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A B S T R A C T 

Comparative analysis answers questions about how and 
why a system will react to perturbations of its parameters. 
For example, comparative analysis can explain why the pe­
riod of a spring/block system would increase if the mass of 
the block were larger. This paper formalizes the problem 
of comparative analysis and describes a solution technique, 
differential qualitative analysis; the technique only works 
if the system can dynamically change perspectives when 
it compares the values of parameters over intervals. This 
paper shows how perspectives can be used for comparative 
analysis, summarizes a soundness proof for the technique, 
demonstrates incompleteness, describes a working imple­
mentation, and presents experimental results. 

1 In t roduc t i on 

The problem of symbolic analysis of real-world systems is 
central to many problems in artificial intelligence. In or­
der to cope with a changing world one must be able to 
understand its behavior. Recently, considerable empha­
sis has been put on a specific kind of analysis: qualitative 
simulation[l,3,10,5,8]. Qualitative simulation seeks to pro­
duce a description of the behavior of a system over time, 
often in the form of a tree of histories of the system's qual­
itatively interesting changes over time [9]. 

This paper discusses the problem of comparative anal­
ysis, in many ways the complement of qualitative simu­
lation. Whereas qualitative simulation takes a structural 
description of a system and predicts its behavior, compar­
ative analysis takes as input this behavior and a perturba­
tion and outputs a description of how the behavior would 
change as a result of the pertubation. 

For example, given the structural description of a hori­
zontal, frictionless spring/block system (i.e., Hooke's law), 
a qualitative simulator would say that the block would first 
move one direction, stop, then reverse, etc. A description 
of oscillation would be produced. Comparative analysis, 
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on the other hand, should take this description of oscilla­
tion and evaluate the effects of perturbations. For exam­
ple, comparative analysis should deduce that if the mass 
of the block were increased, the period of oscillation would 
lengthen and explain why (figure 1). In this paper, I de­
scribe differential qualitative analysis,2 which solves com­
parative analysis problems in much the same way as 1. Just 
as qualitative simulation works without explicit equations 
for the value of each parameter as a function of time, dif­
ferential analysis does not need a formula for the period of 
oscillation. 

Since force is inversely proportional to posi­
tion, the force on the block wil l remain the same 
when the mass is increased. But if the block is 
heavier, then it won't accelerate as fast. And 
if it doesn't accelerate as fast, then it wil l al­
ways be going slower and so wil l take longer to 
complete a full period.3 

Figure 1: Why Period Increases with Mass 

1.1 W h y is i t Interest ing? 

Comparative analysis is an important component of many 
artificial intelligence problems including automated design 
and computer-aided instruction. Suppose a library design 
for a VLSI pullup circuit has too long a rise time. If the 
problem solver considers increasing the width of some wire 
to decrease the rise time, it would like to know the ramifi­
cations of this modification relative to the initial behavior. 
Comparative analysis provides this answer, in qualitative 
terms, as is appropriate for init ial design evaluation. 

A key subproblem of CAI is the automatic explana­
tion of the behavior of complex systems. Most AI work 
in this direction has focussed on techniques for the quali­
tative simulation of systems [7,4]. Qualitative simulation 
is an important component of explanation generation, but 
understanding how systems respond to changes is a useful 
addition. Explanation generation is the application which 
most influenced the development of differential qualitative 
analysis. 

2 Differential qualitative analysis was first suggested by Forbus[3, 
pages 159-161]; section 5 explains the limitations of his approach. 
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1.2 Perspectives 
Differential qualitative analysis [3,6, pages 159-161] is a 
technique for solving comparative analysis problems in the 
manner of figure 1. But the differential technique is not as 
simple as it appears. Consider the first line of the expla­
nation. What does it mean to say that the force on the 
block is the same? Clearly the forces aren't equal at all 
times; since the period is longer in the second case, there 
are times when the force is zero in the first system yet pos­
itive in the second system. What's really meant is that in 
every position occupied by the two blocks the force applied 
by the spring is the same. In other words, the force doesn't 
change from the perspective of position. 

Although changes in perspective are implicit in ordi­
nary english text, they must be explicit if a machine is 
going to generate the explanation. The main contribution 
of this paper is to show how perspectives can be used to 
reparameterize quantities in terms of other quantities be­
sides time. This does more than allow efficient reasoning; 
differential analysis wouldn't work on systems such as the 
spring without the ability to shift between perspectives. 

2 No ta t i on and General Results 

As my formalism is based on that used by Kuipers for QSIM 
[5], I start out by summarizing his definitions. Al l compar­
ative analysis theorems have been proven [6], but are not 
included in this paper due to length restrictions. 

De f in i t i on 1 A PARAMETER is a reasonable function of 
time. 

See [5] for the actual definition of reasonable function; 
the intuition is that of continuity, continuous differentia­
bil ity and a finite number of critical points. Parameters 
are denoted by capital letters. Thus the velocity of an ob­
ject might be described by the parameter, K, which is a 
function that maps times to velocities. 

De f in i t i on 2 Associated with each parameter are a set of 
LANDMARK VALUES, each is a member of the parameter's 
range. The landmark values always include (but aren't re­
stricted to) zero, the values of the parameter at the begin­
ning and ending times, and the values of the parameter at 
each of its critical points. A time, t, is a DISTINGUISHED 
TIME POINT of a parameter P if it is a boundary element 
of the set of times that for some landmark value 

Pt-

Landmark values are those values considered to be in­
teresting to the human observer, and the times when these 
values are reached are of interest too. When a parameter 
becomes constant for an interval of time, then it wil l take on 
a landmark value for infinite number of time points. This 
is why the definition only considers the boundary times 
distinguished. 

De f in i t i on 3 A SYSTEM is a set of parameters that are 
related with a STRUCTURAL DESCRIPTION that consists of 
a finite set of qualitative differential equations defined using 
the following: time differentiation, addition, multiplication, 
and relation by monotonic functions. 

Kuipers' program, QSIM, takes a system and a set of 
initial values for each of the parameters and produces a set 
of possible behaviors for the system; the definitions below 
describe this behavioral output. 

2.1 Qual i ta t ive Behavior 

The qualitative state over the interval between two ad­
jacent distinguished time points is defined similarly. 

De f in i t i on 5 For any parameter P, the BEHAVIOR of P is 
a sequence of states of P: 

alternating between states at distinguished time-points, and 
states on intervals between distinguished time-points. 

Recall that a system contains a set of parameters each 
with its own landmarks and distinguished time points. 

De f in i t i on 6 The DISTINGUISHED TIME-POINTS of a sys­
tem are the union of the distinguished time-points of the 
parameters. Thus the state of a system changes whenever 
the state of any parameter changes. The BEHAVIOR of a 
system is thus a sequence of system-states alternating be­
tween distinguished time-points and intervals. 

To perform comparative analysis it is necessary to ab­
stract away from specific times, since two different systems 
may have analogous behaviors, but change states at dif­
ferent times. This is where my formal treatment diverges 
from that of Kuipers. 

De f i n i t i on 7 When a system changes from one state to 
any other distinct state, it is said to TRANSITION. Tran­
sitions only occur at distinguished time-points, and every 
distinguished time point marks a transition. It will prove 
useful to be able to refer to these transitions independent of 
the time at which they occur, thus the sequence of transi-
tions for a behavior will be denoted by the set {7 , } . Every 
behavior also has a TIME FUNCTION, T, which takes tran­
sitions to the distinguished time-points when they occur. 
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T h e i n tu i t i on is tha t each 7 marks an event tha t changes 
the state of the system. W h e n compar ing two behaviors, I 
ma tch t h e m up event by event and use the t ime funct ions 
to te l l whether one system is changing faster or slower than 
the other. 

2.2 Compar ing Two Behaviors 

To compare t w o behaviors, they must be dist inguishable; I 
use the hat accent to denote the second behavior. Thus 
T denotes the t ime func t ion of the second system, and 
F(T(y1i)) denotes the second system's value of F at the 
t ime of the f i rst t rans i t ion . I assume tha t only systems w i t h 
ident ica l s t ruc tu ra l descript ions w i l l be compared. For this 
paper, space considerations necessitate the add i t iona l as­
sumpt ion t ha t behaviors be topological ly equal, as defined 
below. 

D e f i n i t i o n 8 The behaviors of two systems, S and S, are 
TOPOLOGICALLY EQUAL if they have the same sequence of 
transitions, 7 0 , . . . , yk, and forall i such that 0 < i < k, 

T h e assumpt ion of topological equal i ty rules out possi­
bi l i t ies l ike the block fa i l ing to make a complete osci l lat ion 
if its mass was increased too much, but it does al low a 
cer ta in p l iab i l i ty . I f two behaviors are topological ly equal, 
thei r respective sets of landmarks must share the same or­
d ina l relat ionships, bu t the under ly ing real values for the 
landmarks can be dif ferent. 

As shown in [6], this assumpt ion can be relaxed, but 
even w i t h i t , the prob lem is nont r iv ia l . Consider two oscil­
l a t ing spr ing-block systems. Even i f the blocks have differ­
ent mass and the spr ing constants differ, the two systems 
have topologica l ly equal behavior. Yet the relative values 
of parameters such as per iod of osci l lat ion may be dif ferent. 
Th is is wha t comparat ive analysis must determine. 

Before I can expla in the techniques for per forming dif­
ferent ia l qua l i ta t i ve analysis, I need to present a no ta t ion 
for descr ibing the desired ou tpu t . I t ' s easy to compare the 
values of parameters at t rans i t ion points: 

For example, i f the two spr ing-block systems were b o t h 
s tar ted w i t h negat ive displacement and zero veloci ty (i.e., 
X < 0 and V = 0) , the i r f i rst t rans i t ion would occur when 
X reached zero. Th i s no ta t i on allows one to express tha t 
the second block is mov ing slower at the po in t of t rans i t ion : 
V 1 . I t i s i m p o r t a n t t o d is t inguish the relat ive change no­
ta t ion f r o m statements about values and derivatives. Even 
though V1, is posi t ive, and 
qdir{ 

2.3 Compar ing Behaviors over Intervals 

I t tu rns out to be somewhat more compl icated to compare 
two behaviors over the intervals between t ransi t ions. W h a t 
does i t mean to says tha t one curve is lower than another 
over an interval? Exac t l y wha t points should be compared? 

• You can ' t compare a rb i t r a ry points on the two curves, 
because in tu i t i ve l y i t seems t ha t the curve for param-

• You can ' t use absolute t ime to l ink co r respond ing 
po in ts , because and m igh t be defined for 
t ime intervals of di f ferent lengths. 

T h e f i rst l ine of f igure 1 provides the correct i n tu i t i on : 
" I f the mass of the block increases, the force on the block 
is the same." Th is doesn't mean force is invar iant as a 
func t ion o f t i m e — t h a t isn ' t t rue. Consider the t ime when 
the smal l b lock is at its rest pos i t ion ; the spr ing applies 
no force. B u t since the large block is mov ing slower, i t 
won ' t have reached the rest posi t ion and so there w i l l be 
a force appl ied. W h a t the statement means is t ha t force 
is invar iant as a func t ion of pos i t ion. For every pos i t ion 
tha t the block occupies, force is equal in the two systems, 
even though the two blocks occupy the posit ions at differ­
ent t imes. A l t hough parameters are defined as funct ions 
of t ime, they of ten need to be compared f r o m the perspec­
t i ve of other parameters. Here i t proved advantageous to 
consider force as a func t ion of pos i t ion . A l t h o u g h people 
understand arguments tha t leave these changes of var iable 
imp l i c i t , the not ion must be made precise and exp l ic i t i f 
computers are to per fo rm comparat ive analysis. 

f 

T w o questions remain : when is i t possible to use a pa­
rameter as a perspect ive, and when is i t useful to do so. T h e 
f i rst quest ion is easy, b u t the second w i l l not be addressed 
u n t i l section 3. 
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Propos i t ion 1 It is possible to use a parameter, X, as a 
perspective over a transition interval if and only 
if the following three conditions hold: 

When these conditions hold, the parameter X is called a 
COVERING PERSPECTIVE.5 

The intuition behind this proposition is simple. It is 
only possible to construct when exists; since pa­
rameters are continuous, X must be strictly monotonic to 
guarantee invertibility. The last two conditions ensure that 

and have the same domain so that the universal 
quantification makes sense. Note the beauty of this result— 
it is computationally easy to check for covering perspec­
tives. 

2.4 Non-Uniqueness 

This section shows that parametric comparisons over inter­
vals are not unique. In other words, just because 
for a perspective X doesn't mean that there doesn't exist 
some other perspective Z such that 

Although this may seem like a disappointing weakness, 
it isn't necessarily bad. In fact, it's inevitable. After all, 
everything is relative to one's perspective. Imagine a ma­
chine which hourly logs the linearly increasing concentra­
tion of alcohol in a fermentation tank. It produces the 
following sequence of measurements: 0.02, 0.04, 0.06, 0.08, 
etc. But in the identical tank nearby, the logging machine 
has a defective motor which runs too slowly and delays the 
measurements. Although the fermentation is proceeding 
at the same pace in both tanks, the second log wil l read: 
0.03, 0.06, 0.09, 0.12, etc. Thus the plant inspector, who 
only sees the alcohol-time curve from the perspective of the 
logging device, might think that second tank was ferment­
ing more quickly even though the only real change was a 
slowdown in the speed of the timing motor. 

P ropos i t i on 2 Given a system w i t h parameters P,X,Y, 
and Z such that X, Y and Z are covering persvectives over 

then it is possible that and 

P V ( M + 1 ) ' 

The example shown in figure 2 illustrates the proof by 
construction. The thin lines indicate the values of the first 
system while the dotted lines indicate the value of the sec­
ond system. The first row shows that from the time per­
spective the behavior of P doesn't change. The second row 
shows the relative change of the perspectives. The third 

'Space considerations preclude an important generalisation of per­
spectives; see [6] for the details. 

3 Di f ferent ia l Analysis 
This section presents a representative sampling of the in­
ference rules which have been incorporated as part of CA a 
ZETALISP program which solves comparative analysis prob­
lems using the differential qualitative technique. The rules 
are presented as theorems since they have been proven 
sound [6]. As a result, CA is guaranteed to produce only 
correct answers. 

3.1 D u r a t i o n Rule 

This rule is the basis for the very powerful inference: dis­
tance equals rate times duration. If the rate is slower in 
the second simulation, then it wil l take longer to reach the 
same transition point. Although this may seem obvious, 
perspectives are required to make precise the notion of 'rate 
is slower'; this makes it subtle. Note that the parameter 
X has a double purpose in this theorem: it has V as its 
time derivative, and it is also the perspective from which 
V is seen to Furthermore, it is unnecessary to explicitly 
require X to traverse the same distance in the two systems 
because A" is a covering perspective. 

P ropos i t i on 3 T h e D u r a t i o n Ru le 
Let V and X be parameters.9 Given 
and X is a covering perspective, then 

The duration theorem is implemented as the ARK rule 
shown in figure 3. Note the close correspondence between 
the ARK form and the actual theorem statement; this en­
sures a correct implementation. 

It would be nice if one could show that the duration rule 
was sound if the premise was weakened to have for 
some arbitrary covering perspective P. Unfortunately, the 
non-uniqueness theorem shows that this is false. 

• i t may be helpful to think of V as velocity, and X as position. 
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3.3 Self-Reference and Constants 

These rules deal with establishing relative change values 
for perspectives and constants. Although simple, they are 
quite important. The intuition behind the first is that if the 
plant manager was foolish enough to try and use the logging 
devices to log their own speed, he wouldn't get a useful 
result. Both the normal and slow machines would record 
that they turned one full revolution during each revolution 
of the timing motor. 

P ropos i t ion 5 Self Reference Rule 

Frequently a system will contain a few constant param­
eters whose values never change. The following rules are 
a simple way to express relationships between constants 
in the notation of comparative analysis. The intuition is 
that since perspectives just scale time, and constants don't 
change over time, all perspectives agree on the behavior 
of constants. If there was no fermentation happening in 
either vat (i.e. the alcohol concentration was constant in 
both vats), and the concentration of alcohol was higher in 
vat two, then both logging devices would agree on this even 
though their t iming motors differed. 

7The antagonistic effect of the chain rule makes this rule by far 
the hardest to prove. I owe special thanks to Dave McAllester who 
suggested a successful approach; see [6] for the details. 

3.4 Rules f r o m Qual i ta t ive A r i t hme t i c 

Research in qualitative simulation [1,3,10,5] has developed 
constraints on derivative values for parameters in ADD, 
MULT, and monotonic function constraints. For example, 

and the derivatives of X and Y are posi­
tive, then Z must have positive derivative as well. These 
rules can be generalized to include relative change values 
at transition points and over intervals. Here, I present just 
the rule for an MULT constraint at a transition point. 

P ropos i t ion 7 M u l t i p l i c a t i o n Rule 
IfX, Y, and Z are parameters which are related by the con­
straint, Z = MULT(X,y) ; then the following table displays 
the possible relative change values for Z at a transition 
point: 

4 Evaluat ion 
To test this theory a program, CA, has been written in ZE-
TALISP on a Symbolics lisp machine. When a user selects 
an example, CA runs QSIM [5] on the example to produce 
a set of qualitative behaviors for the example. The user se­
lects a behavior and also a set of perturbations in the form 
of initial relative change values for the independent param­
eters. CA translates the QSIM behavior and perturbations 
into ARK 8 assertions. At this point ARK forward chains 
using the rules of the last section. Figure 3 shows the en­
coding of proposition 3 as an ARK rule. The simplicity of 
the transformation leads to confidence in the correctness of 
the implementation. And the fact that most rules get used 
in each explanation, establishes their utility. 

Figure 3: Propositions are Encoded into ARK Rules 

4.1 Di f ferent ia l Analysis Usual ly Works 

Since ARK maintains justifications for all its assertions, it 
is possible to generate explanations for CA's conclusions. 
Consider the spring/ block example. The system is defined 
in terms of four independent parameters: spring constant 

and velocity V and two others: 

•ARK it a 'clean' descendant of AMORD [2] implemented by 
Howie Shrobe and others. 
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Figure 4: CA Generated Explanation 

At present CA has been tested for several different per­
turbations on over a dozen examples [6J. While it has never 
produced an incorrect answer, CA doesn't always produce 
a result. 

4.2 Di f ferent ia l Analysis is Incomplete 

There are three factors that can cause differential qualita­
tive analysis to fail to predict all of the relative changes in 
a perturbed system: nonexistence of an answer, ambiguity 
resulting from the qualitative arithmetic, and the nonexis-
tence of a useful perspective. 

4.2.1 No Answer Possible 

Some questions simply don't contain enough information. 
For example: "What would happen to the period of oscil­
lation, if the mass of the block was heavier and the spring 
was more stiff?" Noone can answer this question, because 
there is no answer. The increased mass tends to increase 

the period, but the increased sping constant tends to de­
crease it. Thus the duration might increase, decrease or 
remain unchanged. 

4.2.2 A m b i g u i t y 

Since differential analysis uses the same weak qualitative 
arithmetic utilized by other forms of qualitative reasoning, 
it should not be surprising that ambiguity causes a prob­
lem here as well. Consider the spring/block system of the 
last section. Differential analysis correctly predicts that 
the block wil l take longer to reach the first transition, the 
block's rest position. But the period of oscillation requires 
four transitions: starting from a negative initial position, 
X transitions to zero, then to a positive maximum, then to 
zero, and finally to its original position. Because of ambigu­
ity in the extreme positions of X, differential analysis can 
make no prediction about duration of these last three tran­
sition intervals. Why is this? Because of the qualitative 
arithmetic, it is impossible to show that , i.e., that X 
sweeps out the same distance when the mass is increased. 
As a result, X is not known to be a covering perspective 
so the derivative and duration rules can not be used. Thus 
there is no way to determine the relative change value for 
the whole period. 

If the structural description of the spring is augmented 
with equations describing conservation of energy,9 CA can 
deduce that since potential energy is equal to force times 
distance, increasing the block's mass leaves total energy 
unchanged. This allows it to recognize X as a covering 
perspective and deduce that the duration increases for each 
of the period's four transition intervals. 

4.2.3 No Useful Perspect ive 

Other questions are even more difficult to answer: "What 
would happen to the period of oscillation if the initial dis­
placement is increased?" Since people have trouble with 
this question, it should not be surprising that differential 
analysis cannot answer the question either. In fact, the an­
swer is "period does not change", but the only way to show 
this is to solve the differential equation for an equation for 
period and notice that it is independent of amplitude. The 
difficulty is rooted in the fact that no useful perspective ex­
ists to provide a handle on the problem. There is no system 
parameter P such that . Clearly X won't work as a 
perspective, since it doesn't sweep out the same range in 
the two cases. In fact, it is easy to prove that no artifical 
perspective could satisfy the equation [6]. 

5 Related W o r k 
Despite its importance, l i t t le work has been done on com­
parative analysis. Forbus discussed differential qualitative 

9As Kuipers did to make QSIM eliminate physically impossible 
behaviors of the spring leaving'only the correct stable oscillation pre­
diction [5]. 
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analysis [3, pages 159-161], but attempted no implementa­
tion. He defined quantities q1 greater than q2 over an in­
terval, t, if for all instants in the interval, measured 
at that instant. Unfortunately, this definition has several 
problems. Since the quantification is over a single interval 
of time, it is impossible to make comparisons of systems 
whose time behavior changes as a result of a perturbation. 
Thus his attempt to formalize "distance equals rate times 
duration" in predicate calculus is useless. Rates can only 
be compared if the duration of an interval is unchanged! 

But even if the quantification was ok, Forbus' compari­
son is almost never a useful one to make. In the spring/block 
case, for example, it simply isn't the case that the heavy-
block is always moving slower than the small-block; the 
periods get out of phase. The key to solving these prob­
lems is in the use of perspectives, discussed in this paper. 
The comparison on velocity (necessary to predict that the 
period lengthens) is valid only from the perspective of po­
sition. 

Other fields of study address related problems. Engi­
neering sensitivity analysis considers quantitative answers 
to comparative analysis questions. However, sensitivity 
analysis does not generate explanations, and it could not 
solve the spring/block problem without an explicit equa­
tion for period. 

6 Conclusions and Future W o r k 

This paper has discussed the problem of comparative analy­
sis and emphasized the differential solution technique. The 
major advance over previous work is definition of interval 
comparisons using perspectives. This has allowed a fast im­
plementation of the technique, precise formalization, and a 
proof of soundness. 

But differential qualitative analysis is just one way to 
solve comparative analysis problems. Another technique 
is EXAGGERATION which solves the original spring/block 
problem with following explanation: 

u I f the mass were infinite then the block wouldn't move, 
so the period would be infinite. Thus, if you increase the 
mass by only a litt le bit, then the duration of the period 
would increase a bit as well." 

Exaggeration is a kind of asymptotic analysis—the per­
turbation is taken to the l imit to make the effect more easily 
visible. Exaggeration is common in intuitive descriptions 
of physical behavior and appears quite powerful. As the 
example shows it often results in a concise explanation. 

But exaggeration is also tricky. It works only when 
the system responds monotonically to perturbations. Fur­
thermore, it requires non-standard analysis to reason about 
infinity; it's quite easy to concoct a plausible exaggerated 
argument which is faulty. A careful formalization of the 
technique is the topic of current research. 

Perhaps the greatest liability of differential qualitative 
analysis is its incompleteness. Although exaggeration is 
likely to be incomplete as well, early results suggest that it 
wil l work in cases when differential analysis fails. A pro-

gram which uses both techniques could prove exceptionally 
powerful. 
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