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Abstract : Most mobile robots are subject to plane. This restrict ion leads us to consider the 
kinematic constraints (non-holonomic Joints), i .e. , application of the results to the case of a 
the number of degrees of freedom is less than the circular robot. Note that the method presented is 
number of configuration parameters. Such robots can applicable to more general environments than 
navigate in very constrained space, but at the polygonal ones, 
expense of backing up maneuvers [Laumond 86]. In 
this paper we study the original problem of finding 2 Smooth trajectories : definitions, property of 
coll ision-free smooth trajectories, i .e. with never existence. 
backing up, for a circular mobile robot whose the 
turning radius is lower bounded. 

1 Introduction 

This paper is part of the research work currently 
done on the mobile robot Hilare [Giralt 84] 
[Chatila 86], with respect to automatic path 
planning in a constrained space, taking into 
account the vehicle's kinematic constraints. 

If the study of navigation in a constrained space 
leads to considering the problem in terras of path-
finding in the configuration space [Lozano-Perez 
83] (the well-known "piano mover" problem), some 
possible kinematic constraints of a mobile robot do 
not guarantee the feasibi l i ty of the trajectories 
generated by classical methods. Indeed, the number 
of degrees of freedom is less than the dimension of 
the configuration space. Taking into account these 
constraints increases the complexity of the path-
finding problem [Lozano-Perez 86]. 

In a recent paper [Laumond 86] we studied this 
original problem. It was demonstrated that the 
existence of a trajectory for a mobile robot with 
two degrees of freedom is characterized by the 
robot of the same shape but with three degrees of 
freedom. It appears that the passing through highly 
constrained spaces can lead to a large number of 
backing up maneuvers. 

The aim of this paper is to present a study of 
smooth trajectory planning for a mobile robot whose 
kinematics is that of a car. This study relies on 
two properties. The f i r s t one characterizes the 
existence of smooth trajectories by the existence 
of trajectories consisting of line segments, circle 
arcs of fixed radius, or contact arcs. The other 
one determines, from the shortest path, the minimal 
angular variations that any trajectory belonging to 
the same class of homotopic mapping, w i l l execute. 
The association of these two properties allows us 
to transform the path planning problem into one of 
polygonal line finding in a dual space of the 
configuration space, i .e. the space of centers of 
curvature. 

This second property is established in an Euclidean 

We consider a mobile robot MR evolving in a planar 
world, whose kinematics is that of a car. A 
configuration is defined by a t r ip le t (x,y,6) of 
R2*s' where (x,y) are the coordinates of the rear 
axle middle point and , the vehicle's orientation 
expressed in S1, the oriented unit c irc le. Such a 
vehicle is subject to a non-holonomic joint 
[Vhittaker 65] dy - dx.tg0 * 0 (1) and has two 
degrees of freedom. This kinematics is analogous to 
that of a robot with two separate driving wheels as 
Hilare, although in the case of the car, the 
turning radius is lower bounded. 

In the following, we consider that the mobile 
robot, MR, is circular, of radius r, subject to the 
Joint (1) and that i ts turning radius is lower 
bounded by a constant r0. Let M be the center of 
MR. In this context, the admissible configuration 
space is characterized by i ts projection on R2, 
noted ACSP. ACSP is very simply obtained by an 
isotropic growth of the obstacles by the radius r 
(see figure 4a). In the sequel, we suppose that 
ACSP is bounded by generalized polygonal lines 
( i .e . consisting of line segments and arcs of 
circle [Laumond 87]) 

From the non-holonomic joint (1) it is deduced that 
0 s Arctg(dy/dx). Thus there is a one to one 
correspondance between the set of trajectories of M 
in R2*S1 and that of the trajectories of M in R2. 

Let T be a feasible trajectory of M, and f 
(respectively g) be a characteristic representation 
of T in the plane (resp. R2#S1). f is a continuous 
mapping of [0,1] on R2, piecewise of class C2, i .e. 
there exists a f in i te sequence ( t 1 ) t such that the 
restrict ion of f to ] t 1 ( t 1 + 1 [ is differentiable 
twice and i ts second derivative is continuous; 
moreover, at each point of f ( ] t l , t i + 1 [ ) the 
curvature is less than 1/r0. I f , in addition, f is 
of class C1, T is said to be smooth (or "without 
backing up maneuver"; in [Laumond 86] we said 
"without maneuver"). T is said to perform an 
angular gap [©,0'] included in S1, if there exists 
an interval [ t 1 t j ] included in [0,1] such that 
[0,6 ' ] is included in the projection of g ( [ t l f t i ] ) 
on S1. A turn refers to a trajectory arc whose 
direction of curvature is constant. 
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Property 1 : A feasible smooth trajectory exists 
between two configurations of MR if and only if 
there exists a smooth trajectory consisting of line 
segments, circle arcs of radius r0 or contact arcs 
whose curvature at any point is less than 1/r0. 

Demonstration : Let T be a smooth trajectory 
feasible by MR and f be a representation of T in 
R2; f being piecewise of class C2, there exists a 
part i t ion of [0,1] into intervals [ t l t t 1 + 1 ] such 
that the curvature of f between f(T1) and f ( t l + 1) 
has a constant siqn. Refine into 
intervals according to whether or not 
f ( t i j ' t i i + i ) is a"part of the contact trajectory. 
The contact arcs have a curvature less than l / r0 . 
Consider the intervals [ t 1 j t 1 J + 1 ] corresponding to 
parts of the contact-free trajectory ( [ t 1 0 , t n ] , 
[ t 1 2 , t J 5 ] in figure 1). Construct the shortest path 
L, between f ( t t j) and f ( t i J O ) in ACSP, so that the 
tangents in the extremities are preserved. L is a 
curve of class C1 (a generalized polygonal l ine) 
whose curvature has the same sign as that of T (see 
[Hershberger and Guibas 86] and [Laumond 87] for 
algorithmical aspects). All the arcs of L, except 
possibly those at the ends, are contact arcs. If 
a l l these arcs have a radius of curvature greater 
than r0, L has the property searched for (for 
example as is the case between f ( t i 2 ) and f ( t 1 3 ) ) . 
In the opposite case, let t J k = ( t j i + t 1 j + 1 ) /2 and 
iterate the process on the intervals [ t 4 j , t l k ] and 
[t1k, t1j+1], so that the radius of curvature at t l k 

is r0. This process converges since f is contact-
free. So, a trajectory satisfying the property 
searched for is progressively constructed. The 
converse follows obviously, i 

Figure 1 : At the f i r s t iteration on [ t 1 0 , t11 ] , L, 
in dashed lines, does not have the property 
searched for (since the arc « has a curvature 
greater than l / r 0 ) . At the second iteration L' and 
L" have the property searched for. 

Thus, to prove the existence of a smooth trajectory 
feasible by MR, it suffices to prove the existence 
of a smooth trajectory whose arcs which are not 
contact arcs are circle arcs of fixed radius. This 
type of trajectory is characterized only by the 
different centers of curvature. Indeed, consider a 
generalized polygonal line L consisting of circle 
arcs of the same radius r and tangent segments 
(such a line is noted g .p . l . r ) . This line is 
associated with the polygonal line L* linking the 
arc centers of same curvature. To each change in 
the curvature of L corresponds a new connected 
component of L", Some of these components can be 
isolated points. L and L* are said to be duals (see 
figure 2). 

Figure 2 : A g.p. l . r L with i ts dual L" ; here L* 
has three connected components, one of which is 
reduced to a point. 

Thus the algorithm consisting of searching for the 
centers of curvature becomes clearer. The following 
property w i l l enable us to state more accurately in 
which domains this search has to be carried out. 

3 "Canonicity" of the shortest path. 

Consider the shortest path between two points in 
ACSP. Al l parts of this path which are not in 
contact are line segments. It appears that this 
path which is optimal in distance is equally 
optimal in terms of angular variations in i ts 
homotopy class. We only consider the trajectories 
of class C1. The shortest path w i l l be referred to 
as the canonical trajectory of i ts class. 

Property 2 : Let T be a canonical trajectory and L 
a homotopic trajectory in ACSP. Let A be a contact 
arc between two consecutive line segments S1 and S2 

of T, and let and G2 be the respective 
directions of S, and S2. L performs the angular gap 
[01,02] in the concave domain D bounded by A and 
the half-l ines supporting Sy and S2 (see figure 3). 
More precisely, if Pe is the half-plane bounded by 
the tangent in A whose direction is 9 and which do 
not contain the obstacle, then : 

Demonstration (sketch) : With the above hypotheses 
and notations, T being the shortest path, any ho­
motopic trajectory L have to pass through Pe. Thus, 
if L is smooth, it has a point in Pe whose tangent 
direction is e. So L performs in D. 1 

In other words, the shortest trajectory performs 
the minimum angular gap. The advantage of this 
property l ies in that it enables us to determine in 
which domains the arcs have to be searched for, and 
then in which domains their centers have to be 
searched for, since the arcs have a fixed and known 
radius (property 1). 

4 Space of centers of curvature. 

This space is defined for each homotopy class. For 
each turn performed by the canonical 
trajectory T, we define the domain D* containing 
the duals of a l l the g .p . l . r 0 ' s homotopic with T 
and performing the angular gap in the 
domain D defined in property 2. With the notations 
of the property 2, let P*e * t(Pe) , where t is the 
translation of vector (r0cos9, -r0sin6). D* is 
included in U e ( [ e , ( e 2 ] p " e • To compute D* requires 
that the obstacles located in D are taken into 
account. This is easily achieved by means of an 
isotropic growth of radius r0, of the boundaries of 
ACSP contained in D (see figure 3). The space of 
curvature centers is the set of a l l the domains 
associated with the canonical trajectory turns. 

Let A be the arc of T executing the turn and L the 
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F i g u r e 3 : A domain D, t he domains D* and K(D*) a s s o c i a t e d . 

5 L i n k i n g o f t u r n s . 

6 Sketch of a lgor i thm. 

The algor i thm concerning the search for smooth 
t r a j e c t o r i e s consists of four steps. Ve assume the 
environment to be made up of general ized polygons. 

Step 1 : In t he f i r s t s t e p , we f i n d t he s h o r t e s t 
c a n o n i c a l t r a j e c t o r y T. To do t h i s , we use a p a t h 
p l a n n i n g p rooedure i n t he g e n e r a l i z e d v i s i b i l i t y 
g raph o f ACSP ( i . e . t he s e t o f p o s i t i o n s reachab le 
by M) [Hershberger and Ouibas 86] [Laumond 8 7 ] . I f 
r ) r 0 , AC8P is bounded by g e n e r a l i z e d po lygons whose 
r a d i u s o f o u r v a t u r e i s , a t any p o i n t , g r e a t e r t han 
or equa l to r , henoe to r 0 . T is smooth and 
f e a s i b l e ; t he a l g o r i t h m s tops h e r e . Otherw ise : 

S tep 2 : Le t A p . . . , A n be t he sequence of t u r n s 
( c o n t a c t a r c s ) execu ted by T. For each A i compute 
the domain D1* o f t h e p o s s i b l e c e n t e r s o f c u r v a t u r e 
a s w e l l a s k e r n e l s K ( D t " ) . I f one o f these k e r n e l s 
i s empty, t he c o r r e s p o n d i n g t u r n cannot be 
n e g o c i a t e d w i t h o u t back ing up maneuver. I f none o f 
these domains i s empty, t he l i n k i n g o f d i f f e r e n t 
t u r n s must t h e n be e n v i s a g e d . 

S tep 3 : Le t \0 and T n + 1 be t he i n i t i a l and f i n a l 
c e n t e r s o f c u r v a t u r e o f T . G e n e r a l l y t hey 
co r respond t o c o n t a c t - f r e e a r cs o f r a d i u s r 0 (see 
f i g u r e 4 b ) . W i t h f u n c t i o n F we s u c c e s s i v e l y 
p ropaga te ( t 0 ) on to K ( D 1 " ) K (D n * ) and { t n + 1 } . 
I f F n * 1 ( { t o } ) « 0 t h e r e i s n o smooth t r a j e c t o r y . Le t 
J b e the g r e a t e s t i n t e g e r such t h a t F J ( { T O } ) # 0 , i t 
i s necessary t o p e r f o r m maneuvers t o l i n k t u r n s a . 
and a ■ j * i - I f no t 

8 t e p 4 : In each domain D j " , sea rch f o r a p o l y g o n a l 
l i n e s a t i s f y i n g t he t h r e e c o n d i t i o n s C I , C2 and C3. 
T h i s i s b y f a r t he most d i f f i c u l t s t ep t o 
imp lement . I ndeed , t he sea rch f o r t he p o l y g o n a l 
l i n e s must be c o n t i n u e d as l ong as a s o l u t i o n has 
no t been f o u n d , in each connected component o f each 
D1* domain. T h i s may p rove a ve ry c o s t l y sea rch 
s i n c e the n o n - e x i s t e n c e o f a s o l u t i o n i n t he 
c u r r e n t s t e p leads to a b a c k t r a c k i n g on the 
p r e v i o u s l y and p a r t i a l l y e x p l o r e d domains. 

F i g u r e s 4 g i v e an example o f s o l u t i o n . 

7 C o m p l e x i t y . 

A t t h i s s tage o f t h e development o f t h e a l g o r i t h m , 
t h e o v e r a l l c o m p l e x i t y cannot b e p r e c i s e l y 
e v a l u a t e d y e t . On t h e who le , i t I s governed by s t ep 
4 . I ndeed , t h e c o m p l e x i t y o f s t e p 1 i s 0 ( n 2 ) , n 
s t a n d i n g f o r t h e number o f p r i m i t i v e s (segments o r 
a r c s ) o f t h e e n v i r o n m e n t . The oompu ta t i on o f t h e 
d i f f e r e n t domains and o f t h e i r k e r n e l s , w h i c h may 
a t t a i n a q u a d r a t i c c o m p l e x i t y I n t h e w o r s t case , 
may be l i n e a r when t h e env i ronment c o m p l e x i t y is 
l o c a l l y bounded ( i . e . , I f t h e r e i s a n env i ronment 
p a v i n g such t h a t the , number o f p r i m i t i v e s i n each 
of t h e pavements is bounded by a o o n s t a n t ) . At 
w o r s t , t h e oompu ta t i on o f t h e p r o p a g a t i o n f u n c t i o n 
reaches a oub io c o m p l e x i t y ( I . e . , when t h e number 
of domains is In 0 ( n ) and when eaoh domain k e r n e l 
i s i n 0 ( n ) ) , b u t t h i s c o m p l e x i t y i s l e s s i n 
p r a o t i o s (see t h e example p r e s e n t e d ) . The 
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c o m p l e x i t y of s t ep 4- depends on the number of the 
conneoted components of the domains D*. 
P a r a d o x i c a l l y t he a l g o r i t h m w i l l b e a l l t he more 
e f f i o i e n t a s the spaoe i s h i g h l y s 
Indeed in a h i g h l y c o n s t r a i n e d spaoe, t h e spaoe o f 
s o l u t i o n s i s much reduced and t h i s i s most o f the 
t i m e r e f l e c t e d by a 6 o n n e o t i v i t y o f the env isaged 
o u r v a t u r e domains. 

8 D i r e c t i o n s f o r use and e x t e n s i o n s . 

I n a h i g h l y c o n s t r a i n e d space, i t i s no t r e a l i s t i c 
t o env isage a n o f f - l i n e p l a n n i n g o f o o l l i s i o n - f r e e 
t r a j e c t o r i e s [Laumond 8 6 ] . The a l g o r i t h m p resen ted 
must be used t o d e f i n e s t r a t e g i e s i n o rder t o 
n e g o c i a t e a p a r t i c u l a r t u r n . These s t r a t e g i e s are 
i n s t a n t i a t e d o n - l i n e w i t h the i n f o r m a t i o n s p r o v i d e d 
by t he s e n s o r s . 

We have p resen ted here on l y a s k e t c h a l g o r i t h m . 
Step 4 r e q u i r e s more t e c h n i c a l developments wh ich 
are in p r o g r e s s . The e x t e n s i o n o f our approach to 
t he case of a n o n - c i r c u l a r r obo t (excep t f o r an 
a p p r o x i m a t i o n approach wh ich may prove h i g h l y 
e f f i c i e n t i n p r a c t i c e ) poses t h e o r i t i c a l problems : 
how can a m e t r i c , d e f i n e d in the c o n f i g u r a t i o n 
space R2#S1 (and no t in i t s p r o j e c t i o n on R2) - and 
s u p p o r t i n g t he n o t i o n o f s h o r t e s t p a t h - r e t a i n the 
E u c l i d e a n m e t r i c when p r o j e c t e d onto r e a l space ? 
The e x t e n s i o n to the nD case poses n o n - t r i v i a l 
prob lems i ndeed , the c a n o n i c i t y p r o p e r t y f o r 
s h o r t e s t pa ths do no t h o l d in the nD case when n>2. 
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