
Const ruc t ive second-order proofs 
in logical databases. 

Abst rac t : The constructive second-order proofs that we study 

are associated with inductive definitions on classes of finite 

structures, where each structure represents a database state. To 

an inductive definition of a predicate P on a class K corresponds 

a uniform proof of P i.e a function which for each structure U 

defines a proof of P in U 
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In the second section, we review the definition of an inductive 

query, and the differences between logic programming and 

inductive definability. We give some examples and then describe 

compilation techniques. In the third section we introduce the 

notion of a uniform proof, and in the fourth section we study 

properties of uniform proofs, namely non-monotonicity and 

intensionality. 

These proofs use computations on sets and the finiteness of the 

structures in a fundamental way, and hence differ from first-order 

proofs We show the non-monotonicity of this calculus, and 

mention the constructivity of some of its intensional properties 

(time and space complexities) 

1. Introduction 
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Definition- is inductive on a clan K i f 

there exists a system w i t h parameters such tha t for al l U: 

2 .2. I n d u c t i v e d e f i n a b i l i t y a n d log ic p r o g r a m m i n g . 

In classical logic programming data and logical def ini t ions are 

treated as f i rst-order axioms and a query is solved by a t tempt ing 

to f ind some f irst-order proof of Q in the theory defined by the 

axioms If the data changes, the theory changes and so w i l l the 

proof of Q 

In the induct ive def inabi l i ty f ramework, we set a fundamenta l ly 

different formal ism as we dist inguish between data and logical 

def in i t ions The data determines the f in i te re lat ional structure U 

of a class K. and the logical def ini t ions are taken as induct ive 

def ini t ions relat ive to K To a class K we associate a c/ass of 

theory, namely the set of t rue f irst-order formulas of U ( T h ( U ) ) , 

for each U If the da ta changes, the structure changes w i t h i n 

the same class K, but the the class of theory does not change. 

We only solve induct ive queries on the class K Given an 

induct ive query Q and a structure U, we solve the query Q and 

produce a proof of Q or -Q in U To the query Q corresponds a 

uniform proof i.e a funct ion which for each structure U 

associates a proof of Q or -Q in U. A l though we w i l l obta in 

dif ferent proofs for each structure U (database state), they w i l l 

a l l correspond to the same uni form proof. 

Let us i l lustrate this fundamenta l difference w i th a simple 

classical example A more detailed analysis is made in |7,. We 

adopt the Prolog notat ions: in the induct ive framework, " • " 

replaces the symbol "■ - " . 

ExampIe :Cons ide r two classes of acyclic directed graphs 

The induct ive def in i t ion defines t c ( X , Y ) on the class of 
f in i te graphs (in part icular on the classes G } ( n ) and G 2 (n ) ) , 
where Y is a parameter. in the logic program, tc is 
defined by 2 rules, and the induct ive def in i t ion of tc has £ 
component*. Let u s analyse the q u e r y i n both 
formal isms. 

The induct ive def in i t ion of tc w i l l be compiled in to code 
independent of the data (C-code, then machine code), using 
cal l-by-value for the parameter variables, and a call-by-sets 
for the recursion variables (see next section). In the case of 
t c ( 0 , l ) , the computat ion leads to comput ing 

The query evaluates t o false o n a n d t o true 

on G 2 (n ) Let us compare the proofs generated by these two 

approaches 

Log i c p r o g r a m s : evaluates to no, using 

negation by fai lure |3|, in t ime 0 ( 2 n ) , as all the paths f rom 
0 are considered evaluates to yet, but 

the complexi ty analysis depends on the position of the new 
atomic clause " If this new clause is inserted before 
the clause "e(0,2) ", the complexi ty is constant (one step). If 
it is inserted after the clause " e ( 0 , 2 ) n , the complexi ty w i l l 
be 0 ( 2 n ) The worst-case analysis is therefore 0 ( 2 n ) If we 
add data (for example n e ( 0 , l ) " ) , the theory changes, and 
the proofs change Each proof of t c ( 0 , l ) is specific to a 
given finite graph 

I n d u c t i v e d e f i n a b i l i t y : For all constants o and the 
uni form proof of is a const ruc t ive second-order 
proof that paraphrases the compi lat ion of the induct ive 
def in i t ion It could be represented as The inductive set 

hat been computed. If then yes, 
otherwise no. We obtain the same uni form proof 
independently of the graphs As we compute a unary set, 
the relat ivized complexi ty is O(n) It can be pre-computed 
at compi le- t ime, and is the basis of the intensional analysis. 

On the graphs evaluates to no, using the 

impl ic i t negation by inductive cloture2. We use the symbol o 
to represent this negation On the graphs 

evaluates to yet The fo l lowing labeled trees represent these 
proofs: 

In G, 

We show that the constructive calculus associated with the 

inductive definability framework is non-monotonic. The notion of 

stratification jlOj in logic programming is a step towards 

inductive definability, and towards a distinction between the 

structure (the data) and the logical definitions. 
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2.S. The compi lat ion of induct ive queries. 

Let K be a class of logical databases. Each explicit relation R is 

compiled into two C-functions. For simplicity, let us suppose R 

binary, and assume that a type-definition set has been defined 

that includes the data-structures for base relations (GRIDS). 

The C-function RB assumes that x and y are known strings a 

and b representing elements of the domain, and returns 1 if 

and 0 if whereas the function Rf assumes 

that at least one of the variables is unknown or free (value nil), 

and returns a pointer to a set. 

2.3.1. Compi la t ion rule: 

be a system defining R 

• For inductions of positive dimension d, compile S., and S,f 
as before Pass the parameter by value, and compute the 
inductive sets until the 
closure ordinal is reached Project on the recursive variables 
if known. 

This computation rule defines Rb and Rf, and works for 

existential induction (Horn-Clauses), and Universal inductions. In 

this last case, we compute a set and check that its cardinality is 

equal to the cardinality of the finite domain We also compile -^R 

by generating and act *- (using the complement 

operator on the finite domain D3. 

2.3.2. Wi tnewet . 

Suppose R is defined on a class of structures where S and T are 

explicit by the component The 

variable i is quantified existentially. In order to prove 

we have to exhibit an element c in D such that and 

The computation of Rb will call for a selection and 

then a join-operation. We will compute |S(a,s)| , and check for 

each element d of that set if The first d that we find 

with this property is the witness of | 

In an induction of positive dimension, a new element in the 

inductive set S at stage i, uses a witness at stage i-1. These 

witnesses can be stored together with the inductive sets, at no 

extra cost. 

• If a node is labeled and its children are 
labeled then the i-th 
component of the inductive definition of R is of the form 

• I f a node is labeled with <R(b1,,..,b/), i> and its child with 
then the i-th component of the inductive 

definition of R is 

Def in i t ion: An effective proof of in U is a labeled 

tree in U whose root is labeled with and an effective 

proof of in V is a labeled tree in U whose root is 

labeled with 

We write to denote effective proofs of Q and 

Def in i t ion: A uniform proof of a query Q on a class K is a 

function, computable in polynomial time, that associates an 

effective proof of , with each structure U of K, 

Theorem 1: If Q is an inductive query on a class K, then for 

Theorem 2: A query Q is computable in polynomial time iff 

there is a uniform proof of Q. 

Theorem 3: If a class K1 is an inductive expansion of a class 

K, and if there is a uniform proof of Q on K., then there is a 

uniform proof of Q on K. 

Theorem 1 is implicit with our definition of |- . Theorem 2 comes 

from the equivalence between inductiveness and being uniformly 

provable. Theorem 3 is the recursion theorem rephrased in this 

context. 

3This coastruction is inefficient at soon as the arity of R is 2, but the 
intentional analysis will allows us to know in advance that it it inefficient 
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