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Abstract: The plan or program for a manufacturing cell 
may be seen either from the workpiece (describing the 
successive operations that it wants to undergo during its 
track through the cell) or from the perspective of the 
workcell (describing its quasi-parallel operation on 
several workpieces which are processed simultaneously in 
the cell}. This paper addresses the question of how to 
verify tnat a proposed cell program implements a given 
workpiece program. The verification method is described 
informally using an example, and then formulated in 
precise and formal terms. 

0 . T h e P l a n n i n g P r o b l e m in F a c t o r y 
A u t o m a t i o n . 

One of the important research problems in factory 
automation is improved methods for programming 
production cells. The flexible manufacturing 
environment has high demands on easy development and 
update of programs, and requires convenient, 
application- level dialogue between the engineer or 
operator who is in charge of the production cell, and the 
controlling computer system. It is not practically 
possible to satisfy these requirements only using 
conventional software engineering techniques. 

Good software systems for programming production cells 
should make it possible to describe the desired behavior 
of the cell in terms of the objects which are present 
there (e.g. NC machines, robots, and conveyors), and in 
terms of the natural, elementary actions that those 
objects can perform (e.g. elementary move operations 
performed by an industrial robot). The techniques of 
knowledge based programming, often known as expert 
systems techniques, are well suited for realizing such a 
problem- oriented programming style. 

If artif icial intelligence techniques are therefore likely to 
be useful for factory automation in this particular 
respect, it is equally true that the factory automation 
domain offers important and interesting problems for 
artif icial intelligence. In particular, the production cell is 
a 'wor ld ' of non-trivial but limited complexity, where 
current techniques for planning and problem-solving can 
be further developed and refined. The present paper 
•hows how a method for planning and for reasoning 
about actions, suitably extended, can be used for a 
practically significant planning problem in production 
cells. 

This research was supported by the Swedish Board of 
Technical Development. 

1 . P ipe l i n i ng o f M a n u f a c t u r i n g P lans . 

Consider a simplified production cell for automatic 
manufacture, as illustrated in figure 1. Successive 
workpieces arrive on the incoming conveyor ( f l , and are 
processed by the three successive machines (X,Y, and 
Z). A handling robot (R) moves the workpieces from I to 
X (movement operation A) , from X to Y (movement 
operation B) , from Y to Z (movement operation C), and 
from Z to outgoing conveyor, 0 (movement operation 
D). Each of the machines may be for example an NC 
machine tool, a machine for finishing surfaces on the 
workpiece, or a machine for checking tolerances. 

We wi l l use X also as a name for the operation 
performed by machine X, and similarly for Y and Z. We 
can usually assume that each of the operations 
X,Y,Z,A,B,C,D has a constant duration in t ime, and 
that the X,Y, and Z operations take significantly longer 
time than the movement operations A-D. Successive 
work cycles can be assumed to use the same "program" 
or "p lan" , which implies that the whole production cell 
has a well defined cycle time. One needs to determine 
the time-optimal plan, both in order to maximize the 
throughput of the production cell, and in order to 
balance the total production line which consists of 
several cells. 

The program or plan for the production cell may be seen 
from two different perspectives. For a particular 
workpiece, one wi l l have the plan shown in figure 2. It 
says that the workpiece at hand first undergoes the A 
(movement) operation, then the X (processing) 
operation, etc. 

From the perspective of the production cell, we wi l l 
instead have the plan shown in figure 3, where full-line 
arrows indicate steps in one work-cycle, and broken-line 
arrows indicate steps in the preceeding and succeeding 
work-cycles. The best way to understand the plan is by 
analogy wi th a 15-puzzle: when all machines contain a 
workpiece each, the only empty slot to which a 
workpiece may be moved is on the outgoing conveyor 
belt. The 'first* operation must therefore be for R to 
move a workpiece from Z to O (operation D). After 
that, the workpiece that has finished operation Y may 
be moved from Y to Z (operation C). After that again, 
the new workpiece in Z may be processed, and at the 
same time the empty slot in machine Y may be filled 
using operation B, and so the analysis continues. 
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Both these perspectives are legitimate and useful; we 
shall call them the workpieee program and the cell 
program, respectively. The cell program is significant 
because it is the program that the control software for 
the production cell primarily executes; it is the program 
on which the cell's cycle time must be calculated; and it 
describes the behavior of the cell as seen by the operator 
in charge. 

The workpieee program, on the other hand, represents 
an underlying and more fundamental plan. Along the 
path of successive transformations, from the information 
in the CAD system to the automatic manufacture, one 
would expect to go first from CAD system information 
to the workpieee program, and then by another 
transformation to the cell program. In particular, if the 
configuration of the production cell is changed (for 
example by having a robot wi th two hands instead of 
one), then the cell program may change but the 
workpieee program remains constant. 

In the long run, we would therefore like to have methods 
which can determine an optimal cell program for a given 
workpieee program and a given cell configuration. 
(Practical programs have a lot more complexity than 
this simple example shows). As a first step, we look for 
methods for verifying that a proposed cell program 
correctly implements a given workpieee program in a 
given cell configuration. The present paper addresses 
that problem. 

In our example, the workpieee program is entirely 
sequential, whereas the cell program involves 
parallel ism. In more general cases, the workpieee 
program may also contain parallellism, e.g. in an 
assembly task where several sub-assemblies may be put 
together independently of each other, and then be finally 
mounted together. The transformation from workpieee 
program to cell program may sometimes impose 
constraints on the parallel execution of operations, 
namely if there is competition for shared resources such 
as (typically) the handling robot or the workpieee. On 
the other hand, the transformation may also introduce 
additional possibility for parallel execution of operations 
if the cell program handles several workpieces 
concurrently, in successive stages of completion. That 
latter aspect is similar to the concept of pipelining in 
computer architectures, and we shall use the term 
pipelining in the case of production cells as well. 

2 . T h e so lu t i on t h r o u g h an examp le . 

We first show through the example how the workpieee 
program and the cell program may be related, in order 
to convey the general idea in an informal way. In the 
following sections we proceed to the formal treatment. 

Consider the proposed cell program for the example, as 
represented graphically in figure 3. Assume that the 
workpieces that flow through the production cell are 
assigned serial numbers, so that the first object to be 
manufactured obtains serial number 1, etc. Wi th in one 
cycle of the program, we label each operation which 
involves a workpieee, w i th the serial number of the 
workpieee that is processed there during the cycle in 
question. 

In figure 4, we see the results of the labeling, together 
w i th the continuation of the same labeling. In the next 
cycle, all operations have their serial numbers increased 
by 1, and so on in later cycles. We think of the cell 
program as a sequence of very many repeated 
occurrences of the same cycle (rather than as a formula 
saying * repeat the following cycle N times"). However, 
in spite of the arbitrary length of the cell program, those 
operations which are labeled wi th a given serial number 
wi l l clearly be l imited to five consecutive cycles of the 
cell program, corresponding to the number of cycles 
during which a workpieee stays wi th in the production 
cell. 

Now select from the cell program in figure 4, the 
substructure of those operations labeled wi th a certain 
serial number, as shown in figure 5. The resulting 
sub-structure represents the operations performed on a 
certain workpieee, and the relative ordering on those 
operations in t ime. We wi l l call it the workpieee 

program that has been extracted from the cell program 
modulo the init ial serial number labeling). We can see 

how figure 2 re-appears in figure 5, i.e. the original 
workpieee program is re-obtained by extraction from the 
cell program. 

The basic cri terium on the relationship between the 
workpieee program and the derived cell program can 
now be expressed: For the proposed cell program, there 
must exist some serial-number labeling such that the 
resulting, extracted workpieee program is equal to, or a 
temporal strengthening of the given workpieee program. 
We say that P' is a temporal strengthening of P if P and 
P' contain the same operations, and every temporal 
ordering in P occurs also in P\ but not necessarily the 
other way. 

In the example, P and P' are identical. In other 
examples where the given workpieee program contains 
parallel operations, it may happen that the cell program 
introduces additional temporal constraints due to shared 
resources, whereby also P' contains additional temporal 
orderings besides those found in P. 

Besides this necessary relationship between the 
workpieee program and the cell program, there are also 
some other constraints on those programs, namely the 
familiar precondition/ postcondition constraints and the 
constraints of shared resources. We wi l l get back to 
those issues in the next section. 

3 . F o r m a l p re l im ina r i es . 

The previous section gave an intuit ive notion of the 
method through an example, but it remains to cast it in 
precise and general form. The formal methods for 
reasoning about t ime and actions are legio. We wi l l use 
the method previously described in (ref. 1), and we also 
refer to that paper for an overview of alternative 
approaches. 

In the approach we wi l l be using, the world in which the 
plans are executed is characterized by a number of 
features, each of which may have either of a number of 
values (often a choice of two, Boolean). A partial state 
assigns either of those values, or undefined, to each of 
the features. The possible values of a feature are allowed 
to be chosen from a flat lattice, w i th undefined as the 
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and the following three outgoing states: 
- c2 and c4 ful l 
- c3 and c5 ful l 
- cl ful l (join of prevail conditions of outgoing action 
occurrences) 

The same feature does not occur in several incoming 
states, which means that the incoming states are 
anti-dimensional. Also, if there were a conflict among 
the prevail conditions, the last incoming (resp. outgoing) 
state would be inconsistent. Finally, the balancing 
condition is that each incoming feature assignment is 
also an outgoing feature assignment, and vice versa. 
(End of example). 

The requirements that have been specified here are not 
entirely sufficient; there is also an additional condition 
which is needed in order to avoid conflicting change of 
the same feature, by actions which are in the middle of 
two parallel actions sequences. For details please refer to 
ref. 1. 

4 . Represen t ing conca tena t ion o f ac t ion 
s t ruc tu res . 

We can now proceed to those extensions to the 
formalism which are needed in order to formulate the 
relationship between the workpiece program and the cell 
program in general terms. We shall need formal ways to 
concatenate action structures, for example those 
representing individual cycles, into larger structures. We 
shall also need a way of assigning, and dealing wi th the 
'serial numbers' of the workpieces. 

Let it be assumed, then, that a workpiece program and a 
cell program are given as action structures, using states 
from the same state space and actions from the same set 
A of val id actions. The states should not register the 
serial number or other identification of workpieces, but 
there may be features which e.g. signify the presence or 
absence of a workpiece in a machine, or which signify 
whether a machine has finished processing the workpiece 
that it is currently holding. 

In order to analyze the cell program as in the example, 
we must first concatenate several cycles for the cell. 
There are well known formalisms which allow sequential 
composition of 'programs' in the sense of 'composite 
action descriptions', for example dynamic logic (ref. 2,3) 
and the programming language Occam (ref. 4). These 
notations however work only if the cycle has a single 
starting point and end-point, i.e. if the partial order < in 
the action structure [T, <, p) has a smallest and a 
largest element. 

In our applications it is not possible to build up a cell 
program wi th in the limits of single starting-points and 
end- points for all intermediate structures. We therefore 
need a structure which has several "entry points" and 
"exi t points", in a way which resembles the concept of 
ports in programming languages. The concept of action 
structure is generalized as follows: 

An action fragment is a fivetuple [T, <, m, p, r ] , where 
T, <, p are like for action structures; 
m and r are sequences of members of T; 
m and r have equal length. 

Also, the identity of the members of T is unimportant, 
so that if some other time-points are substituted 

throughout all five elements of the action fragment, we 
sti l l have the same action fragment. (In other words we 
are really using the quotient structure w.r.t. the 
equivalence operation of permutation of time-points). 

Consider two action fragments 
g1 = | T 1 , <1 m l , p 1 , r1] 
g2 = [T2, <2, m2, p2, r2] 

Intuit ively, ml contains the time-points along the "left 
edge" of g l , and r1 the time-points along its "r ight 
edge". Two fragments are concatenated by matching the 
right edge of one against the left edge of the next. 

The concatenated action fragment gl;g2 is therefore 
obtained as follows: rename the time-points in T2 in 
such a way that r l = m 2 (the elements in the two 
sequences are pairwise equal), and so that T1 and T2 
are disjoint sets outside rl or m2. Then form 

gl;g2 = (T l u T2, <, m l , p1 u p2, r2] 
where the relation < is obtained so that x < y iff either 
of the following conditions holds: 

x < 1 y 
x<2Y 
for some z in r l , x < 1 z and z <2 y 

It is easily seen that this definition corresponds to 
intuitions about the successive execution of (equal or 
different) cycles, and that the composition operation ; is 
associative. 

Besides the criteria that have just been given, there 
must be additional conditions on the incoming and 
outgoing features in the edge nodes. We wi l l show these 
conditions through a concrete example. 

5 . Represent ing the repeated cycle f o r m a l l y , in 
the example . 

Figure 6 shows how the work cycle in the workcell 
example can be characterized as an action fragment, 
wi th the preconditions, postconditions and prevail 
conditions of the various action instances wri t ten out. 
The following graphical notations are used: 

Ful l arrows ( — ) represent actions. The feature 
transitions of the action are wri t ten underneath the 
arrow. For example, 'Lx:4' under the X arrow means 
that while X is performed, the feature Lx should have 
the value 4 as a prevail condition, i.e. throughout the 
action. '4[Li]E' means that the Li feature should have 
the value 4 as a precondition and the value E as a 

postcondition. The operation marked in this way 
namely A) changes the value of Li f rom 4 to E. 

For each 'place' where a workpiece may be, there is a 
corresponding feature whose value is the serial number 
of the current workpiece in that place, or E if the place 
is empty. For example, the feature Lx represents the 
serial number of the workpiece that is currently in the X 
machine. Therefore the value of the feature Lx must be 
kept constant while X is performed. Also, we see in the 
figure how the move operations (A,B,C, and D) are 
characterized simply by how they change the values of 
the place features. Thus if the Lx place contains a 
workpiece w i th serial number 3, the Ly place contains 
no object (feature value E) , and the B operation is 
performed, Ly receives the value 3 and Lx reverts to the 
value E. 
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Timepoints are represented as nodes in the graph. 
Square nodes represent timepoints on the left edge; 
triangle nodes represent timepoints on the right edge, 
and circular nodes represent other timepoints. Solid 
black nodes represent duplicate copies of the same 
timepoint in the graph, and dotted connections (....) 
connect one or more duplicates with the node they are 
duplicating. 

Arrows with a broken line (—) represent the partial 
order < between nodes in those cases where there is no 
action connecting one to the other. (When there is such 
an action, the ordering < always follows). Broken/dotted 
arrows, finally, (-.-.-) represent additional persistence or 
'noop' actions whicn have been inserted artificially in 
order to transfer the postcondition of one time-point to 
be a pre-condition of a later time-point. The 
broken/dotted line is omitted, and the persistence 
operations are understood, when there is already a 
broken line connecting the same nodes. 

The lower part of the figure summarizes, for each node, 
which are the incoming and outgoing values of each of 
the features. For example, the node at the end of the B 

operation has the incoming values (4, E, 3) for the three 
features (Li, Lx, Ly), and the same outgoing values. 
This is an example of the node balancing condition on 
the action structure which was introduced at the end of 
section 3. 

If two action fragments have been concatenated, then 
the nodes on their common edge must also satisfy the 
node balancing condition when actions from both the 
two fragments are used. However, if one only considers 
the action occurrences inside one fragment, then the 
edge nodes of that fragment usually do not satisfy the 
node balancing condition. 

For those action fragments which are intended to be 
concatenated with themselves, in order to obtain cyclic 
behavior, and which we shall call rtpcatable action 
fragments, the balancing condition on the edge nodes 
can be obtained by combining corresponding left-edge 
and right-edge nodes. As is easily seen in figure 6, we 
can take the left-edge nodes, increase all serial-number 
values with 1, form the join with the corresponding 
right-edge node, where the join is taken separately for 
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the incoming state and the outgoing state of the node, 
and then the node balancing criterium is satisfied. 

Consider for example the second left-edge node, between 
the actions D and C in the figure. For the features (Ly, 
Lz, Lo), this node has incoming values (-, E, l )_and 
outgoing values (2, E, 1), or the value pairs 
1/1). The second right-edge node has the value pairs 

for the same features. Incrementing all 
left-edge values by 1 (except E which remains 
unchanged) we obtain Combining wi th 
the r ight- edge node we obtain (3/3, E /E, 2/2) which 
satisfies the node balancing criterium. (Here we let -
represent 'undefined'). 

Most of the features () represent the 
various positions in the cell where a workpiece may 'be', 
and most of the actions represent either the movement 
of a workpiece, or the operation on a workpiece inside 
one of the machines. The last feature, Lgen, is used as 
the counter that assigns serial numbers. We see how the 
operation I, which advances the incoming conveyor, 
changes the contents of the Li location from E to 5 in 
the figure, and at the same time it increases Lgen from 4 
to 5. In general, valid I actions are those where Lgen is 
increased by one, and Li changes from E to the new 
value of Lgen. The auxiliary, 'persistence' arrows 
transmit the value of Lgen from the third left-edge node 
to the beginning node of the I action, and from the end 
node of the I action to the third right-edge node. 

In summary, then, figure 6 shows how the simple 
action-plan from figure 3 could be 'decorated' wi th 
feature values for preconditions, postconditions, and 
prevail conditions, and how it is extended wi th auxiliary 
persistence actions, so that the resulting action-plan 
satisfies a revised node balancing criterium which also 
takes the edge nodes into account. 

6 . Re la t i onsh ip be tween workp iece p r o g r a m a n d 
ce l l p r o g r a m i n general and f o r m a l t e rms . 

We are now ready for the goal of this article, namely to 
formulate in precise terms the relationship between a 
workpiece program and a proposed cell program. We 
assume that the workpiece program is given as an action 
structure 

gw = [Tw, < w , pw] t 
and that the proposed cell program is given as a 
repeatable action fragment 

gc = [Tc, < c , mc, pc, re] 

The same feature domains should be used for gw and gc, 
w i th the following exceptions: 
- the 'counter' feature Lgen is omitted in gw; 
- the defined values of the position features is E or serial 
number in gc, but E or T (E = empty, T = taken) in 
gw. 

Let succ(gc) be the modified action fragment obtained 
from gc by increasing all numerical feature values wi th 
1, and leaving the others (E and undefined) unchanged. 
It follows from the construction, and the criterium for 
well-formedness and repeatability for fragments, that 
succ(gc) is also a correctly formed, and repeatable action 
fragment. ( In fact a number of fairly routine constraints 
must also be satisfied, such as the existence of arcs that 
forward the current value of the Lgen 'counter' to the 

next cycle, but this is not of any particular interest). 
Therefore the cyclically repeated action fragment 

; succ(gc) ; succ(succ(gc)) ... 
is well formed. 

If [f,b,v,e] is an action, and k is an integer, then the 
corresponding purged action 

purge 
is obtained in the following fashion: first remove from f, 
b, and e the Lgen feature and all features which have a 
numerical value different from k in either of f, b, or e. 
The only remaining values are then k, E, and undefined. 
Then change all occurrences of the k value to the value 
T. 

For example, a feature which has the value E in b and k 
in e is retained, but w i th the value T in e. A feature 
which has the value k + 1 in b and the value E in e is 
removed from both b and e, i.e. obtains the value 
undefined in both. 

The purge of an action occurrence [t, is 
obtained by purging its middle element. 

If k is an integer, and mc, pc, re], let the 
extracted action Extr(gc,k) be defined as that action 
structure 

where: 

pk consists of purge(a,k) for those action occurrences 

in pc where some feature except Lgen is defined and has 
the value k in either f, b or e; 

Tk consists of those t in which occur in at least one 
action occurrence in 

is the restriction of to Tk. 

It is easily seen that 
Extr(gc*, k) 

is independent of k if k is > some small N (whose value 
is a function of how the Lgen feature values were chosen 
in gc to begin wi th). This Extr(gc*,k) for sufficiently 
large k wi l l be writ ten Extr(gc*). 

The requirement on correspondence between gw and gc 
is now that, if Extr(gc*) = [Tr, <*, pr l , after suitable 
permutation of the time-points, we snail nave: 

If the other, previously mentioned conditions are 
satisfied, i.e. gw and gc are coherent etc., and gc is 
repeatable, and if the correspondence condition is 
satisfied, then the cell program gc wil l correctly 
implement the workpiece program gw on successive 
workpieces in pipeline fashion. 

7 . D iscuss ion, l i m i t a t i o n s . 

The most obvious l imitation on the result above is that 
it only applies to the 'steady state' when the production 
process is running, all machines contain a workpiece 
each, etc. The analysis does not cover the start-up and 
shut-down stages, or the handling of exceptional cases 
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such as when a workpiece breaks and has to be taken 
out of the cell. The analysis of those situations is a 
natural next step. 

The analysis also depends on the peculiar characters of 
the processing and move operations. If one would add 
e.g. an atomic 'swap1 operation which exchanges the 
contents of two locations, then the definition of the 
'purge' function and the subsequent analysis would have 
to be revised. 

The formal treatment here only considers one type of 
workpieces, and requires non-trivial extensions for 
mixed-mode production where several types of 
workpieces are mixed in the same flow. 

A number of formal details have had to be omitted in 
this version of the paper, which is only intended for 
overview. The more precise version of the paper must be 
consulted by the reader who is interested in the exact 
and complete formulation of the conditions for 
correspondence between workpiece program and cell 
program. 

For similar reasons, the detailed aspects of how to 
generalize the requirements at the end of section 3 for 
edge-nodes in action fragments have been omitted here. 

Related work. The theories and languages for concurrent 
programming address the issue of specifying 'two or 
more sequential programs that may be executed 
concurrently as parallel processes' (ref. 5). Their goal is 
therefore different from the goal of the present work, 
which is to characterize parallel processes in the world 
outside the computer, but evidently the techniques may 
sometimes be interchangable. 

The method of path expressions (ref. 6) is similar in 
some respects to the approach taken in this paper. In 
particular, path expressions also separate the 
specification of operations from the the specification of 
constraints on the execution order. However, the 
analysis of preconditions/ postconditions/ 
prevail-conditions does not (to our knowledge) have a 
counterpart in path expressions. Also the use of 'action 
fragments' whose left and right edges are sequences of 
time-points or execution states, are believed to be novel. 

A more extensive survey of methods from concurrent 
programming, and their relevance to the description of 
action structures is given in section 11 of (ref. 1). 

Pipelining is a well known technique also in computer 
architectures. The classical technique for analysis of such 
pipelines is based on 'reservation tables' (ref. 7) which 
specify which resource(s) are needed in each stage of 
processing, but which do not easily lend themselves to 
the analysis of the three types of logical conditions 
which are at the core of our approach. 

Intentions for continued work. Our own plans, for a 
longer perspective, is that we would like to have a 
formal characterization of all the essential steps when 
going from the product information in the CAD system, 
to the production cell program, including also the formal 
description of the production equipment, the procedures 
for dealing wi th exceptional situations, etc. Furthermore, 
the formal characterization should be usable as a 
specification and/or as a knowledge base for the actual 
software that controls the production cell. The work in 
this paper is one of the steps towards that goal. 
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