FINDING COLLISION-FREE SMOOTH TRAJECTORIES FOR

A NON-HOLONOMIC MOBILE ROBOT.

Jean-Paul LAUMOND

LAAS du CNRS
7 Avenue du Colonel Roche
F 31077 TOULOUSE Cedex

FRANCE

Abstract Most mobile robots are subject to
kinematic constraints (non-holonomic Joints), i.e.,
the number of degrees of freedom is less than the
number of configuration parameters. Such robots can
navigate in very constrained space, but at the
expense of backing up maneuvers [Laumond 86]. In
this paper we study the original problem of finding
collision-free smooth trajectories, i.e. with never
backing up, for a circular mobile robot whose the
turning radius is lower bounded.

1 Introduction

This paper is part of the research work currently
done on the mobile robot Hilare [Giralt 84]
[Chatila 86], with respect to automatic path

planning in a constrained space, taking into
account the vehicle's kinematic constraints.

If the study of navigation in a constrained space
leads to considering the problem in terras of path-
finding in the configuration space [Lozano-Perez
83] (the well-known "piano mover' problem), saore
possible kinematic constraints of a mobile robot do
not guarantee the feasibility of the trajectories
generated by classical methods. Indeed, the number
of degrees of freedom is less than the dimension of
the configuration space. Taking into account these
constraints increases the complexity of the path-
finding problem [Lozano-Perez 86].

In a recent paper [Laumond 86] we studied this
original problem. It was demonstrated that the
existence of a trajectory for a mobile robot with
two degrees of freedom is characterized by the
robot of the same shape but with three degrees of
freedom. It appears that the passing through highly
constrained spaces can lead to a large number of
backing up maneuvers.

The am of this paper is to present a study of
smooth trajectory planning for a mobile robot whose
kinematics is that of a car. This study relies on
two properties. The first one characterizes the
existence of smooth trajectories by the existence
of trajectories consisting of line segments, circle
arcs of fixed radius, or contact arcs. The other
one determines, from the shortest path, the minimal
angular variations that any trajectory belonging to
the same class of homotopic mapping, will execute.
The association of these two properties allows us
to transform the path planning problem into one of

polygonal line finding in a dual space of the
configuration space, i.e. the space of centers of
curvature.

This second property is established in an Euclidean
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plane. This restriction leads us to consider the
application of the results to the case of a
circular robot. Note that the method presented is
applicable to more general environments than
polygonal ones,

definitions,

2 Smooth trajectories property of

existence.

We consider a mobile robot MR evolving in a planar
world, whose kinematics is that of a car. A
configuration is defined by a triplet (x,y,6) of
R?'s' where (x,y) are the coordinates of the rear
axle middle point and , the vehicle's orientation
expressed in S1, the oriented unit circle. Such a
vehicle is subject to a non-holonomic joint
[Vhittaker 65] dy - dx.tg0 * O (1) and has two
degrees of freedom. This kinematics is analogous to
that of a robot with two separate driving wheels as
Hilare, although in the case of the car, the
turning radius is lower bounded.

In the following, we consider that the mobile
robot, MR is circular, of radius r, subject to the
Joint (1) and that its turning radius is lower
bounded by a constant ro. Let M be the center of
MR In this context, the admissible configuration
space is characterized by its projection on R?,
noted ACSP. ACSP is very simply obtained by an
isotropic growth of the obstacles by the radius r
(see figure 4a). In the sequel, we suppose that
ACF is bounded by generalized polygonal lines
(i.e. consisting of line segments and arcs of
circle [Laumond 87])

From the non-holonomic joint (1) it is deduced that
Os Arctg(dy/dx). Thus there is a one to one
correspondance between the set of trajectories of M
in R¥S" and that of the trajectories of M in R%

Let T be a feasible trajectory of M, and f
(respectively g) be a characteristic representation
of T in the plane (resp. R?*#S"). f is a continuous
mapping of [0,1] on R? piecewise of class C?, i.e.
there exists a finite sequence (ti): such that the
restriction of f to Jtq(tq1+4[ is differentiable
twice and its second derivative is continuous;
moreover, at each point of f(]t,,ti+4«[) the
curvature is less than 1/rq. If, in addition, f is
of class C1, T is said to be smooth (or "without
backing up maneuver”; in [Laumond 86] we said
"without maneuver"). T is said to perform an
angular gap [©,0'] included in s, if there exists
an interval [t tj] included in [0,1] such that
[0,6'] is included in the projection of g([tifti])
on S'. A turn refers to a trajectory arc
direction of curvature is constant.



Property 1 A feasible smooth trajectory exists
between two configurations of MR if and only if
there exists a smooth trajectory consisting of line
segments, circle arcs of radius ro or contact arcs
whose curvature at any point is less than 1/ro.

Demonstration : Let T be a smooth trajectory
feasible by MR and f be a representation of T in
R?% f being piecewise of class C? there exists a
partition of [0,1] into intervals [t;it1+1] such
that the curvature of f between f(T,) and f(t|+1)
has a constant sign. Refine [t,,t{,4] into
intervals [t;5:t5y.,¢] according to whether or not
f(tij'tii+i) is a"part of the contact trajectory.
The contact arcs have a curvature less than |I/rg.
Consider the intervals [t jtq,.4] corresponding to
parts of the contact-free trajectory ([ti1o0,tn],
[ti2,tus] in figure 1). Construct the shortest path
L, between f(tij) and f(tiso) in ACSP, so that the
tangents in the extremities are preserved. L is a
curve of class C' (a generalized polygonal line)
whose curvature has the same sign as that of T (see
[Hershberger and Guibas 86] and [Laumond 87] for
algorithmical aspects). All the arcs of L, except

possibly those at the ends, are contact arcs. |If
all these arcs have a radius of curvature greater
than ro, L has the property searched for (for

example as is the case between f(tiz) and f(tq13)).
In the opposite case, let t,;x = (tji + t4j+41)/2 and
iterate the process on the intervals [t4j,t;x] and
[t1k, t1j+1], so that the radius of curvature at t,«
is ro. This process converges since f is contact-
free. So, a trajectory satisfying the property
searched for is progressively constructed. The
converse follows obviously, i

Ftta)

firg F

Figure 1 At the first iteration on [tqo,t11], L,
in dashed lines, does not have the property
searched for (since the arc « has a curvature
greater than I/rp). At the second iteration L' and
L" have the property searched for.

Thus, to prove the existence of a smooth trajectory
feasible by MR it suffices to prove the existence
of a smooth trajectory whose arcs which are not
contact arcs are circle arcs of fixed radius. This
type of trajectory is characterized only by the
different centers of curvature. Indeed, consider a
generalized polygonal line L consisting of circle
arcs of the same radius r and tangent segments
(such a line is noted g.p.l.r). This line is
associated with the polygonal line L* linking the
arc centers of same curvature. To each change in
the curvature of L corresponds a new connected
component of L", Sare of these components can be
isolated points. L and L* are said to be duals (see
figure 2).

Figure 2 A g.p.l.r L with its dual L" ; here L*
has three connected components, one of which is
reduced to a point.

Thus the algorithm consisting of searching for the
centers of curvature becomes clearer. The following
property will enable us to state more accurately in
which domains this search has to be carried out.

3 "Canonicity" of the shortest path.

Consider the shortest path between two points in
ACSP. AIll parts of this path which are not in
contact are line segments. It appears that this
path which is optimal in distance is equally
optimal in terms of angular variations in its
homotopy class. We only consider the trajectories
of class C'. The shortest path will be referred to
as the canonical trajectory of its class.

Property 2 Let T be a canonical trajectory and L
a homotopic trajectory in ACSP. Let A be a contact
arc between two consecutive line segments S; and S;
of T, and let &, and G be the respective
directions of S, and S,. L performs the angular gap
[01,02] in the concave domain D bounded by A and
the half-lines supporting S, and S> (see figure 3).
More precisely, if P. is the half-plane bounded by
the tangent in A whose direction is 9 and which do
not contain the obstacle, then
D« { U“[“I.“P. } N ACBP.

Demonstration (sketch) With the above hypotheses
and notations, T being the shortest path, any ho-
motopic trajectory L have to pass through P.. Thus,
if L is smooth, it has a point in P whose tangent
direction is e. So L performs [8;,8,] in D. 1

In other words, the shortest trajectory performs
the minimum angular gap. The advantage of this
property lies in that it enables us to determine in
which domains the arcs have to be searched for, and
then in which domains their centers have to be
searched for, since the arcs have a fixed and known
radius (property 1).

4 Space of centers of curvature.

This space is defined for each homotopy class. For
each turn [8,.8;] performed by the canonical
trajectory T, we define the domain D* containing
the duals of all the g.p.l.ro's homotopic with T
and performing the angular gap [81.82] in the
domain D defined in property 2. With the notations
of the property 2, let P * t(Pe), where t is the
translation of vector (rpcos9, -rpsin6). D* is
included in Ug([e,(e2]""e" To compute D* requires
that the obstacles located in D are taken into
account. This is easily achieved by means of an
isotropic growth of radius ro, of the boundaries of
ACSF contained in D (see figure 3). The space of
curvature centers is the set of all the domains
associated with the canonical trajectory turns.

Let A be the arc of T executing the turn and L the
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Figure 3

A domain D,

{part of) g.p.l.ry performing [6,,6;] and holoncaic
with A, The direction of curvature of L 1is
conetant; L' le c¢onvex and paeses through all the
P':; then we must have L N(Nggryy, e21P ¢} £ 8. Ve
call kernel of D* the weet Ker{D"} .
D'ﬂ(n““"”]P'.). Thum, & NeaceAEAry and
sufficient conditich of exietence of ona g.p.l.rg
homotoplc to the arc A and contained in D, iz that
X(D*)¢g. Any polygonal line dual of a wolution
g.p.l.r;, has a non-empty Iintersection with K{D™)
{condition C1). Figure ¥ 1llusetrates the notlons of
domain and kernel.

Note that a domain of curvature center space is not
necepsarily connectad and that (ts connected
components are not neceeearily eimply connected
{they may have heles). Thie remark leads us to the
uee of tree data structures which will allev to
represent the domaine of the curvature center
space.

5 Linking of turns.

Let A, and A, be two consecytive turns on a
canonical trajectory T, D," and D;* being the
agpociated domains of the curvature centars. With
the formalise introduced, 1t iw very simple to
express the conditions of existence of one g.p.l.rg
L executing the twe turns and hemotoplc to T, Tweo
different cases are conaidered, namely ;

if Ay and A, are of the wame ocurvature, L eximts
if end only if L" is connected and is the union of
L,® and L,", such that L,"eD\*, L,“NK(D,")ys,
L;*e D, and L;*NK(D,")yp {condition C2).
« 1f Ay and A, are of opposite curvature, L existm
if and only 1f there exist twe polygonal lines LI'
and L,' {with a non-empty intersection with KX(D, }
and K(D,") reepectively) in D" and D;" wuch that
two of their end segments are parallel and at a
distance of 2r, (condition C3} (wee figure 2 : ihe
parallel segments shown in dashed lines). Note that
the c¢onditions impose that there exist two points
in X(D,"} and K(D,") respectively, located at a
distance greater than 2r,, hence that :
Max {diet(x.y) | R€K{Dy"). FEK(D;")} 3 2rp (®).

This last condition supports ths introduction of
the following propagation function F : let X and Y
be two kernels of tha domaine amscoiatad with two
consecutive turne. If these two turne have the sase
direction, lat F{X)}=¥ (no oonstraints on the
distance from X to Y). If thesa two turns are of
opposite  directions, lat :

F(X) « { pEY | Max{dist{p,p’'}/p'€X}p2ry }.
Condition (*) 1 written F(X)¢§g. Let F{f)=p.

6 Sketch of algorithm.
The algorithm concerning the search for smooth

trajectories consists of four steps. Ve assume the
environment to be made up of generalized polygons.
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the domains D* and K(D*) associated.

Step 1 In the first step, we find the shortest
canonical trajectory T. To do this, we use a path
planning prooedure in the generalized visibility
graph of ACSP (i.e. the set of positions reachable
by M) [Hershberger and Ouibas 86] [Laumond 87]. If
ryro, AC8P is bounded by generalized polygons whose
radius of ourvature is, at any point, greater than
or equal to r, henoe to ry. T is smooth and
feasible; the algorithm stops here. Otherwise

Step 2 Let Ap...,A, be the sequence of turns
(contact arcs) executed by T. For each A; compute
the domain D1* of the possible centers of curvature
as well as kernels K(D"). If one of these kernels
is empty, the corresponding turn cannot be
negociated without backing up maneuver. If none of
these domains is empty, the linking of different
turns must then be envisaged.

Step 3 : Let \ and T,.1 be the initial and final
centers of curvature of T. Generally they
correspond to contact-free arcs of radius rg (see
figure 4b). With function F we successively
propagate (to) onto K(Dq") . . . | K(Dn*) and {th+1}.
If F"*'({to})«0 there is no smooth trajectory. Let

J be the greatest integer such that FJ({To})#0, it
is necessary to perform maneuvers to link turns a.
and g, +. If not

8tep 4 In each domain Dj", search for a polygonal
line satisfying the three conditions CI, C2 and C3.
This is by far the most difficult step to
implement. Indeed, the search for the polygonal
lines must be continued as long as a solution has
not been found, in each connected component of each
D1* domain. This may prove a very costly search
since the non-existence of a solution in the
current step leads to a backtracking on the
previously and partially explored domains.

Figures 4 give an example of solution.
7 Complexity.

At this stage of the development of the algorithm,
the overall complexity cannot be precisely
evaluated yet. On the whole, it Is governed by step
4. Indeed, the complexity of step 1 is O(nz), n
standing for the number of primitives (segments or
arcs) of the environment. The oomputation of the
different domains and of their kernels, which may
attain a quadratic complexity In the worst case,
may be linear when the environment complexity is
locally bounded (i.e., If there is an environment
paving such that the, number of primitives in each
of the pavements is bounded by a oonstant). At
worst, the oomputation of the propagation function
reaches a oubio complexity (l.e., when the number
of domains is In 0(n) and when eaoh domain kernel
is in 0(n)), but this complexity is less in
praotios (see the example presented). The
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Figure 4b : A canonical trajectory with 5 turns and

) ) the associated kernels. For each turn, the domain
Figure 4a : Computing of ACSP (the set of the D* and the kernel : are represented. The kernel of
positions reachable by the center of the robot). the turn 5 has two components. The dual of a

solution is shown with crosses.

Figure 4c : The corresponding eolution in ACSP and in the environment.
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