
Creature Design w i t h the Subsumption Archi tecture

Jonathan H. Connell

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge MA 02139

Abstract
The mobile robot group at MIT has been building robots
using the subsumption architecture. This methodology de­
composes a control system into a set of loosely coupled task
achieving behaviors. In this paper we show how the con­
straints inherent in this approach naturally lead to a very
simple computational design. To demonstrate its effective-
ness we have built a new, small, fast robot based on these
ideas. In this paper we discuss the performance of this robot
and the theory behind its construction.

1. In t roduct ion
The mobile robot group at M IT has been investigating

Brooks's subsumption architecture [Brooks 86]. This archi­
tecture advocates decomposing control systems into ''task-
achieving behaviors" where each behavior is a complete con­
trol system going from sensory inputs to motor outputs.
Several other researchers [Kaebling 86, Payton 86, Arkin
86, Minsky 87] have proposed similar systems. The unique
aspect of the subsumption architecture is that it allows a
control system to evolve by accretion of new "levels". Once
a behavior is debugged it is never changed; more sophisti­
cated control systems are built around it. This is possible
because of a simple, extensible arbitration scheme.

The control system for the new robot described here is
cast in the subsumption architecture framework and closely
resembles that of our earlier robots [Brooks and Connell 86].
The difference is that, instead of running on a lisp machine or
a special parallel processor, it has been hand compiled down
to a couple hundred gates. We were able to accomplish this
because, rather than trying to model an ever-changing world
and then using this model to plan a course of action, each be­
havior simply tells what action to take in a specific situation.
The subconscious reflex-like nature of this process allows us
to eliminate complex intermediate representations and thus
vastly simplifies the internal data-paths of a behavior.

Furthermore, not only do we use the world as its own
model, we also use it as a communication medium between
behaviors. Indexing off the state of the real world is more
reliable than predicting what will happen as the result of
a particular action. It also allows us to coordinate many
behaviors without incurring the high cost of tight internal

Support for this work was provided by the Advanced Research
Projects Agency under Office of Naval Research contracts N-
00014-80-C-0505 and N00014-82-K-0334.

F r o n t I R Back I R

Figure 1. Tom's phytic*! structure.

coupling. The following sections describe how these factors
influenced the design of our newest robot.

2. Hardware
Tom, the robot described here, was built around the

chassis of a remote controlled toy car. The car can drive
forward and backward, and, by selectively braking one of the
two front wheels, turn left or right (it cannot turn in place).
Tom's sensing apparatus consists of four infrared proximity
detectors. Three are mounted at the front, one pointing
straight forward and two toed outwards 10 degrees. The
fourth IR is mounted at the rear and looks directly backward
(Figure 1). These sensors emit a modulated beam of light
and look for a reflection above a certain threshold intensity.
Each sensor yields only one bit: either an obstacle present
or the sensing path is clear. The front and back sensors are
set for 5 inches while the sides are set for 7 inches.

To control the car we use a single PAL (Programmable
Array Logic) chip. Internally, the chip is a collection of
programmable AND gates and fixed OR gates. The chip
has 8 outputs and 16 inputs, 6 of which are feedbacks from
the outputs. Logically, an output is an OR of up to 7 ANDs
where each AND can use any collection of inputs and their
inverses.

3. Basic Coordinat ion
In all our robots, the lowest level of competence consists

of two behaviors. The first behavior treats obstacles as re­
pulsive charges. It sums all the forces due to obstacles and,
when they exceed a threshold, causes the robot to run away

1124 ROBOTICS

Figure 2. The complete module diagram. Note that as
each behavior is added, the new control system retains
all the structure of the older control systems.

along the resultant vector. This behavior has no notion of
what an obstacle is, it simply knows how to drive the car
given certain sensor patterns.

A second behavior pays special attention to the front
depth-finders to make sure the robot is not chased into a
wall: when something gets too close, this behavior halts all
forward motion. Note that we didn't try to build a unitary
collison avoidance mechanism, instead we built a fairly reli­
able behavior and then patched it up in certain cases. Note,
also, that there is no communication between the two behav­
iors: the collide behavior only knows the runaway behavior
is failing when it detects a certain configuration in the world.

4. Explor ing the Environment
The simplest way to make Tom explore is to give him an

urge to go forward. We do this by adding another forward-
pointing vector to the result of the potential field calculation.
By adding a constant force we make the robot go straight
forward in an open space but veer away when it detects an
obstacle. Like Simon's ant, we trust the complexity of the
environment to yield an interesting path.

Figure 2 shows the complete control system for Tom.
Here, the exploratory behavior is wired up somewhat dif­
ferently than in the control systems we have used in the
past. Wi th previous robots we broke the level zero runaway
behavior into a potential summing module and a separate
thresholding module. This allowed us to use the result of
the force computation at higher levels. Unfortunately, with
one bit data paths, Tom boils the potential field calculation
down to plus, minus, and zero. Since we only know the sign,
not the magnitude, the Wander module must recompute the
force from the IRs rather than just adding its vector to the
previous result.

5. The Social Robot
Tom's most sophisticated behavior is seeking a specific

target. In the past we have had our robots find such things as
corridors and doorways. However, due to the crude sensors

on Tom, he is incapable of either of these behaviors. Instead,
we have built a second robot, Jerry, indentical to Tom. To
encourage interaction, Tom's seeking behavior is to find and
follow Jerry.

There were two observations that guided our choice of a
following algorithm. The first was that the target being pur­
sued moved very rapidly. Thus, if the sensors don't see the
target, the pursuer should continue to go straight forward
in an attempt to catch up. The other observation was that
the target usually moved forward only, it seldom reversed.
This means the pursuer should never back up - given the
speed of the target, by the time the it actually started to go
forward again the target would be hopelessly far ahead.

The algorithm Tom uses is shown in Figure 3. We keep
the strong forward vector from level one, represented by the
large arrow in the middle, but we now make the side IRs
attractive normal to the direction of travel (they remain
repulsive in the tangential direction). This is sufficient to
cause the car to turn toward obstacles rather than away
from them. It does this, however, without having any idea
that there is a "thing" that it is chasing. Note, also, that
because the Collide behavior is still operative, the car will
stop before actually hitting the object it is following.

An important part of multi-level systems like this one is
determining when to switch from one behavior to another.
In this case, the transition from the level one exploratory
behavior to this level two seeking behavior is keyed to the
activity of the side two IRs. When the robot is in a com­
plex portion of the environment, constantly veering around
obstacles, the side IRs are active a large portion of the time.
Conversely, when these sensors become inactive it usually
means the robot is in a large open space. In such a case
the vehicle switches into follow mode, actively seeking ob­
stacles. Note, however, that if the object being followed ever
stops, the side IRs come on and stay on causing the robot
to eventually revert to the wander mode.

6. Implementat ion
The interesting part is how a PAL can be made to per­

form complex calculations such as the polar coordinate vec­
tor summation required by the potential field algorithm. Let
/ ; , lb, It, and Ir be the forward, backward, left, and right
proximity sensors respectively. These variables take a value
of one or zero depending on whether the associated sensor

Connell 1125

s an obstacle or not. We can now write an expression for
the forward-backward force, Ft:

To put this on the PAL we break it down into cases,
much like is done in Qualitive Process theory [Forbus 84].
The robot should go forward when backwards when

and stay still when F1 = 0. We can see that the only
case in which Ft is postive is when the back IR senses an
obstacle and, at most, one of the side IRs is active. We can
encode this as a boolean expression for when to go forward.
Using similar arguments for the other two cases we come up
with the following expressions:

G1 is true when the robot should be going forward and G*
is true when the robot should retreat. Notice that these
expressions are in exactly the right form for the PAL: an
OR of AN Ds.

The runaway behavior described by these expressions
works fairly well except that the robot can't stop quickly.
One way to decrease the stopping distance is to run the
motor in reverse for a little while. As can be seen in figure
4, this active braking scheme is built on top of the existing
control system. The Go module determines when the robot
should be moving and reports this on its output, A:

When the Reverse module sees the A line go low it knows
that the robot is supposed to stop. It uses the output of the
Last module to determine which direction to run the motor.
Df means the car was advancing and so the motor should be
run in reverse, while D* means the car was going backward
so the motor should be run forward to slow it down. The
command from the Reverse module suppresses the output
of the Forward module. The suppresion is implemented by
using the allowed motion signal, A, to select which module
gets control:

We now have a control system that causes the robot
to run away from attackers. Unfortunately, it occasionally

causes collisions which could have been avoided. Consider
the case where all the proximity sensors detect obstacles.
According to the expression for Gb, the robot should go
backwards even though it knows there is something in the
way. We remedy this by adding a special collision avoidance
behavior. As shown in Figure 4, we do this by adding a new
module, Collide, which inhibits the output of the Go mod­
ule. The Collide module looks at the commanded direction
and the central IRs to decide whether it is safe for the robot
to move. The actual inhibition is performed by AN Ding the
allowed motion signal, At with the invert of the halt case.

The next two layers of the control system are imple­
mented in a similar fashion on the same PAL.

7. Conclusions
In this paper we have described Tom, a working robot

based on the subsumption architecture, and shown how it
operates with a minimal amount of computing power. The
simplicity of this design has allowed us to create several iden­
tical vehicles and let us start to explore the ways in which
communities of creatures interact.

Acknowledgements
Thanks to Rod Brooks and the people in the mobile

robot group, especially Wendy Wang and Peter Ning.

References
[A r k i n 87] Ronald C. Arkin: "Motor Schema Based Nav­

igation for a Mobile Robot"; submitted to the IEEE
Conference on Robotics and Automation, 1987.

[Brooks 86] Rodney A. Brooks: "A Robust Layered Control
System for a Mobile Robot"; IEEE Journal of Robotics
and Automation, RA-2, No 1., Apri l 1986.

[Brooks and Connel l 86] Rodney A. Brooks and Jonathan
H. Connell: "Asynchronous Distributed Control System
for a Mobile Robot"; SPIE Proceedings, Vol. 727, Oc­
tober 1986, 77-84.

[Brooks, Connel l , and F l y n n 86] Rodney A. Brooks,
Jonathan H. Connell, and Anita M. Flynn: "A Mo­
bile Robot with Onboard Parallel Processor and Large
Workspace Arm"; Proceedings of AAAI-86, 1096-1110.

[Forbus 84] Kenneth Dale Forbus: "Qualitative Process
Theory"; M IT AI Lab Technical Report 789, June 1984.

[Kaebl ing 86] Leslie Pack Kaebling: "An Architecture for
Intelligent Reactive Systems"; SRI International and
Stanford University, Apri l 1986.

[M insky 87] Marvin Minsky: The Society of Mind; Simon
and Schuster, New York, 1987.

[Payton 86] David W. Payton: "An Architecture for Reflex­
ive Autonomous Vehicle Control"; IEEE Robotics and
Automation Conference, San Francisco, Apri l 1986.

1126 ROBOTICS

