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Abstract 

Qualitative simulation of behavior from structure is 
a valuable method for reasoning about partially known 
physical systems. Unfortunately, in many realistic situ­
ations, a qualitative description of structure is consistent 
with an intractibly large number of behavioral predictions. 
We present two complementary methods, representing dif­
ferent trade-offs between generality and power, for tam­
ing an important case of intractible branching. The first 
method applies to the most general case of the problem. 
It changes the level of the behavioral description to aggre­
gate an exponentially exploding tree of behaviors into a 
few distinct possibilities The second method draws on ad­
ditional mathematical knowledge, and assumptions about 
the smoothness of partially known functional relationships, 
to derive a correspondingly stronger result. Higher-order 
derivative constraints are automatically derived by manip­
ulating the structural constraint model algebraically, and 
applied to eliminate impossible branches These methods 
have been implemented as extensions to QSIM and tested 
on a substantial number of examples They move us signif­
icantly closer to the goal of reasoning qualitatively about 
complex physical systems 

(a) 

1 I n t r o d u c t i o n 

Qualitat ive simulation is a promising method for reasoning about 
the behavior of physical systems, starting from incomplete knowl­
edge of the structure and ini t ial state [Kuipers, 84, 86; de Kleer 
and Brown, 84; de Kleer and Bobrow, 84; Forbus, 84; Wil l iams 
84a, 86]. Incompletely known values may be described quali­
tat ively in terms of their relations wi th a discrete set of land­
mark values. Incompletely known functional relations may be 
described qualitatively as monotonically increasing or decreas­
ing, and passing through certain corresponding landmark values. 
Methods of qualitative simulation have demonstrated promis­
ing results on a variety of small and moderate-sized examples 
[Kuipers, 84, 85, 86, 87; Forbus 84, 86; de Kleer, 84; de Kleer 
and Brown, 84; Wil l iams, 84a, 86]. 

In at tempting to extend these techniques to simulate the con­
tinuous behavior of larger and more t ightly interacting systems, 
however, certain problems have been encountered, resulting in a 
proliferation of predicted behaviors. Under the different repre­
sentations for qualitative behavior, this proliferation is manifest 
in different ways. 

(b) 

(a) A tree of behaviors for the cascaded tank system pro­
duced by QSIM. 

(b) A transit ion graph for damped spring system from [de 
Kleer and Brown, 1984]. 

•This research was suported in part by the National Science Foundation Figure 1: Intract ible branching in tree and transition graph rep-
through grants MCS-8303640, DCR-8417934, and DCR-8512779. resentations. 
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• QSIM [Kuipers, 85, 86] produces a tree of possible behav­
iors, where each path down the tree is a sequence of qual­
i tat ive states. Proliferation is manifest as an intract ibly 
branching behavior tree. (Figure la ) 

• Representations that do not create new landmark values [de 
Kleer and Brown, 84; de Kleer and Bobrow, 84; Forbus, 84; 
Wi l l iams, 84a, 86] are able to enumerate all possible quali­
tat ive states in advance, and thus produce a total envision-
menty or transit ion graph on the qualitative states. Prolif­
eration is exhibited in the transit ion graph as branches and 
loops, making an infinite set of possible paths through the 
graph. (Figure l b ) 

An important class of proliferation problems arises wi th cou­
pled systems such as two tank problems (Figure 2). (These prob­
lems represent general classes of important applications problems 
(e.g. [Sachs, et a l . , 1986], etc.).) 

The underlying problem, i l lustrated here in terms of QSIM 
behaviors, is that when two distinct processes produce qualita­
tive parameters that are changing in the same direction, their 
difference is unconstrained, except by continuity. Figure 3 shows 
one such behavior, representing a qualitative phenomenon we 
call "chatter" . Here the parameter net flow B chatters, while 
the other parameters move without changing direction. Figure 
4a shows the transit ion graph representation of a single uncon­
strained parameter. For the examples shown here, the chattering 
behaviors consist of unconstrained wandering among the quali­
tat ive states (+,inc), (+,std), and (+,dec)1 The problem is 
that , w i th no information about the actual shapes of funct ioral 
relationships such as out flow A = M+(pressure A), all of the 
predicted behaviors are real possibilities. But an exponentially 
growing set of behaviors so obscures the actual qualitative prop­
erties of the system as to eliminate the value of qualitative sim­
ulat ion. 

We have developed two distinct methods for solving this prob­
lem. One method applies to the general problem, and produces 
a slightly weaker qualitative description that collapses unimpor­
tant ly distinct branches into a single history. The other method 
takes advantage of additional knowledge or assumptions about 
the system, and produces a correspondingly stronger result. 

Figure 3: One "chattering" behavior of the Cascaded Tanks 
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2 Ignor ing I r re levant Dist inct ions 

Consider the general case of the two cascaded tanks (Figure 2a). 
If we are filling the system from an ini t ia l ly empty state by pro­
viding a fixed input to the up-stream tank, the flow from tank A 
to tank B wi l l increase monotonically wi th t ime. However, since 
the relation out flow A=M (amountA) is incompletely known, 
outflowA can "wiggle" considerably while increasing. Depend­
ing on how this interacts wi th the behavior of out flow B, which 
is monotonically related to amountB, the variable netflowB(t) 
chatters, rising and falling arbitrari ly unt i l f inally returning to 
zero. This gives a large set of behaviors, distinguished only by 
the behaviors of net flow B(t). 

Suppose, for a particular application, we are not concerned 
about the detailed behavior of netflowB(t), but only its sign. 
We would like to modify the QSIM algorithm to simulate the 
mechanism using only the qualitative magnitude of netflowB, 
and ignoring its direction of change. We can do this by adding a 
new term, ign, as a possible description of a direction of change. 
We then create a new set of qualitative state transitions, cor­
responding to the transitions in Figure 4b. The effect of these 
transitions is that all the behaviors wandering among the quali­
tat ive states , are collapsed into a 
single behavior wi th the qualitative state Its eventual 
transit ion to (0,ign) brings the system to quiescence and ends 
the behavior. 

Unfortunately, this is not sufficient. The transitions in Figure 
4b fail to capture the constraint that the derivative of a changing 
parameter must change continuously. For example, the transit ion 

should be excluded in case the only possible complete value for 
the second state is (0,inc). Therefore, we apply a global satisfi­
ability filter after each step of the prediction when an ign value 
is used. The satisfiability filter checks: 

1. Whether a consistent state exists wi th all ign values re­
placed by one of {inc,std,dec}. This is accomplished by 
treating ign as unknown, and propagating to determine 
whether there is one or more complete states, consistent 
w i th the other known values. 

2. If so, whether there is a consistent successor of the previ­
ous state. This is done by checking, for each parameter, 
whether its pair of qualitative values is consistent wi th a 
transit ion. 

The result of qualitative simulation of the cascaded tanks, 
ignoring direction of change for netflowB, is two distinct behav-
iors (Figure 5). In one case both tanks reach equilibrium at the 
same t ime, while in the other, tank A reaches equilibrium before 
tank B.2 Natural ly, since direction of change is ignored, QSIM 
does not detect crit ical points or create new landmark values for 
net flow B, though it stil l does so for the other parameters. 

This method eliminates intractible branching by changing the 
level of qualitative description of behavior, collapsing the descrip­
tions of the different real possibilities. However, this mult i tude 
of real possibilities only arises in case of pathological interactions 
between the "wiggles" of different partially known M+ relations. 
If we know that the relations are reasonably well-behaved, we 
would like to be able to take advantage of this knowledge to 
eliminate the chattering behaviors as impossible, and produce a 
stronger description of the real possible behaviors. Our second 
method gives us this power. 

(b) 

• (a) The ful l qualitative transition graph is adequate to cap­
ture continuity constraints, but permits "chatter ing" be­
haviors. 

• (b) The collapsed transition graph, ignoring direction of 
change, eliminates chatter, but fails to detect discontinuous 
change. 

Figure 4: Transit ion graphs for a single unconstrained qualitative 
parameter. 

2Strictly speaking, there is only one real behavior, with both tanks reach­
ing equil ibrium at QSIM normally treats exponential approach to a 
l imi t like any other move-to-l imit, and considers the possibility of reaching 
the l imi t in finite t ime, which corresponds to the physical perception of such 
a process. QSIM can be restricted to produce only the single mathematically 
correct prediction. 
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3 Applying Higher-Order Derivatives 

By examining the detailed structure of a branch point in the ar­
bi t rar i ly chattering behavior of the parameter netflowB, we can 
obtain a clearer picture of the nature of the proliferation prob­
lem. The typical branch is a three-way branch from a point where 
netflowB has a cri t ical point , i.e. its derivative is zero. The 
standard QSIM transit ion table [Kuipers, 1986] provides three 
possibilities after such a point the parameter can increase, re-
main steady, or decrease.(Figure 6a) 

In a system sufficiently well-understood and well-behaved to 
be described by a linear ordinary differential equation, the unique 
behavior is determined at a crit ical point by the first non-zero 
higher-order derivative at that point. For these coupled tank sys­
tems, this is the second derivative, or curvature, of the parameter 
in question (Figure 6b). The usual qualitative value for a param­
eter consists of a qualitative description of its magnitude and its 
direction of change. Its curvature is not made explicit, so the 
spurious possibilities cannot be fi ltered out and a proliferation of 
behaviors results. 

The value of higher-order derivative information has been rec­
ognized previously. Wil l iams [1984a, 1984b] showed that higher-
order derivative information could disambiguate certain branch­
ing behaviors. De Kleer and Bobrow [1984] then presented meth­
ods for expl ici t ly deriving qualitative descriptions of higher-order 
derivatives from the original confluences for a mechanism. Our 
approach starts f rom these correct observations, but overcomes 
two l imitat ions of the methods presented in previous papers.3 

• The paper [de Kleer and Bobrow, 1984] gives very l i t t le 
guidance on when to apply higher-order derivative infor­
mat ion, and how to derive it for a general constraint model 
when it is needed. 

• The straight-forward approach extends the constraint model 
to include terms for the higher-order derivatives and con­
straints l inking them to the previous terms. Unfortunately, 
this simply pushes the problem into the higher-order terms, 
while adding parameters whose distinctions may cause new 
qualitative branches in the behavior tree. 

(a) The two tanks reach equi l ibr ium at the same t ime. 

(b) Tank A reaches equil ibrium before tank B. 

Figure 6: Three-way and one-way branch 

Figure 5: Two IGN behaviors of the Cascaded Tanks. 
De Kleer and Bobrow hive independently identified and corrected certain 

errors in their paper [J. de Kleer, personal communication]. 
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3 . 1 O u r A p p r o a c h 3 .3 D e r i v i n g t h e C u r v a t u r e E x p r e s s i o n 

Our approach permits automatic identification of the problem, 
and automatic derivation of the appropriate constraints, which 
we call curvature constraints.4 We focus our attention on the 
parameter describing the Highest Order Derivative (HOD) in the 
system. As we shall see, it is possible for a system to have more 
than one HOD. 

In outl ine, the algorithm consists of two steps: 

1. Identi fy the highest-order derivative(s), 
in the system. 

• This method is necessary and applicable in case there 
is intractible branching from points where 

2. For each HOD, algebraically derive an expression, valid 
where in terms of the other param­
eters of the system. 

• Use this expression to determine the sign of 
at crit ical points, and generate only transitions con­
sistent w i th this curvature. 

3 .2 I d e n t i f y i n g t h e H O D 

We can identify all the HODs in a general constraint model by 
viewing constraints as paths l inking parameters. We are looking 
for the maximal points on chains of derivative and other two-
argument constraints. We use the QSIM notation [Kuipers 1984, 
1986] for constraint models, though our techniques apply gener­
ally. 

• The derivative constraint leads upward from a parameter 
to its derivative. 

t The two-argument constraints, M + , M~, and minus, con­
nect parameters horizontally. 

• The three-argument constraints, ADD and MULT, termi­
nate a chain and block passage. In order to avoid unneces­
sary blockage, it may be necessary to apply algebraic sim­
plif ication rules such as those in [Kuipers, 1984, Appendix 
D], e.g. 

• Start ing f rom each derivative constraint, move upward or 
horizontally unt i l no further progress is possible. The max­
imal derivatives are the HODs. 

• If the chain forms a closed loop (e.g. the frictionless spring) 
the analysis is unnecessary and may be terminated, since 
the loop already encodes the desired curvature constraint. 

Since this process may yield several maximum points, there 
may be mult ip le HODs, possibly of different orders. Both the 
Cascaded Tanks and the Coupled Tanks have two distinct HODs: 
netflowA and netflowB. However, in the Coupled Tanks both 
HODs exhibit chatter, while in the Cascaded Tanks system only 
netflowB does. 

•There can certainly be cues where both HOD' and HOD" vaniah, and 
the cc-nitraint mu. t be stated in terms of even higher-order derivatives. How-
ever, for many modela, including the damped-ipring caae diacuaaed in [de 
Kleer and Bobrow, 1984], applying the second derivative is sufficient, to we 
confine our attention to that caae. Extenaion to the higher-order caae is 
straight-forward. 

3.3.1 T h e Smoothness A s s u m p t i o n 

In order to derive an expression for the sign of the curvature, 
HOD", while st i l l using incompletely known and possibly non­
linear monotonic function constraints, we need to assume that the 
system is reasonably well-behaved in any local neighborhood. 

Suppose This means that there is a monotoni-
cally increasing function M such that for all t, 
The relationship between the first derivatives of X and Y is 

where M' is the derivative of the monotonic function M. This 
tells us only that and must have the same sign, since 
all we know about AT is that it is positive. Since M" is un­
constrained, the relationship between second derivatives is even 
weaker: 

The Smoothness Assumption says that in any local neighborhood, 
M(X) is approximately a linear function. In practice, as we 
evaluate the curvature constraints, we assume that the M" term 
is sufficiently small that we may regard Y"(t) and X"(t) as having 
the same sign. 

3.3.2 Ru les f o r C u r v a t u r e 

We can derive a set of rules for reasoning about the sign of the 
curvature of a particular parameter after applying the Smooth­
ness Approximat ion. By treating arithmetic relations as quali­
tat ive relations on signs and allowing mult iple solutions, we may 
wri te sign\ 

For brevity of notat ion, we define: 

For a parameter X, sd(X) is just its direction of change, and so 
is explicit ly represented by QSIM at each t ime-point. , is 
its curvature, so the curvature expression solves for curvature in 
terms of explicit ly available information. 

The rules for deriving the explicit curvature expression are 
the following: 

1. Start w i th the expression sd2(HOD). 

2. Apply the following rules for qualitative curvature in depth-
first order wherever they are applicable, to propagate sd2 
terms through all possible constraints. 

The first rule depends on the Smoothness Assumption. The 
others are straight-forward consequences of the theorems 
of differential calculus. This process terminates when ev­
ery explicit parameter is either an exogenous variable, or 
expl ici t ly l inked to its derivative. 
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3. App ly the final transformations: 4 Conclusions 

and simplify the result. 

The result is an expression for sd2(H0D) in terms of explic­
i t ly available information. It is used as a constraint, applied only 
at cri t ical points of the H O D , to select among branches such as 
that in Figure 6. 

3.4 T h e Coup led Tanks example 

Let us follow the derivation of the curvature expression on the 
Coupled Tanks (Figure 2b). 

The parameters netflowA and net flowB are both HODs in 
this system, and both exhibit the chattering behavior. We wi l l 
expl ici t ly derive an expression for the sign of the curvature of 
netflowB, sd2(net flowB), valid at crit ical points, i.e. where 
sd(nett 

The resulting constraint, sd2(netflowB) = sd(netflowA), 
tells us that the sign of the curvature of netflowB at a crit ical 
point is the same as the sign of the slope of netflowA at the 
same point in t ime. A similar derivation gives us the constraint 
sd2(netflowA) = sd(netflowB), applying at crit ical points of 
netflowA. Apply ing these two constraints, we get the following 
single behavior for the scenario of filling the Coupled Tank system 
from empty (Figure 7). 

We predict an unambiguous behavior: amount A and amountB 
increase monotonically from zero to their equil ibrium values; 
netflowA decreases monotonically to zero; and net flowB in­
creases monotonically from zero to some maximum value, then 
decreases back to zero. This description is stronger than that 
produced by our first method, in that all parameters now have 
complete quali tat ive descriptions. In the method of ignoring ir-
relevant distinctions the HODs, and certain other closely related 
parameters exhibi t ing chatter, would be described in terms of 
magnitude only. 

Al though the class of qualitative simulation problems we treat 
here has considerable importance in its own r ight , the methods we 
have developed have a more general significance. A fundamental 
decision in the modeling of a system is selection of the level of 
detail for the model. Both methods explicit ly manipulate that 
level of description. 

• The method of ignoring irrelevant distinctions, by ignor­
ing direction of change for certain parameters, represents 
a change in the level of detail of the model. In its current 
form, it is a knowledge engineering method, to be applied 
explicit ly as a model is being developed and debugged. We 
expect that , using techniques similar to our second method, 
it can be extended to recognize "chatter ing" situations au­
tomatically, and decide when to ignore which distinctions. 

• The higher-order derivative method, by applying the smooth 
ness assumption and a more powerful inference about the 
algebraic structure of the constraint model, allows the sim­
ulation to produce a complete qualitative description of all 
the parameters, including the highest-order derivatives. It 
also preserves QSIM's abil i ty to create new landmark val­
ues. 

Chiu and Kuipers [1987] present the details of our methods 
for automatically deriving and applying the curvature constraint. 
Whi le these methods handle important cases of coupled systems, 
there are addit ional cases of intractible branching in the more 
general second-order system. Lee, Chiu, and Kuipers [1987] ex­
tend this work by applying the curvature method and two ad­
dit ional constraints to handle an important case of the damped 
spring system. 

Figure 7: Single H O D behavior of the Coupled Tanks. 
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Thus, our two methods are able to solve the "chatter ing" 
problem for coupled systems, in the most general case by ignoring 
certain distinctions, and, when more knowledge is available, by 
applying more powerful inferences to produce a stronger result. 
These methods provide important mathematical and computa­
tional tools for qualitative simulation, and move us toward our 
goal of reasoning qualitatively about complex physical systems. 
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Figure A: Cascaded Tank structure 

Figure i: Coupled Tank structure 
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