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ABSTRACT 

In this paper, we consider the problem of temporally 
coordinating the resource demands of a set of independent 
agents. We assume that resources are unreliable, making it 
necessary to retain imprecision in the execution times assigned 
to specific agent operations. To this end, a probabilistic model 
of resource allocation is developed for use in estimating the 
consequences of execution intervals (representing sets of 
possible resource allocation decisions). This leads to a 
probabilistic representation of requests for resource usage for 
which resource congestion constraints can be defined. We 
consider two applications of the framework: prediction of 
bottleneck resources and time bound scheduling. 

I COORDINATING RESOURCE USAGE 
IN MULTI-AGENT PLANNING 

Multi-agent planning involves coordination of the 
operations of a set of independent agents so as to achieve the 
goals of each individual agent. Of central importance here is 
consideration of the possible interactions among agents, which 
can lead to situations of mutual advantage (in the case of 
cooperative agents) or interference (if agents have conflicting 
objectives and do not cooperate). Research in multi-agent 
planning [4, 8] typically assumes that the goals being pursued 
by agents relate strictly to the achievement of a certain state. 
Emphasis is placed on determining "how" this state can be 
achieved in the presence of other agents. In time-constrained 
problem domains, however, the goals of agents often relate 
more to "when" a specific state can be achieved than "how". 
The problem of factory scheduling, which has been the 
context of our work, is perhaps an extreme example of this 
situation. Parts must be produced for multiple orders (agents) 
to meet imposed deadlines, minimize production time and 
satisfy other factory objectives, and the primary source of 
interactions among agents is the need to share resources (e.g. 
machines, operators, tools). Interactions among agents in this 
domain very rarely prevent achievement of each agent's 
desired state (i.e. the finished parts) but can significantly 
affect the circumstances under which this desired state is 
achieved (e.g. the finish date, the duration of the production 
process, etc J. Dealing with these types of interactions is the 
subject of this paper. 

Assuming a cooperative planning framework, there is much 
to be gained by anticipating situations of resource contention 
and attempting to temporally coordinate requests for these 
resources. Analyses of projected resource demands can guide 
individual agents in planning to achieve their goals (e.g. 
specific resources to avoid when possible). Advance 
coordination of demands for heavily utilized resources can 
maximize the common utility of agent's plans (e.g. make the 
most efficient use of shared resources) [10]. An important 
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issue, of course, is the level of detail at which "deals" among 
agents concerning future resource usage should be made. 
While we might expect that precise temporal coordination of 
requests for each shared resource would lead to the best 
possible plans, such plans ignore the dynamics of the planning 
environment. Resources are characteristically unreliable (e.g. 
susceptible to unanticipated periods of unavailability, 
sometimes fail to produce the desired effect, etc.), and 
consequently, advance commitment to a detailed course of 
action and timetable is of little use. Agents should seek less 
precise agreements concerning resource access that can 
usefully guide plan refinement as the external environment 
allows and requires it. 

Less detailed agreements among agents require more 
abstract problem descriptions. To this end, we can formulate 
problems in which agent operations require capacity on 
aggregate resources (representing functional groupings of 
individual resources) over their expected durations, and we 
wil l assume in this paper that both the amount of capacity 
required by a given operation and its duration are fixed 
approximations of more detailed suboperation characteristics. 
We also assume that resource capacity is required throughout 
an operation's duration. As with the identity of the resource 
that wi l l be used to perform a given operation, we would like 
to remain imprecise with respect to operation execution times. 
This, however, presents a difficult problem. Classical 
deterministic scheduling methods [1] must make specific 
allocation decisions in order to take resource capacity 
constraints into account This defeats much of the purpose of 
abstracting in the first place since the resulting plans wil l 
designate a single point in the temporal dimension of the 
abstract solution space. We might consider generalizing these 
temporal constraints to delineate sets of possible allocation 
decisions after the fact. However, given the high degree of 
interaction between allocation decisions, it is difficult to 
imagine how this could be accomplished in any meaningful 
fashion. We might also consider reasoning with a coarser 
granularity of time at the aggregate level (e.g. time steps of 
hours instead of minutes), but this also introduces temporal 
imprecision in a fairly arbitrary fashion. 

In this paper, we present an approach to reasoning with 
temporally imprecise requests for resource capacity 
(representing sets of possible allocation decisions) that 
provides a oasis for producing more meaningful aggregate 
plans. This is accomplished by adopting a probabilistic view 
of resource allocation and injecting randomness into the 
decision-making process. At the same time, we can describe 
characteristics of the stochastic allocation process that enable 
the definition of consistency constraints analogous to those 
that would result from a deterministic model. Furthermore, 
we can bias the stochastic process to reflect the strategies and 
preferences of the actual deterministic allocator (i.e. the 
generator of final decisions for actual execution). 

II PROBABILISTIC RESOURCE ALLOCATION 

As stated above, we propose the use of a probabilistic model 
of resource allocation as a means of reasoning about sets of 
possible allocation decisions. We are interested in a 
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mechanism for evaluating an abstract, temporally 
underconstrained set of plans with respect to its expected 
requests for resource capacity. Our approach is to develop a 
random model of the actual resource allocation process, ana to 
use the probabilistic characteristics of randomly generated 
allocation decisions as the basis for plan evaluation. In 
modeling resource allocation as a stochastic process, it is 
crucial tnat the random allocator take into account not only the 
restrictions specified in the abstract plan, but also the 
preferences and strategies of the actual deterministic allocator. 
Thus, we wi l l conceptualize the allocation process as 
consisting of a random start time generator (RSTG) that 
stochastically selects a specific allocation for each operation in 
accordance with this larger set of constraints, which we wil l 
call the RSTG-constraints. We wi l l refer to the set of 
allocation decisions produced by RSTG as the RSTG-
allocations. 

A. Constraining the Random Allocation Mechanism 

We distinguish three different types of RSTG-constraints: 
1. temporal constraints - These constraints refer to the 

earliest start time and latest end time restrictions associated 
with each operation opr Since we assume that each opi has a 
fixed duration, designated henceforth as bopp these 
constraints define the set of the possible start times for each 
opp STI(opt) (Start Times Interval), an interval of time 
bounded by est(op), the operation's earliest start time, and 
lst(op), its latest start t ime** The temporal constraints, and 
consequently the ST/s, associated with operations belonging to 
the sameplan must be mutually consistent. Consider Figure 1, 
where STl(op1) is depicted in the context of a two step plan. In 
this case, est(op2) must not precede r, in time, since STl(op2) 
would otherwise contain allocation possibilities that would 
introduce a conflict Similarly, Ist(op)2 must not precede t2 in 
time. These consistency conditions are precisely those that are 
maintained in many existing temporal planners (e.g. [11]). 
STI(op) must also be consistent with currently imposed 
resource capacity limitations. Such consistency conditions are 
discussed in Section IV. 

2. allocation strategy - This constraint dictates the sequence 
in which allocation decisions wil l be generated. It specifies a 
partial ordering of all the operations constituting the planning 
problem. For example, a plan by plan in priority order 
strategy dictates that all operations of a given agent's plan wil l 
be considered before those of any agents with lower priority. 
Operations belonging to the same plan are ordered according 
to a given plan scheduling strategy (e.g. forward from the first 
operation). 

3. preference constraints - These constraints define 

To simplify the presentation below, we assume STl(op) to be a 
connected interval. The framework can be easily generalized to 
accommodate a discontinuous set of possible operation start times. 

Figure 2: A two operation plan with op1 starting at time t1 

objectives and concerns that influence actual allocation 
decisions. As has been pointed out in previous research [2, 3], 
we can model specific allocation preferences as real functions 
over time that estimate the relative desirability of various 
allocation decisions. For example, if an operation has a fixed 
due date with a delay penalty, we can express the tardiness 
constraint as a function that decreases after the due date at a 
rate proportional to the marginal tardiness loss. Constraints on 
finishing early (e.g. factory holding costs) can be expressed 
similarly, with the utility function increasing until the due date 
is reached in this case. The formulation of other allocation 
preferences depends not only on problem characteristics (as do 
the above examples) but also on prior allocation decisions. A 
desire to minimize idle time between operations, for example, 
can be expressed with a utility function that decreases from 
the current earliest start time of a given operation onward. 
However, this constraint is meaningful only in the case of an 
op. that is preceded in the allocation strategy by one or more 
upstream operations in op's plan, and its exact structure can 
be defined only when actual allocation times have been 
determined for these preceding operations. Nonetheless, all 
active constraints are known when making a specific 
allocation decision, and we can therefore obtain their 
combined "level of satisfaction". 

B. Modeling the Behavior of the Random Allocation Process 

We can derive, for each op the probability of it starting 
around a certain instant of time in STI(op), expressed by the 
density Pft(oprt). This is of central importance to our 
approach, as we wil l see in Section I I I when we consider the 
representation of a resource's available capacity. Here, we 
consider our model of the behavior of RSTG and the 
derivation of 

As allocation decisions are generated by RSTG, it is quite 
possible that STI(opt) for a given opi wil l become further 
constrained. In Figure 2, for example, the decision to schedule 
op1 at r1 constrains RGST to start op2 after t2 We wi l l refer to 
actual set of possible allocation times for op. at the point it is 
considered by RSTG as ASTl(pp) (Actual Start Times 
Interval). Since ASTI(op) is a function of random decisions, 
its limits are themselves random variables. 

RSTG wil l select a start time in ASTI(op) according to a 
choice rule, a density of probability that defines, for every 
point in ASTI(op)% the likelihood of the start time falling in its 
neighborhood. The choice rule is constructed to reflect the 
combined value of all active preference constraints according 
to the following criterion: 

Choice Rule Criterion: Given two possible start times t1 

and t2 if the value of the combined constraints at t1is c 
times that in t2 the likelihood of selecting t1 will be c 
times that of t2 

If ASTl(op) is the interval we indicate the 
choice rule for opi with If v(r) is the 

value in t of the combined active constraints, the Choice Rule 
Criterion becomes 
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This completely determines the choice rule and together 
with the normalization condition for a density of probability 
we have: 

We are now ready to determine Pst(opt,f) over STI(op). 
First some notation. We will assume that the operations in a 
given plan are indexed sequentially from the first operation to 
the last. Further, we will indicate with PREC(op) (resp. 
FOLL{op)) the set of operations belonging to the same plan as 
opi that both precede (resp. follow) it in the allocation strategy 
and precede (resp. follow) it in the plan. 

We distinguish three cases: 
1. Both PREC{op) andFOLL(op) not empty. 

ASTI(op) is therefore determined by the start times 
generated for opr the operation with maximum index 
in PREC{op) and opr, the operation with minimum 
index in FOLL{op). If these are respectively t1and t2 

the left and right limit of ASTl{op) are given 
respectively by: 

where We indicate with 
Pst{oprt1prt2) the conjunct density of probability of 
the start times of opl and opr to be respectively t] and 
tT We have: 

2. Only one ofPREC(op) or FOLL(op) empty. 

Suppose PREC(op) is empty. Then ASTI(op) is 
always limited to the left by est(op). We have: 

A similar expression holds if FOLL(op) is empty. 

3. Both PREC(op) and FOLL(p) empty. 

We have trivially: 

Notable special cases follow from assumptions concerning 
the allocation strategy that are typical in scheduling/planning 
work. Assume that the first and last operations in a given plan 
are indexed m and n respectively. If allocation decisions for 
the operations in the plan are generated sequentially starting 
from the first operation and moving forward, we have: 

Similar expressions hold if allocation decisions are made 
sequentially starting from the last operation and moving 
backward. Moreover, these forward and backward formulas 
can be directly extended to strategies in which the operations 
in a plan are scheduled outward from some initial anchor (e.g. 
a bottleneck operation). 

I l l PROBABILISTIC REPRESENTATION OF 
CAPACITY REQUESTS 

We can now represent the consequences of RSTG-
allocations with respect to a resource's available capacity. 
From the resource's point of view, the capacity requested by 
an RSTG-allocation is a discrete stochastic process, R(opp). 
At any instant of time / the process can assume a value n the 
units of capacity needed for the execution of opr or a value 0, 
if the operation is not allocated over t. The instantaneous 
probabilities of these values are respectively: 

The total request for capacity on a resource , time t, 
R{resk,t)s a discrete stochastic process with value 

where Q. is the set of operations allocated on the resource. 
From the description of RSTG in Section I I , we see that 

distinct RSTG-allocations on the same resource are 
statistically independent. RSTG can indeed consider the 
effects of prior RSTG-allocations in generating a particular 
allocation, but only indirectly through the currently posted 
RSTG-constraints. Given this statistical independence, it 
follows that if the number of allocations that overlap at time t 
is sufficiently high, we can approximate the first order 
distribution of R(resk,) with a Gaussian random variable, with 
mpun and variance crivpn bv 

We now need a way to compare the requests of capacity 
with that actually available, to detect or avoid possible 
situations of overflow. Notice that if we wanted to prohibit 
RSTG from generating overflow situations, we should post 
RSTG constraints that would imply, once implemented, a very 
low load on the resources. However, since RSTG is not 
intended to generate actual executable allocations but rather to 
evaluate constraints, we wil l adopt a less strict criterion that 
generalizes from deterministic methods for detecting capacity 
violations. We say that a resource is congested at time t if the 
probability of a high instantaneous request of capacity in t is 
greater than a fixed threshold . If C(resk) is the actual capacity 
of resk and T is the congestion threshold, we can express the 
congestion constraint with: 
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where denotes the cumulative distribution for a 
standard normal random variable. 

We note in passing that in addition to detecting overflow 
situations, we can use this constraint to deduce the maximum 
instantaneous probability of a given request for capacity that 
does not induce an overflow, assuming constraints over the 
allocation of other operations have Been fixed. This is 
discussed further in [6]. 

IV APPLYING THE PROBABILISTIC FRAMEWORK 
Depending on what kind of RSTG-constraints are specified 

and how they are posted, the probabilistic framework can have 
different uses. We describe two applications below. 

A. Bottleneck Detection 

The opportunistic job-shop scheduling methodology 
described in [9,7] obtains notable advantages by first making 
allocation decisions at critical (i.e. bottleneck) resources. 
Since bottlenecks can vary depending on the characteristics of 
the scheduling problem, this methodology requires a focusing 
mechanism that identifies potential bottlenecks from a 
specification of the current problem. 

Conceptually, we can define a probabilistic bottleneck 
detection mechanism as operating in two steps: 

1. Assuming no interactions among agents (i.e. infinite 
resource capacity), RSTG is used to produce a 
schedule for each agent in accordance with its personal 
constraints (e.g. due date). 

2. The consequences of these uncoordinated decisions are 
assessed with respect to available resource capacity. A 
resource wil l be considered a bottleneck during time 
intervals in which the congestion constraint of Section 
I I I is violated. 

Correspondent to this definition, the RSTG-constraints 
posted for bottleneck detection wil l satisfy the following 
conditions: 

• Since the goal is to analyze the effect of the initial 
temporal constraints of the problem, STI(op) for a given 
opi wi l l be the largest interval compatible with the 
release and due dates of the plan containing opr 

• Independence among agents implies that the allocation 
strategy wi l l not impose ordering relations between 
operations belonging to different plans. Operations 
belonging to the same plan might be ordered according 
to some internal strategy (e.g. forward scheduling). 

• For analogous reasons, only preference constraints 
related to temporal aspects of plans (e.g. work-in-
process time) wil l be posted. 

To see the advantage of this probabilistic mechanism, 
consider a deterministic counterpart. In this case, bottleneck 
analysis must be based on one potential shop schedule (e.g. 
the best possible schedule for each agent), and, consequently, 
the analysis is subject to idiosyncratic results (e.g. detected 
resource congestion might, in fact, disappear if one or more 
agent schedules where slightly altered). The probabilistic 
mechanism avoids this problem by considering the 
consequences of a set of possible solutions. 

B. Time Bound Scheduling 
Another application is time bound scheduling, the 

establishment of temporal constraints on each operation that 
refine initial problem constraints (i.e. release and due dates) 
without committing to specific allocation times to identify a 
solution sub-space from which the final executable scheaule 
wi l l be generated. In this case, we assume a scheduling 

mechanism that iteratively adds (posts) RSTG-constraints (e.g. 
fixes an £77) for a previously unconsidered operation on each 
iteration. RSTG is used at each step to estimate the 
consequences of the constraints posted thus far, enabling the 
scheduler to avoid situations of resource congestion in its 
future decisions. 

There are two ways in which knowledge of resource 
congestion can be included in the RSTG-constraints: 

• In establishing a new STI(op)t time intervals in which 
resource congestion is already over the congestion 
threshold can be excluded. This consistency constraint 
is the analog of a resource unavailability constraint in 
deterministic representations of available capacity (e.g. 
[5]). 

• Preference constraints can be introduced to weigh 
alternative allocations in ASTI(pp), using a utility 
function inversely proportional to the level of 
congestion of the resource. 

V FINAL REMARKS 
We have presented a framework for evaluation and 

generation of abstract plans in resource-constrained problem 
aomains. Our current research centers on the development of a 
computationally inexpensive implementation in the context of 
bottleneck detection. in particular, we feel that both Pngg and 
Pst can be reasonably approximated with piece-wise constant 
functions over time. 
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