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Abstract 
The mobile robot group at MIT has been building robots 
using the subsumption architecture. This methodology de­
composes a control system into a set of loosely coupled task 
achieving behaviors. In this paper we show how the con­
straints inherent in this approach naturally lead to a very 
simple computational design. To demonstrate its effective-
ness we have built a new, small, fast robot based on these 
ideas. In this paper we discuss the performance of this robot 
and the theory behind its construction. 

1. In t roduct ion 
The mobile robot group at M IT has been investigating 

Brooks's subsumption architecture [Brooks 86]. This archi­
tecture advocates decomposing control systems into ''task-
achieving behaviors" where each behavior is a complete con­
trol system going from sensory inputs to motor outputs. 
Several other researchers [Kaebling 86, Payton 86, Arkin 
86, Minsky 87] have proposed similar systems. The unique 
aspect of the subsumption architecture is that it allows a 
control system to evolve by accretion of new "levels". Once 
a behavior is debugged it is never changed; more sophisti­
cated control systems are built around it. This is possible 
because of a simple, extensible arbitration scheme. 

The control system for the new robot described here is 
cast in the subsumption architecture framework and closely 
resembles that of our earlier robots [Brooks and Connell 86]. 
The difference is that, instead of running on a lisp machine or 
a special parallel processor, it has been hand compiled down 
to a couple hundred gates. We were able to accomplish this 
because, rather than trying to model an ever-changing world 
and then using this model to plan a course of action, each be­
havior simply tells what action to take in a specific situation. 
The subconscious reflex-like nature of this process allows us 
to eliminate complex intermediate representations and thus 
vastly simplifies the internal data-paths of a behavior. 

Furthermore, not only do we use the world as its own 
model, we also use it as a communication medium between 
behaviors. Indexing off the state of the real world is more 
reliable than predicting what will happen as the result of 
a particular action. It also allows us to coordinate many 
behaviors without incurring the high cost of tight internal 
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Figure 1. Tom's phytic*! structure. 

coupling. The following sections describe how these factors 
influenced the design of our newest robot. 

2. Hardware 
Tom, the robot described here, was built around the 

chassis of a remote controlled toy car. The car can drive 
forward and backward, and, by selectively braking one of the 
two front wheels, turn left or right (it cannot turn in place). 
Tom's sensing apparatus consists of four infrared proximity 
detectors. Three are mounted at the front, one pointing 
straight forward and two toed outwards 10 degrees. The 
fourth IR is mounted at the rear and looks directly backward 
(Figure 1). These sensors emit a modulated beam of light 
and look for a reflection above a certain threshold intensity. 
Each sensor yields only one bit: either an obstacle present 
or the sensing path is clear. The front and back sensors are 
set for 5 inches while the sides are set for 7 inches. 

To control the car we use a single PAL (Programmable 
Array Logic) chip. Internally, the chip is a collection of 
programmable AND gates and fixed OR gates. The chip 
has 8 outputs and 16 inputs, 6 of which are feedbacks from 
the outputs. Logically, an output is an OR of up to 7 ANDs 
where each AND can use any collection of inputs and their 
inverses. 

3. Basic Coordinat ion 
In all our robots, the lowest level of competence consists 

of two behaviors. The first behavior treats obstacles as re­
pulsive charges. It sums all the forces due to obstacles and, 
when they exceed a threshold, causes the robot to run away 
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Figure 2. The complete module diagram. Note that as 
each behavior is added, the new control system retains 
all the structure of the older control systems. 

along the resultant vector. This behavior has no notion of 
what an obstacle is, it simply knows how to drive the car 
given certain sensor patterns. 

A second behavior pays special attention to the front 
depth-finders to make sure the robot is not chased into a 
wall: when something gets too close, this behavior halts all 
forward motion. Note that we didn't try to build a unitary 
collison avoidance mechanism, instead we built a fairly reli­
able behavior and then patched it up in certain cases. Note, 
also, that there is no communication between the two behav­
iors: the collide behavior only knows the runaway behavior 
is failing when it detects a certain configuration in the world. 

4. Explor ing the Environment 
The simplest way to make Tom explore is to give him an 

urge to go forward. We do this by adding another forward-
pointing vector to the result of the potential field calculation. 
By adding a constant force we make the robot go straight 
forward in an open space but veer away when it detects an 
obstacle. Like Simon's ant, we trust the complexity of the 
environment to yield an interesting path. 

Figure 2 shows the complete control system for Tom. 
Here, the exploratory behavior is wired up somewhat dif­
ferently than in the control systems we have used in the 
past. Wi th previous robots we broke the level zero runaway 
behavior into a potential summing module and a separate 
thresholding module. This allowed us to use the result of 
the force computation at higher levels. Unfortunately, with 
one bit data paths, Tom boils the potential field calculation 
down to plus, minus, and zero. Since we only know the sign, 
not the magnitude, the Wander module must recompute the 
force from the IRs rather than just adding its vector to the 
previous result. 

5. The Social Robot 
Tom's most sophisticated behavior is seeking a specific 

target. In the past we have had our robots find such things as 
corridors and doorways. However, due to the crude sensors 

on Tom, he is incapable of either of these behaviors. Instead, 
we have built a second robot, Jerry, indentical to Tom. To 
encourage interaction, Tom's seeking behavior is to find and 
follow Jerry. 

There were two observations that guided our choice of a 
following algorithm. The first was that the target being pur­
sued moved very rapidly. Thus, if the sensors don't see the 
target, the pursuer should continue to go straight forward 
in an attempt to catch up. The other observation was that 
the target usually moved forward only, it seldom reversed. 
This means the pursuer should never back up - given the 
speed of the target, by the time the it actually started to go 
forward again the target would be hopelessly far ahead. 

The algorithm Tom uses is shown in Figure 3. We keep 
the strong forward vector from level one, represented by the 
large arrow in the middle, but we now make the side IRs 
attractive normal to the direction of travel (they remain 
repulsive in the tangential direction). This is sufficient to 
cause the car to turn toward obstacles rather than away 
from them. It does this, however, without having any idea 
that there is a "thing" that it is chasing. Note, also, that 
because the Collide behavior is still operative, the car will 
stop before actually hitting the object it is following. 

An important part of multi-level systems like this one is 
determining when to switch from one behavior to another. 
In this case, the transition from the level one exploratory 
behavior to this level two seeking behavior is keyed to the 
activity of the side two IRs. When the robot is in a com­
plex portion of the environment, constantly veering around 
obstacles, the side IRs are active a large portion of the time. 
Conversely, when these sensors become inactive it usually 
means the robot is in a large open space. In such a case 
the vehicle switches into follow mode, actively seeking ob­
stacles. Note, however, that if the object being followed ever 
stops, the side IRs come on and stay on causing the robot 
to eventually revert to the wander mode. 

6. Implementat ion 
The interesting part is how a PAL can be made to per­

form complex calculations such as the polar coordinate vec­
tor summation required by the potential field algorithm. Let 
/ ; , lb, It, and Ir be the forward, backward, left, and right 
proximity sensors respectively. These variables take a value 
of one or zero depending on whether the associated sensor 
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s an obstacle or not. We can now write an expression for 
the forward-backward force, Ft: 

To put this on the PAL we break it down into cases, 
much like is done in Qualitive Process theory [Forbus 84]. 
The robot should go forward when backwards when 

and stay still when F1 = 0. We can see that the only 
case in which Ft is postive is when the back IR senses an 
obstacle and, at most, one of the side IRs is active. We can 
encode this as a boolean expression for when to go forward. 
Using similar arguments for the other two cases we come up 
with the following expressions: 

G1 is true when the robot should be going forward and G* 
is true when the robot should retreat. Notice that these 
expressions are in exactly the right form for the PAL: an 
OR of AN Ds. 

The runaway behavior described by these expressions 
works fairly well except that the robot can't stop quickly. 
One way to decrease the stopping distance is to run the 
motor in reverse for a little while. As can be seen in figure 
4, this active braking scheme is built on top of the existing 
control system. The Go module determines when the robot 
should be moving and reports this on its output, A: 

When the Reverse module sees the A line go low it knows 
that the robot is supposed to stop. It uses the output of the 
Last module to determine which direction to run the motor. 
Df means the car was advancing and so the motor should be 
run in reverse, while D* means the car was going backward 
so the motor should be run forward to slow it down. The 
command from the Reverse module suppresses the output 
of the Forward module. The suppresion is implemented by 
using the allowed motion signal, A, to select which module 
gets control: 

We now have a control system that causes the robot 
to run away from attackers. Unfortunately, it occasionally 

causes collisions which could have been avoided. Consider 
the case where all the proximity sensors detect obstacles. 
According to the expression for Gb, the robot should go 
backwards even though it knows there is something in the 
way. We remedy this by adding a special collision avoidance 
behavior. As shown in Figure 4, we do this by adding a new 
module, Collide, which inhibits the output of the Go mod­
ule. The Collide module looks at the commanded direction 
and the central IRs to decide whether it is safe for the robot 
to move. The actual inhibition is performed by AN Ding the 
allowed motion signal, At with the invert of the halt case. 

The next two layers of the control system are imple­
mented in a similar fashion on the same PAL. 

7. Conclusions 
In this paper we have described Tom, a working robot 

based on the subsumption architecture, and shown how it 
operates with a minimal amount of computing power. The 
simplicity of this design has allowed us to create several iden­
tical vehicles and let us start to explore the ways in which 
communities of creatures interact. 
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