
T h e P ipe l i n i ng T r a n s f o r m a t i o n on P lans
fo r M a n u f a c t u r i n g Cells w i t h Robo ts

Erik Sandewall
Department of Computer and Information Science

Linkoping University
S-58183 Linkoping, Sweden

E-mail: ejs@liuida.uucp

Abstract: The plan or program for a manufacturing cell
may be seen either from the workpiece (describing the
successive operations that it wants to undergo during its
track through the cell) or from the perspective of the
workcell (describing its quasi-parallel operation on
several workpieces which are processed simultaneously in
the cell}. This paper addresses the question of how to
verify tnat a proposed cell program implements a given
workpiece program. The verification method is described
informally using an example, and then formulated in
precise and formal terms.

0 . T h e P l a n n i n g P r o b l e m in F a c t o r y
A u t o m a t i o n .

One of the important research problems in factory
automation is improved methods for programming
production cells. The flexible manufacturing
environment has high demands on easy development and
update of programs, and requires convenient,
application- level dialogue between the engineer or
operator who is in charge of the production cell, and the
controlling computer system. It is not practically
possible to satisfy these requirements only using
conventional software engineering techniques.

Good software systems for programming production cells
should make it possible to describe the desired behavior
of the cell in terms of the objects which are present
there (e.g. NC machines, robots, and conveyors), and in
terms of the natural, elementary actions that those
objects can perform (e.g. elementary move operations
performed by an industrial robot). The techniques of
knowledge based programming, often known as expert
systems techniques, are well suited for realizing such a
problem- oriented programming style.

If artif icial intelligence techniques are therefore likely to
be useful for factory automation in this particular
respect, it is equally true that the factory automation
domain offers important and interesting problems for
artif icial intelligence. In particular, the production cell is
a 'wor ld ' of non-trivial but limited complexity, where
current techniques for planning and problem-solving can
be further developed and refined. The present paper
•hows how a method for planning and for reasoning
about actions, suitably extended, can be used for a
practically significant planning problem in production
cells.

This research was supported by the Swedish Board of
Technical Development.

1 . P ipe l i n i ng o f M a n u f a c t u r i n g P lans .

Consider a simplified production cell for automatic
manufacture, as illustrated in figure 1. Successive
workpieces arrive on the incoming conveyor (f l , and are
processed by the three successive machines (X,Y, and
Z). A handling robot (R) moves the workpieces from I to
X (movement operation A) , from X to Y (movement
operation B) , from Y to Z (movement operation C), and
from Z to outgoing conveyor, 0 (movement operation
D). Each of the machines may be for example an NC
machine tool, a machine for finishing surfaces on the
workpiece, or a machine for checking tolerances.

We wi l l use X also as a name for the operation
performed by machine X, and similarly for Y and Z. We
can usually assume that each of the operations
X,Y,Z,A,B,C,D has a constant duration in t ime, and
that the X,Y, and Z operations take significantly longer
time than the movement operations A-D. Successive
work cycles can be assumed to use the same "program"
or "p lan" , which implies that the whole production cell
has a well defined cycle time. One needs to determine
the time-optimal plan, both in order to maximize the
throughput of the production cell, and in order to
balance the total production line which consists of
several cells.

The program or plan for the production cell may be seen
from two different perspectives. For a particular
workpiece, one wi l l have the plan shown in figure 2. It
says that the workpiece at hand first undergoes the A
(movement) operation, then the X (processing)
operation, etc.

From the perspective of the production cell, we wi l l
instead have the plan shown in figure 3, where full-line
arrows indicate steps in one work-cycle, and broken-line
arrows indicate steps in the preceeding and succeeding
work-cycles. The best way to understand the plan is by
analogy wi th a 15-puzzle: when all machines contain a
workpiece each, the only empty slot to which a
workpiece may be moved is on the outgoing conveyor
belt. The 'first* operation must therefore be for R to
move a workpiece from Z to O (operation D). After
that, the workpiece that has finished operation Y may
be moved from Y to Z (operation C). After that again,
the new workpiece in Z may be processed, and at the
same time the empty slot in machine Y may be filled
using operation B, and so the analysis continues.

Sandewall 1055

Both these perspectives are legitimate and useful; we
shall call them the workpieee program and the cell
program, respectively. The cell program is significant
because it is the program that the control software for
the production cell primarily executes; it is the program
on which the cell's cycle time must be calculated; and it
describes the behavior of the cell as seen by the operator
in charge.

The workpieee program, on the other hand, represents
an underlying and more fundamental plan. Along the
path of successive transformations, from the information
in the CAD system to the automatic manufacture, one
would expect to go first from CAD system information
to the workpieee program, and then by another
transformation to the cell program. In particular, if the
configuration of the production cell is changed (for
example by having a robot wi th two hands instead of
one), then the cell program may change but the
workpieee program remains constant.

In the long run, we would therefore like to have methods
which can determine an optimal cell program for a given
workpieee program and a given cell configuration.
(Practical programs have a lot more complexity than
this simple example shows). As a first step, we look for
methods for verifying that a proposed cell program
correctly implements a given workpieee program in a
given cell configuration. The present paper addresses
that problem.

In our example, the workpieee program is entirely
sequential, whereas the cell program involves
parallel ism. In more general cases, the workpieee
program may also contain parallellism, e.g. in an
assembly task where several sub-assemblies may be put
together independently of each other, and then be finally
mounted together. The transformation from workpieee
program to cell program may sometimes impose
constraints on the parallel execution of operations,
namely if there is competition for shared resources such
as (typically) the handling robot or the workpieee. On
the other hand, the transformation may also introduce
additional possibility for parallel execution of operations
if the cell program handles several workpieces
concurrently, in successive stages of completion. That
latter aspect is similar to the concept of pipelining in
computer architectures, and we shall use the term
pipelining in the case of production cells as well.

2 . T h e so lu t i on t h r o u g h an examp le .

We first show through the example how the workpieee
program and the cell program may be related, in order
to convey the general idea in an informal way. In the
following sections we proceed to the formal treatment.

Consider the proposed cell program for the example, as
represented graphically in figure 3. Assume that the
workpieces that flow through the production cell are
assigned serial numbers, so that the first object to be
manufactured obtains serial number 1, etc. Wi th in one
cycle of the program, we label each operation which
involves a workpieee, w i th the serial number of the
workpieee that is processed there during the cycle in
question.

In figure 4, we see the results of the labeling, together
w i th the continuation of the same labeling. In the next
cycle, all operations have their serial numbers increased
by 1, and so on in later cycles. We think of the cell
program as a sequence of very many repeated
occurrences of the same cycle (rather than as a formula
saying * repeat the following cycle N times"). However,
in spite of the arbitrary length of the cell program, those
operations which are labeled wi th a given serial number
wi l l clearly be l imited to five consecutive cycles of the
cell program, corresponding to the number of cycles
during which a workpieee stays wi th in the production
cell.

Now select from the cell program in figure 4, the
substructure of those operations labeled wi th a certain
serial number, as shown in figure 5. The resulting
sub-structure represents the operations performed on a
certain workpieee, and the relative ordering on those
operations in t ime. We wi l l call it the workpieee

program that has been extracted from the cell program
modulo the init ial serial number labeling). We can see

how figure 2 re-appears in figure 5, i.e. the original
workpieee program is re-obtained by extraction from the
cell program.

The basic cri terium on the relationship between the
workpieee program and the derived cell program can
now be expressed: For the proposed cell program, there
must exist some serial-number labeling such that the
resulting, extracted workpieee program is equal to, or a
temporal strengthening of the given workpieee program.
We say that P' is a temporal strengthening of P if P and
P' contain the same operations, and every temporal
ordering in P occurs also in P\ but not necessarily the
other way.

In the example, P and P' are identical. In other
examples where the given workpieee program contains
parallel operations, it may happen that the cell program
introduces additional temporal constraints due to shared
resources, whereby also P' contains additional temporal
orderings besides those found in P.

Besides this necessary relationship between the
workpieee program and the cell program, there are also
some other constraints on those programs, namely the
familiar precondition/ postcondition constraints and the
constraints of shared resources. We wi l l get back to
those issues in the next section.

3 . F o r m a l p re l im ina r i es .

The previous section gave an intuit ive notion of the
method through an example, but it remains to cast it in
precise and general form. The formal methods for
reasoning about t ime and actions are legio. We wi l l use
the method previously described in (ref. 1), and we also
refer to that paper for an overview of alternative
approaches.

In the approach we wi l l be using, the world in which the
plans are executed is characterized by a number of
features, each of which may have either of a number of
values (often a choice of two, Boolean). A partial state
assigns either of those values, or undefined, to each of
the features. The possible values of a feature are allowed
to be chosen from a flat lattice, w i th undefined as the

1056 REASONING

Sandtwall 1057

1058 REASONING

and the following three outgoing states:
- c2 and c4 ful l
- c3 and c5 ful l
- cl ful l (join of prevail conditions of outgoing action
occurrences)

The same feature does not occur in several incoming
states, which means that the incoming states are
anti-dimensional. Also, if there were a conflict among
the prevail conditions, the last incoming (resp. outgoing)
state would be inconsistent. Finally, the balancing
condition is that each incoming feature assignment is
also an outgoing feature assignment, and vice versa.
(End of example).

The requirements that have been specified here are not
entirely sufficient; there is also an additional condition
which is needed in order to avoid conflicting change of
the same feature, by actions which are in the middle of
two parallel actions sequences. For details please refer to
ref. 1.

4 . Represen t ing conca tena t ion o f ac t ion
s t ruc tu res .

We can now proceed to those extensions to the
formalism which are needed in order to formulate the
relationship between the workpiece program and the cell
program in general terms. We shall need formal ways to
concatenate action structures, for example those
representing individual cycles, into larger structures. We
shall also need a way of assigning, and dealing wi th the
'serial numbers' of the workpieces.

Let it be assumed, then, that a workpiece program and a
cell program are given as action structures, using states
from the same state space and actions from the same set
A of val id actions. The states should not register the
serial number or other identification of workpieces, but
there may be features which e.g. signify the presence or
absence of a workpiece in a machine, or which signify
whether a machine has finished processing the workpiece
that it is currently holding.

In order to analyze the cell program as in the example,
we must first concatenate several cycles for the cell.
There are well known formalisms which allow sequential
composition of 'programs' in the sense of 'composite
action descriptions', for example dynamic logic (ref. 2,3)
and the programming language Occam (ref. 4). These
notations however work only if the cycle has a single
starting point and end-point, i.e. if the partial order < in
the action structure [T, <, p) has a smallest and a
largest element.

In our applications it is not possible to build up a cell
program wi th in the limits of single starting-points and
end- points for all intermediate structures. We therefore
need a structure which has several "entry points" and
"exi t points", in a way which resembles the concept of
ports in programming languages. The concept of action
structure is generalized as follows:

An action fragment is a fivetuple [T, <, m, p, r] , where
T, <, p are like for action structures;
m and r are sequences of members of T;
m and r have equal length.

Also, the identity of the members of T is unimportant,
so that if some other time-points are substituted

throughout all five elements of the action fragment, we
sti l l have the same action fragment. (In other words we
are really using the quotient structure w.r.t. the
equivalence operation of permutation of time-points).

Consider two action fragments
g1 = | T 1 , <1 m l , p 1 , r1]
g2 = [T2, <2, m2, p2, r2]

Intuit ively, ml contains the time-points along the "left
edge" of g l , and r1 the time-points along its "r ight
edge". Two fragments are concatenated by matching the
right edge of one against the left edge of the next.

The concatenated action fragment gl;g2 is therefore
obtained as follows: rename the time-points in T2 in
such a way that r l = m 2 (the elements in the two
sequences are pairwise equal), and so that T1 and T2
are disjoint sets outside rl or m2. Then form

gl;g2 = (T l u T2, <, m l , p1 u p2, r2]
where the relation < is obtained so that x < y iff either
of the following conditions holds:

x < 1 y
x<2Y
for some z in r l , x < 1 z and z <2 y

It is easily seen that this definition corresponds to
intuitions about the successive execution of (equal or
different) cycles, and that the composition operation ; is
associative.

Besides the criteria that have just been given, there
must be additional conditions on the incoming and
outgoing features in the edge nodes. We wi l l show these
conditions through a concrete example.

5 . Represent ing the repeated cycle f o r m a l l y , in
the example .

Figure 6 shows how the work cycle in the workcell
example can be characterized as an action fragment,
wi th the preconditions, postconditions and prevail
conditions of the various action instances wri t ten out.
The following graphical notations are used:

Ful l arrows (—) represent actions. The feature
transitions of the action are wri t ten underneath the
arrow. For example, 'Lx:4' under the X arrow means
that while X is performed, the feature Lx should have
the value 4 as a prevail condition, i.e. throughout the
action. '4[Li]E' means that the Li feature should have
the value 4 as a precondition and the value E as a

postcondition. The operation marked in this way
namely A) changes the value of Li f rom 4 to E.

For each 'place' where a workpiece may be, there is a
corresponding feature whose value is the serial number
of the current workpiece in that place, or E if the place
is empty. For example, the feature Lx represents the
serial number of the workpiece that is currently in the X
machine. Therefore the value of the feature Lx must be
kept constant while X is performed. Also, we see in the
figure how the move operations (A,B,C, and D) are
characterized simply by how they change the values of
the place features. Thus if the Lx place contains a
workpiece w i th serial number 3, the Ly place contains
no object (feature value E) , and the B operation is
performed, Ly receives the value 3 and Lx reverts to the
value E.

Sandewall 1059

Timepoints are represented as nodes in the graph.
Square nodes represent timepoints on the left edge;
triangle nodes represent timepoints on the right edge,
and circular nodes represent other timepoints. Solid
black nodes represent duplicate copies of the same
timepoint in the graph, and dotted connections (....)
connect one or more duplicates with the node they are
duplicating.

Arrows with a broken line (—) represent the partial
order < between nodes in those cases where there is no
action connecting one to the other. (When there is such
an action, the ordering < always follows). Broken/dotted
arrows, finally, (-.-.-) represent additional persistence or
'noop' actions whicn have been inserted artificially in
order to transfer the postcondition of one time-point to
be a pre-condition of a later time-point. The
broken/dotted line is omitted, and the persistence
operations are understood, when there is already a
broken line connecting the same nodes.

The lower part of the figure summarizes, for each node,
which are the incoming and outgoing values of each of
the features. For example, the node at the end of the B

operation has the incoming values (4, E, 3) for the three
features (Li, Lx, Ly), and the same outgoing values.
This is an example of the node balancing condition on
the action structure which was introduced at the end of
section 3.

If two action fragments have been concatenated, then
the nodes on their common edge must also satisfy the
node balancing condition when actions from both the
two fragments are used. However, if one only considers
the action occurrences inside one fragment, then the
edge nodes of that fragment usually do not satisfy the
node balancing condition.

For those action fragments which are intended to be
concatenated with themselves, in order to obtain cyclic
behavior, and which we shall call rtpcatable action
fragments, the balancing condition on the edge nodes
can be obtained by combining corresponding left-edge
and right-edge nodes. As is easily seen in figure 6, we
can take the left-edge nodes, increase all serial-number
values with 1, form the join with the corresponding
right-edge node, where the join is taken separately for

1060 REASONING

the incoming state and the outgoing state of the node,
and then the node balancing criterium is satisfied.

Consider for example the second left-edge node, between
the actions D and C in the figure. For the features (Ly,
Lz, Lo), this node has incoming values (-, E, l)_and
outgoing values (2, E, 1), or the value pairs
1/1). The second right-edge node has the value pairs

for the same features. Incrementing all
left-edge values by 1 (except E which remains
unchanged) we obtain Combining wi th
the r ight- edge node we obtain (3/3, E /E, 2/2) which
satisfies the node balancing criterium. (Here we let -
represent 'undefined').

Most of the features () represent the
various positions in the cell where a workpiece may 'be',
and most of the actions represent either the movement
of a workpiece, or the operation on a workpiece inside
one of the machines. The last feature, Lgen, is used as
the counter that assigns serial numbers. We see how the
operation I, which advances the incoming conveyor,
changes the contents of the Li location from E to 5 in
the figure, and at the same time it increases Lgen from 4
to 5. In general, valid I actions are those where Lgen is
increased by one, and Li changes from E to the new
value of Lgen. The auxiliary, 'persistence' arrows
transmit the value of Lgen from the third left-edge node
to the beginning node of the I action, and from the end
node of the I action to the third right-edge node.

In summary, then, figure 6 shows how the simple
action-plan from figure 3 could be 'decorated' wi th
feature values for preconditions, postconditions, and
prevail conditions, and how it is extended wi th auxiliary
persistence actions, so that the resulting action-plan
satisfies a revised node balancing criterium which also
takes the edge nodes into account.

6 . Re la t i onsh ip be tween workp iece p r o g r a m a n d
ce l l p r o g r a m i n general and f o r m a l t e rms .

We are now ready for the goal of this article, namely to
formulate in precise terms the relationship between a
workpiece program and a proposed cell program. We
assume that the workpiece program is given as an action
structure

gw = [Tw, < w , pw] t
and that the proposed cell program is given as a
repeatable action fragment

gc = [Tc, < c , mc, pc, re]

The same feature domains should be used for gw and gc,
w i th the following exceptions:
- the 'counter' feature Lgen is omitted in gw;
- the defined values of the position features is E or serial
number in gc, but E or T (E = empty, T = taken) in
gw.

Let succ(gc) be the modified action fragment obtained
from gc by increasing all numerical feature values wi th
1, and leaving the others (E and undefined) unchanged.
It follows from the construction, and the criterium for
well-formedness and repeatability for fragments, that
succ(gc) is also a correctly formed, and repeatable action
fragment. (In fact a number of fairly routine constraints
must also be satisfied, such as the existence of arcs that
forward the current value of the Lgen 'counter' to the

next cycle, but this is not of any particular interest).
Therefore the cyclically repeated action fragment

; succ(gc) ; succ(succ(gc)) ...
is well formed.

If [f,b,v,e] is an action, and k is an integer, then the
corresponding purged action

purge
is obtained in the following fashion: first remove from f,
b, and e the Lgen feature and all features which have a
numerical value different from k in either of f, b, or e.
The only remaining values are then k, E, and undefined.
Then change all occurrences of the k value to the value
T.

For example, a feature which has the value E in b and k
in e is retained, but w i th the value T in e. A feature
which has the value k + 1 in b and the value E in e is
removed from both b and e, i.e. obtains the value
undefined in both.

The purge of an action occurrence [t, is
obtained by purging its middle element.

If k is an integer, and mc, pc, re], let the
extracted action Extr(gc,k) be defined as that action
structure

where:

pk consists of purge(a,k) for those action occurrences

in pc where some feature except Lgen is defined and has
the value k in either f, b or e;

Tk consists of those t in which occur in at least one
action occurrence in

is the restriction of to Tk.

It is easily seen that
Extr(gc*, k)

is independent of k if k is > some small N (whose value
is a function of how the Lgen feature values were chosen
in gc to begin wi th). This Extr(gc*,k) for sufficiently
large k wi l l be writ ten Extr(gc*).

The requirement on correspondence between gw and gc
is now that, if Extr(gc*) = [Tr, <*, pr l , after suitable
permutation of the time-points, we snail nave:

If the other, previously mentioned conditions are
satisfied, i.e. gw and gc are coherent etc., and gc is
repeatable, and if the correspondence condition is
satisfied, then the cell program gc wil l correctly
implement the workpiece program gw on successive
workpieces in pipeline fashion.

7 . D iscuss ion, l i m i t a t i o n s .

The most obvious l imitation on the result above is that
it only applies to the 'steady state' when the production
process is running, all machines contain a workpiece
each, etc. The analysis does not cover the start-up and
shut-down stages, or the handling of exceptional cases

Sandewall 1061

such as when a workpiece breaks and has to be taken
out of the cell. The analysis of those situations is a
natural next step.

The analysis also depends on the peculiar characters of
the processing and move operations. If one would add
e.g. an atomic 'swap1 operation which exchanges the
contents of two locations, then the definition of the
'purge' function and the subsequent analysis would have
to be revised.

The formal treatment here only considers one type of
workpieces, and requires non-trivial extensions for
mixed-mode production where several types of
workpieces are mixed in the same flow.

A number of formal details have had to be omitted in
this version of the paper, which is only intended for
overview. The more precise version of the paper must be
consulted by the reader who is interested in the exact
and complete formulation of the conditions for
correspondence between workpiece program and cell
program.

For similar reasons, the detailed aspects of how to
generalize the requirements at the end of section 3 for
edge-nodes in action fragments have been omitted here.

Related work. The theories and languages for concurrent
programming address the issue of specifying 'two or
more sequential programs that may be executed
concurrently as parallel processes' (ref. 5). Their goal is
therefore different from the goal of the present work,
which is to characterize parallel processes in the world
outside the computer, but evidently the techniques may
sometimes be interchangable.

The method of path expressions (ref. 6) is similar in
some respects to the approach taken in this paper. In
particular, path expressions also separate the
specification of operations from the the specification of
constraints on the execution order. However, the
analysis of preconditions/ postconditions/
prevail-conditions does not (to our knowledge) have a
counterpart in path expressions. Also the use of 'action
fragments' whose left and right edges are sequences of
time-points or execution states, are believed to be novel.

A more extensive survey of methods from concurrent
programming, and their relevance to the description of
action structures is given in section 11 of (ref. 1).

Pipelining is a well known technique also in computer
architectures. The classical technique for analysis of such
pipelines is based on 'reservation tables' (ref. 7) which
specify which resource(s) are needed in each stage of
processing, but which do not easily lend themselves to
the analysis of the three types of logical conditions
which are at the core of our approach.

Intentions for continued work. Our own plans, for a
longer perspective, is that we would like to have a
formal characterization of all the essential steps when
going from the product information in the CAD system,
to the production cell program, including also the formal
description of the production equipment, the procedures
for dealing wi th exceptional situations, etc. Furthermore,
the formal characterization should be usable as a
specification and/or as a knowledge base for the actual
software that controls the production cell. The work in
this paper is one of the steps towards that goal.

References.

1. E. Sandewall and R. Ronnquist: "A Representation of
Action Structures". Proc. 1986 A A A I .

2. D. Harel: "Dynamic Logic". In "Handbook of
Philosophical Logic", Vol . 2, Reidel publishing Co.,
Holland/USA.

3. R. Parikh: "Propositional Dynamic Logics of
Programs: A Survey". In "Logics of Programs", Ed. E.
Engeler, Springer LNCS 125, pp. 102-144.

4. D. May: "Occam". SIGPLAN Notices, Apri l 1983.
(Occam is a trademark of Inmos Ltd.)

5. G.R. Andrews and F.B. Schneider: "Concepts and
Notations for Concurrent Programming". Computing
Surveys, Vol. 15, No. 1, March 1983.

6. R.H. Campbell and A.N. Habermann: "The
specification of process synchronization by path
expressions". Springer LNCS, vol. 16, 1974, pp. 89-102.

7. E. Davidson: "The Design and Control of Pipelined
Function Generators". In Proc. 1971 International IEEE
Conference on Systems, Networks, and Computers, pp.
19-21, 1971.

1062 REASONING

