
of edges, each described by starting and ending points, 
and (3) a list of faces, each described by the forming 
edges. This paper is a contribution, not to three-
dimensional sensing, but to the process of using such data 
in object recognition. It differs from other approaches in 
that it discovers constraints from the three-dimensional 
data which are then applied in the tree searching process. 

In order to recognize the specimen object, the robot 
will first generate a series of parallel laser light planes. 
One method to accomplished this is by using optical de­
vices (Mersch and Stubbs 1986). The distance between 
parallel planes can be specified as well. Once the parallel 
light planes are generated, the space curves which are 
formed as a result of the intersection of each light plane 
with the object can be extracted, see (Echigo and 
Masahiko 1985), and (Tsai 1985). Since we are working 
with polyhedral objects, each space curve is actually 
composed of a series of line segments. Thus, each space 
curve is reduced to a list of pairs of 3-D points which 

describe the starting and ending point of each line seg­
ment. Hereafter, this reduced list is referred to as the 
list-of-line-segments. 

For example, in Figure 1 points pi to p8 describe the first 
list-of-line-segments and all lie in one plane; similarly ql 
to ql. After all, they were obtained from intersecting a 
light plane with the object. The line segments in a list-
of-line-segments are not always connected. Discontinui­
ties are due to occlusions. Thus, not every point in the 
list-of-line-segments corresponds to an edge of the object. 
Mask, however, requires that every point correspond to 
an object edge. To solve this problem which is caused by 
occlusions, the list-of-line-segments is further reduced to 
only those points that lie on an edge of the object. 
Hereafter, this reduced list is referred to as a light probe. 
Note that a light probe refers to a connected set of edge-
points; not just projection of a light plane on an object. 
This reduction is possible and applied on the grounds that 
a data point in the list-of-line-segments lies on an edge 
of the object if and only if it is connected on both sides 
to other points. For example, in Figure 1 point p2 is an 
edge-point, however, points p4 and p5 might not corre­
spond to edges of the object. 

Mask takes as input, a collection of light probes and 
an enhanced polyhedral model of some object. The output 
consists of a set of object edge to edge-point assignments 
if the collection of light probes match the object model, 
otherwise, a failure is reported. This output can then be 
used to determine the object's exact location and orien­
tation, see (Silverman, Tsai and Lavin 1987). The set of 
object edge to edge-point assignment is also referred to 
as an interpretation (Grimson and Lozano-Perez 1984). 

The polyhedral model of an object is enhanced by 
precomputing (1) a table containing Min-Max distances 
between every pair of edges of the object and (2) a 
possible-next-edge-list for each edge of the object. The 
Min-Max distance table is an idea taken from (Grimson 
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and Lozano-Perez 1984). A possible-next-edge-list for an 
edge Ei is simply a list of all the edges on the adjacent 
faces. Note that consecutive edge points of a light probe 
would have to lie on edges of adjacent faces due to planar 
intersection of light with the object. These tables are 
precomputed and stored with the polyhedral model of 
every object. 

Mask is composed of three phases which are described 
in the following three sections. In phase I, light probes 
are collected in various groups and certain conditions that 
hold between groups are discovered. Phase II assigns to 
each group of light probes a list of valid interpretations. 
These assignments are based on the Min-Max distance 
table and the possible-next-edge-list. Phase I I I propa­
gates the conditions that were discovered by Phase 1 
among the valid interpretations of each group as com­
puted by phase I I . As a result, a set of consistent inter­
pretations is assigned to each group. Application of the 
algorithm to sample problems is then discussed. 

PHASE I 

The collection of light probes is first partitioned into 
various groups. Light probes correspond to the same 
group if and only if they come from adjacent parallel light 
planes that have intersected all the same edges of the 
specimen object. Thus, light probes are placed in the 
same group if and only if they satisfy two conditions. 
First, all the light probes in the same group must be of the 
same length. Light probes have the same length if they 
contain the same number of edge-points. Second, the 
corresponding points of all the light probes, in the same 
group, must be on the same edge of the object. This can 
be determined via a colinearity test. 

The grouping of light probes, then, is done by selecting 
the first and second consecutive light probes of the same 
length and simply assuming that they correspond to the 
same edges of the object. The rest of the light probes, of 
the same length, which immediately follow the first two 
light probes can then be tested for colinearity on all the 
corresponding points. This technique for grouping light 
probes is correct on the grounds that the distance between 
parallel light planes is controllable and can be decreased, 
thus increasing the number of light planes, such that the 
smallest discontinuity in any of the known objects would 
not be skipped over. For an example of light probe 
grouping, see Figure 4 where light probes have been col­
lected together in six groups labeled gl to g6. 

The presence of errors, introduced by various sensing 
devices, in the light probe data can cause the test for 
colinearity between three points to fail, when in fact the 
three points are colinear. Thus, the light probe grouping 
is not always unique. For example, in Figure 4 it is pos­
sible, due to errors, to collect light probes in group g3 
into two or more smaller groups. Mask, however, is in-
sensitive to the various groupings of the light probe. It 
suffices to find any one of the possible light probe 
groupings. 

After the initial light probe grouping, two conditions 
that may hold between members of any two groups are 
discovered. These conditions will be used in the third 

phase of Mask as constraints in a tree search algorithm, 
as in (Waltz 1973) and (Huffman 1971). The first condi­
tion holds between two groups gi and gj if for some N and 
M the Nth edge points of all light probes in gi are colinear 
with the Mth edge points of all light probes in gj. For 
example, in Figure 4 the second point of any light probe 
in group g2 is colinear with the second point of any light 
probe in group g l . In fact, they all lie on edge e2. The 
third point of any light probe in group g5 is colinear with 
the fourth point of any light probe in group g3. In fact, 
they all lie on edge elO. Note that here, colinearity be­
tween points of light probes in various groups does not 
always imply that the points must correspond to the same 
edge of the object. It could be that they correspond to 
two different object edges that happen to be colinear. 

The second condition holds between two groups gi and 
gj if for some N and M the Nth line segment of all the 
light probes in gi is coplanar with the Mth line segment 
of all the light probes in gj. For example, in Figure 4 the 
first line segment of any light probe in group gl is 
coplanar with the first line segment of any light probe in 
groups g2, g3 and g4. In fact, they all lie on the face 
which is composed of edges el , e2, e3, e4 and e5. The 
second line segment of any light probe in group g5 is 
coplanar with the third line segment of any light probe in 
group g3 and g4, also with the second line segment of any 
group in g2 and g l . They all lie on the face which is 
composed of edges e2, el4, elO and el 5. 

The presence of errors in the light probe data can cause 
the tests for colinearity and coplanarity that are employed 
to detect the above two conditions to fail. This failure 
implies that not all of the conditions between points and 
probe segments are detected in this phase. A complete list 
of the two conditions. however, is not a requirement. A 
partial list of the conditions will suffice. Errors in the 
light probe data do not play an important role in the next 
two phases, as the computations involved are symbolic. 

PHASE II 

The second phase of the algorithm starts out by pick­
ing from each group only two light probes, the first and 
last one. These are selected on heuristic grounds only. 
This heuristic is based on the grounds that Min-Max dis­
tances between edges of the object are more likely to oc­
cur around starting and ending points of edges. For each 
light probe a collection of valid interpretations is formed. 
The exact definition of a valid interpretation is given be-
low. The set of valid interpretations for each group, then, 
is formed by simply taking the intersection of all valid 
interpretations for the first light probe with all valid in­
terpretations for the last light probe. This is on the 
grounds that both light probes correspond to the same 
group and thus must correspond to the same object edges. 

An interpretation for a light probe is a list of object-
edge to data-point assignment. For example, 
(el, e2, el5) is one possible interpretation for the light 
probe composed of the three points: (p i , p2, p3) and it 
assigns edge el to point p1, e2 to p2 and el5 to p3. An 
interpretation for a light probe is valid if and only if it 
satisfies two constraints. It is possible to state other 
constraints but only two will be discussed, others are de-
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scribed in (Arbab 1987). The first constraint simply states 
that the actual distance between points Pj and Pk which 
has been obtained from the specimen object must be 
within the Min-Max distance that actually holds between 
edges Ej and Ek of the object. The second constraint 
applies on the ground that (a) the light probe data does 
not contain any discontinuities and (b) it is impossible, in 
such a case, for a laser light plane to strike any face of 
the specimen object more than once. Thus, edges El to 
Ei can be assigned to points PI to Pi of a light probe if 
and only if (1) the distance between Pj and Pk for 

i is bounded by the Min-Max dis­
tance between Ej and Ek and (2) an edge En can not be 
assigned to a point Pn if it belongs to a face that has al­
ready been assigned to a point Pm for 

Wi th these two constraints in hand a tree search algo­
rithm for a light probe is constructed. Every node in the 
tree corresponds to a point in the light probe. There is 
an arc emanating from each node for every object edge 
that can possibly be assigned to the node. The depth of 
this tree is equal to the length of the light probe. In Fig­
ure 2, a sample search tree for the first light probe of 
group g1 of model house object is shown. For example, 
the assignment of edge el to point p1 is not consistent 
with the assignment of edge el4 to point p2 on grounds 
of the first constraint, i.e., the distance between points p1 
and p2 is not within the M in and Max distances between 
edges el and el4. The assignment of edge el5 to point 
pi is not consistent with the assignment of edge el5 to 
point p2 on the grounds of the second constraint. A 
standard depth-first left-to-right backtrack tree search al­
gorithm is then employed to propagate the constraints 
among the nodes of the tree. Only those interpretations 
that completely satisfy both constraints remain. These are 
the set of valid interpretations for a light probe. 

PHASE I I I 

A collection of valid interpretations for each group of 
light probes was constructed in the second phase. The 
size of this collection typically ranges from tens to hun­
dreds for the objects experimented with so far. Recall 
that, in the first phase of the algorithm two conditions 
that could hold between various groups were extracted. 
They were: (1) colinearity between various light probe 
data points in different groups and (2) coplanarity be­
tween various light probe segments in different groups. 

In this phase, those conditions are employed as con­
straints and together with the Min-Max distance con­
straint, they form the backbone of another round of tree 
searches. 

This time, a node of the tree corresponds to a group 
of light probes. There is an arc emanating from a node 
for every possible valid interpretation that can be assigned 
to the node. The depth of the tree is equal to the number 
of groups. In Figure 3, a sample search tree for the 
model house object is shown. For example, interpretation 
(e5, e3, el4) for group g2 is not consistent with interpre­
tation (e l , e2, el5) for group gl on the grounds of the 
first condition, i.e., edge e3 and e2 are not colinear. In­
terpretation (e5, e2, el5) for group g2 is not consistent 
with interpretation ( e l l , e7, e6) for group gl on the 
grounds of the second condition, i.e., no line segment 
connecting e l l to e7 can be coplanar with a line segment 
connecting e5 to e2. 

The Min-Max distance constraint is applicable to in­
terpretations li and Ij for groups Gi and Gj . This is on 
the ground that, for every light probe Pri in Gi and Prj 
in Gj the distance between every point of Pri and Prj must 
be within Min-Max distances of the corresponding edges 
in li and I j . A standard depth-first left-to-right backtrack 
tree search algorithm is then employed to propagate the 
three constraints (the first and second condition plus the 
Min-Max distance constraint) among the nodes of the 
tree. Only those interpretations for each group that 
completely satisfy the three constraints are left behind. 
These are the set of consistent interpretations for each 
group. A group can have an empty set of consistent in­
terpretations if light probe data from the specimen object 
does not correspond to the given object model. 

APPLICATION 

Application of Mask to a simple model house, shown 
in Figure 4, is described below. For more complicated 
examples, including non-convex and occluded objects, see 
(Arbab 1987). The edges of the object are labeled as el 
to el5. Intersection of some parallel light probes wi th the 
model house are shown. It is important to note that 
Figure 4 is showing the light probes and not the actual 
light planes that intersected the object. The distinction 
being that a light probe is obtained from the resulting 
intersection of the light planes according to the procedure 
specified in the introduction. 
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The data was obtained through simulation and some 
errors were artificially injected in the data. Each light 
probe has been classified by phase I of Mask as a member 
of some group. There are a total of six groups, labeled 
gl to g6. There are 11 colinearity and 20 coplanarity re­
lations that hold between light probe points and segments 
of various groups. Phase II of Mask finds 48, 84, 32, 120, 
128 and GO valid interpretations for groups gl to g6. 
However, there are only 4 consistent interpretations that 
can be assigned to groups gl through g6 and are discov­
ered by phase HI of Mask in approximately eight seconds 
on an IBM 3081. 

Assignment of an interpretation to a group means that 
points of a light probe within that group can be assigned 
to edges in the interpretation list. For example, 
"gl --> (cl,e2,el5)" means that first point of any light 
probe within group gl can be assigned to edge e l , second 
point to e2 and the last point to el5. 

Mask has found the solution, up to symmetry, of every 
problem to which it has been applied. It also reports a 
failure when light probe data from the specimen object 
does not match the model object. 
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