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ABSTRACT

Comparative analysis answers questions about how and
why a system will react to perturbations of its parameters.
For example, comparative analysis can explain why the pe-
riod of a spring/block system would increase if the mass of
the block were larger. This paper formalizes the problem
of comparative analysis and describes a solution technique,
differential qualitative analysis; the technique only works
if the system can dynamically change perspectives when
it compares the values of parameters over intervals. This
paper shows how perspectives can be used for comparative
analysis, summarizes a soundness proof for the technique,
demonstrates incompleteness, describes a working imple-
mentation, and presents experimental results.

1 Introduction

The problem of symbolic analysis of real-world systems is
central to many problems in artificial intelligence. In or-
der to cope with a changing world one must be able to
understand its behavior. Recently, considerable empha-
sis has been put on a specific kind of analysis: qualitative
simulation[l,3,10,5,8]. Qualitative simulation seeks to pro-
duce a description of the behavior of a system over time,
often in the form of a tree of histories of the system's qual-
itatively interesting changes over time [9].

This paper discusses the problem of comparative anal-
ysis, in many ways the complement of qualitative simu-
lation. Whereas qualitative simulation takes a structural
description of a system and predicts its behavior, compar-
ative analysis takes as input this behavior and a perturba-
tion and outputs a description of how the behavior would
change as a result of the pertubation.

For example, given the structural description of a hori-
zontal, frictionless spring/block system (i.e., Hooke's law),
a qualitative simulator would say that the block would first
move one direction, stop, then reverse, etc. A description
of oscillation would be produced. Comparative analysis,
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on the other hand, should take this description of oscilla-
tion and evaluate the effects of perturbations. For exam-
ple, comparative analysis should deduce that if the mass
of the block were increased, the period of oscillation would
lengthen and explain why (figure 1). In this paper, | de-
scribe differential qualitative analysis,2 which solves com-
parative analysis problems in much the same way as 1. Just
as qualitative simulation works without explicit equations
for the value of each parameter as a function of time, dif-
ferential analysis does not need a formula for the period of
oscillation.

Since force is inversely proportional to posi-
tion, the force on the block will remain the same
when the mass is increased. But if the block is
heavier, then it won't accelerate as fast. And
if it doesn't accelerate as fast, then it will al-
ways be going slower and so will take longer to
complete a full period.®

Figure 1: Why Period Increases with Mass

1.1 Why is it Interesting?

Comparative analysis is an important component of many
artificial intelligence problems including automated design
and computer-aided instruction. Suppose a library design
for a VLSI pullup circuit has too long a rise time. If the
problem solver considers increasing the width of some wire
to decrease the rise time, it would like to know the ramifi-
cations of this modification relative to the initial behavior.
Comparative analysis provides this answer, in qualitative
terms, as is appropriate for initial design evaluation.

A key subproblem of CAl is the automatic explana-
tion of the behavior of complex systems. Most Al work
in this direction has focussed on techniques for the quali-
tative simulation of systems [7,4]. Qualitative simulation
is an important component of explanation generation, but
understanding how systems respond to changes is a useful
addition. Explanation generation is the application which
most influenced the development of differential qualitative
analysis.

2 Differential qualitative analysis was first suggested by Forbus[3,
pages 159-161]; section 5 explains the limitations of his approach.
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1.2 Perspectives

Differential qualitative analysis [3,6, pages 159-161] is a
technique for solving comparative analysis problems in the
manner of figure 1. But the differential technique is not as
simple as it appears. Consider the first line of the expla-
nation. What does it mean to say that the force on the
block is the same? Clearly the forces aren't equal at all
times; since the period is longer in the second case, there
are times when the force is zero in the first system yet pos-
itive in the second system. What's really meant is that in
every position occupied by the two blocks the force applied
by the spring is the same. In other words, the force doesn't
change from the perspective of position.

Although changes in perspective are implicit in ordi-
nary english text, they must be explicit if a machine is
going to generate the explanation. The main contribution
of this paper is to show how perspectives can be used to
reparameterize quantities in terms of other quantities be-
sides time. This does more than allow efficient reasoning;
differential analysis wouldn't work on systems such as the
spring without the ability to shift between perspectives.

2 Notation and General Results

As my formalism is based on that used by Kuipers for QSIM
[5], | start out by summarizing his definitions. All compar-
ative analysis theorems have been proven [6], but are not
included in this paper due to length restrictions.

Definition 1 A PARAMETER is a reasonable function of
time.

See [5] for the actual definition of reasonable function;
the intuition is that of continuity, continuous differentia-
bility and a finite number of critical points. Parameters
are denoted by capital letters. Thus the velocity of an ob-
ject might be described by the parameter, K, which is a
function that maps times to velocities.

Definition 2 Associated with each parameter are a set of
LANDMARK VALUES, each is a member of the parameter's
range. The landmark values always include (but aren't re-
stricted to) zero, the values of the parameter at the begin-
ning and ending times, and the values of the parameter at
each of its critical points. A time, t, is a DISTINGUISHED
TIME POINT of a parameter P if it is a boundary element
of the set of times that P(t) = p, for some landmark value

Pt-

Landmark values are those values considered to be in-
teresting to the human observer, and the times when these
values are reached are of interest too. When a parameter
becomes constant for an interval of time, then it will take on
a landmark value for infinite number of time points. This
is why the definition only considers the boundary times
distinguished.
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Definition 3 A SYSTEM is a set of parameters that are
related with a STRUCTURAL DESCRIPTION that consists of
a finite set of qualitative differential equations defined using
the following: time differentiation, addition, multiplication,
and relation by monotonic functions.

Kuipers' program, QSIM, takes a system and a set of
initial values for each of the parameters and produces a set
of possible behaviors for the system; the definitions below
describe this behavioral output.

2.1 Qualitative Behavior

Definition 4 Let py < ... < p, be the landmark values of
a paremeter P. For any time t define the value of P at 1
as:

(P, py41) i P(t) € (P pr1)
Define the direction of P at t as:
inc  if f; P{t)>0
QDIR(P, 1} =4 std i §P(t)=0
dec i EP{) <O
Define, QS(P, 1), the siate of P at i, as the par:
<QVAL(P,t), QDIR( P, t)>

QVAL{P,t) = { Py if P(t) = landmark p,

The qualitative state over the interval between two ad-
jacent distinguished time points is defined similarly.

Definition 5 For any parameter P, the BEHAVIOR of P is
a sequence of states of P:

QS(PI to).QS(P,fn, tl)s QS{P; tl)!" '|Q5(P| tn}

alternating between states at distinguished time-points, and
states on intervals between distinguished time-points.

Recall that a system contains a set of parameters each
with its own landmarks and distinguished time points.

Definition 6 The DISTINGUISHED TIME-POINTS of a sys-
tem are the union of the distinguished time-points of the
parameters. Thus the state of a system changes whenever
the state of any parameter changes. The BEHAVIOR of a
system is thus a sequence of system-states alternating be-
tween distinguished time-points and intervals.

To perform comparative analysis it is necessary to ab-
stract away from specific times, since two different systems
may have analogous behaviors, but change states at dif-
ferent times. This is where my formal treatment diverges
from that of Kuipers.

Definition 7 When a system changes from one state to
any other distinct state, it is said to TRANSITION. Tran-
sitions only occur at distinguished time-points, and every
distinguished time point marks a transition. It will prove
useful to be able to refer to these transitions independent of
the time at which they occur, thus the sequence of transi-
tions for a behavior will be denoted by the set {7,}. Every
behavior also has a TIME FUNCTION, T, which takes tran-
sitions to the distinguished time-points when they occur.



The intuition is that each 7 marks an event that changes
the state of the system. When comparing two behaviors, |
match them up event by event and use the time functions
to tell whether one system is changing faster or slower than
the other.

2.2 Comparing Two Behaviors

To compare two behaviors, they must be distinguishable; |
use the hat accent to denote the second behavior. Thus
T denotes the time function of the second system, and
F(T(y1i)
time of the first transition. | assume that only systems with

denotes the second system's value of F at the

identical structural descriptions will be compared. For this
paper, space considerations necessitate the additional as-
sumption that behaviors be topologically equal, as defined
below.

Definition 8 The behaviors of two systems, S and S, are
TOPOLOGICALLY EQUAL if they have the same sequence of
transitions, 70,..., yk, and forall i such that 0 < | < Kk

Qs(S, T(w)) = Qs(5, T(v.))
and forall i such that 0 < i< k,

QS(S9T(7n]v T('TH—I)) = QS(§, T(m)!?(?ﬁl]}

The assumption of topological equality rules out possi-
bilities like the block failing to make a complete oscillation
if its mass was increased too much, but it does allow a
certain pliability. If two behaviors are topologically equal,
their respective sets of landmarks must share the same or-
dinal relationships, but the underlying real values for the
landmarks can be different.

As shown in [6], this assumption can be relaxed, but
even with it, the problem is nontrivial. Consider two oscil-
lating spring-block systems. Even if the blocks have differ-
ent mass and the spring constants differ, the two systems
have topologically equal behavior. Yet the relative values
of parameters such as period of oscillation may be different.
This is what comparative analysis must determine.

Before | can explain the techniques for performing dif-
ferential qualitative analysis, | need to present a notation
for describing the desired output. It's easy to compare the
values of parameters at transition points:

Definition ® Given a parameter, F, and & transition -,
define the RELATIVE CHANGE of F at v, a3 follows:*

P, fIRE G > BT ()|
Fll, i [BT) = 1F(T(%))l
FY, sfIF(T() < |F(T()
4The curious reader may wonder at the use of absolute values in

this definilion. In [8], ] prove that this definition is equivalent to one
without absolute values, snd explain the advantages of this approach.

For example, if the two spring-block systems were both
started with negative displacement and zero velocity (i.e.,
X < 0 and V = 0), their first transition would occur when
X reached zero. This notation allows one to express that
the second block is moving slower at the point of transition:
v It is important to distinguish the relative change no-
tation from statements about values and derivatives. Even
though V1, QVAL{Y, T(m)) is positive, and
qdir{,V, T(m)) is atd.

2.3 Comparing Behaviors over Intervals

It turns out to be somewhat more complicated to compare
two behaviors over the intervals between transitions. What
does it mean to says that one curve is lower than another
over an interval? Exactly what points should be compared?

* You can't compare arbitrary points on the two curves,
because intuitively it seems that theﬁcurve for param-
eter P{t) =1 is lower than that of P(1) = 21 4 1, yet
there are some points of P which are higher, e.g.,
P(4) > P(1).

* You can't use absolute time to link corresponding
points, because P(t) and P(t) might be defined for
time intervals of different lengths.

The first line of figure 1 provides the correct intuition:
"1f the mass of the block increases, the force on the block
is the same." This doesn't mean force is invariant as a
function of time—that isn't true. Consider the time when
the small block is at its rest position; the spring applies
no force. But since the large block is moving slower, it
won't have reached the rest position and so there will be
a force applied. What the statement means is that force
is invariant as a function of position. For every position
that the block occupies, force is equal in the two systems,
even though the two blocks occupy the positions at differ-
ent times. Although parameters are defined as functions
of time, they often need to be compared from the perspec-
tive of other parameters. Here it proved advantageous to
consider force as a function of position. Although people
understand arguments that leave these changes of variable
implicit, the notion must be made precise and explicit if
computers are to perform comparative analysis.

Definition 10 Given a paramelers F and X, and o tran-
sition interval (i, ¥ie1), Let Fx denote F as & function of
X. Let z; = X(T (%)) and 2,41 = X(T(¥is1)). Define the
RELATIVE CHANGE of F' over (4, Yv41) from the PERSPEC-
TIVE of X as follows:

Twcfv @;«wns'frg%ﬁr(”-wﬁ@ﬂ)lJfEQ%w.ﬁe'f‘o‘fﬂ’s’l)L pa-
rametelFJ imgrsgggﬁvg,%dzwgnjf_&ﬁ(%mfﬁ Ig‘d'g’épl The
first quEJ.l-(gn.;ip dbfsV: &(ﬂh@m&ohﬁx&ﬂ)]bd b@xﬂ(&}%ssed

until section 3.
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Proposition 1 It is possible to use a parameter, X, as a
perspective over a transition interval {«i,%¥is) if and only
if the following three conditions hold:

1. QDIR(X, 7(%:), T(%n)) # otd

3 Xliys

When these conditions hold, the parameter X is called a
COVERING PERSPECTIVE.®

The intuition behind this proposition is simple. It is
only possible to construct Fx when X~ exists; since pa-
rameters are continuous, X must be strictly monotonic to
guarantee invertibility. The last two conditions ensure that
Fx and Fx have the same domain so that the universal
quantification makes sense. Note the beauty of this result—
it is computationally easy to check for covering perspec-
tives.

2.4 Non-Uniqueness

This section shows that parametric comparisons over inter-
vals are not unique. In other words, just because Pﬂa-:.-“)
for a perspective X doesn't mean that there doesn't exist
some other perspective Z such that Pﬂﬂ_“,).

Although this may seem like a disappointing weakness,
it isn't necessarily bad. In fact, it's inevitable. After all,
everything is relative to one's perspective. Imagine a ma-
chine which hourly logs the linearly increasing concentra-
tion of alcohol in a fermentation tank. It produces the
following sequence of measurements: 0.02, 0.04, 0.06, 0.08,
etc. But in the identical tank nearby, the logging machine
has a defective motor which runs too slowly and delays the
measurements. Although the fermentation is proceeding
at the same pace in both tanks, the second log will read:
0.03, 0.06, 0.09, 0.12, etc. Thus the plant inspector, who
only sees the alcohol-time curve from the perspective of the
logging device, might think that second tank was ferment-
ing more quickly even though the only real change was a
slowdown in the speed of the timing motor.

Proposition 2 Given a system with parameters P,X)Y,

and Z such that X, Y and Z are covering persyectivas over
o . Y

(73, 1), then it is possible that Pﬂ"(t,-_“n and Plj¢; .04y and

PV(M+1)'

The example shown in figure 2 illustrates the proof by
construction. The thin lines indicate the values of the first
system while the dotted lines indicate the value of the sec-
ond system. The first row shows that from the time per-
spective the behavior of P doesn't change. The second row
shows the relative change of the perspectives. The third
row depicts Py, Py and P;.

"Space considerations preclude an important generalisation of per-
spectives; see [6] for the details.
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3 Differential Analysis

This section presents a representative sampling of the in-
ference rules which have been incorporated as part of CA a
ZETALISP program which solves comparative analysis prob-
lems using the differential qualitative technique. The rules
are presented as theorems since they have been proven
sound [B6]. As a result, CA is guaranteed to produce only
correct answers.

3.1 Duration Rule

This rule is the basis for the very powerful inference: dis-
tance equals rate times duration. If the rate is slower in
the second simulation, then it will take longer to reach the
same transition point. Although this may seem obvious,
perspectives are required to make precise the notion of 'rate
is slower’; this makes it subtle. Note that the parameter
X has a double purpose in this theorem: it has V as its
time derivative, and it is also the perspective from which
V is seen tod. Furthermore, it is unnecessary to explicitly
require X to traverse the same distance in the two systems
because A" is a covering perspective.

Proposition 3 The Duration Rule

Let V and X be parameters.” Given V = J;X ' VU#_“”,
and X is a covering perspective, then 5'(1.-...;) - ‘?('n) >
T(har) = T(w), i.e. the duration of (i, ¥iq1) will increase.

The duration theorem is implemented as the ARK rule
shown in figure 3. Note the close correspondence between
the ARK form and the actual theorem statement; this en-
sures a correct implementation.

It would be nice if one could show that the duration rule
was sound if the premise was weakened to have V{L".-.““ for
some arbitrary covering perspective P. Unfortunately, the
non-uniqueness theorem shows that this is false.

+it may be helpful to think of V as velocity, and X as position.




3.2 Derivative Rule

This rule connects parameters which are time derivatives.
The intuition is; if a parameter is || at the start of an
interval, but its derivative ia {| over the interval, then the
parameter must be {} over the interval. As always, the need
for perapectives complicates the matter. Note the special
role of X both as perspective and second integrand of A.

Proposition 4 The Derivative Rule

Let A, V, and X be parameters such that A= §V, V =
£ X, and X is a covering perspective over (¥, %ig1). Fur-
thermore let A and V be positive over the interval (v, ¥ig1).
If =V, and AUL,,.). Then it is true” that VI,

Above | pointed out the special role of X both as per-
spective and second integrand of A. It is natural to ask if
the derivative rule is true for arbitrary perspectives. Un-
fortunately, it is not [6].

3.3 Self-Reference and Constants

These rules deal with establishing relative change values
for perspectives and constants. Although simple, they are
quite important. The intuition behind the first is that if the
plant manager was foolish enough to try and use the logging
devices to log their own speed, he wouldn't get a useful
result. Both the normal and slow machines would record
that they turned one full revolution during each revolution
of the timing motor.

Proposition 5 Self Reference Rule
For any pammcte; P, if P iz a covering perspective over
{1 ¥i+1) then PH(.‘.m)-

Frequently a system will contain a few constant param-
eters whose values never change. The following rules are
a simple way to express relationships between constants
in the notation of comparative analysis. The intuition is
that since perspectives just scale time, and constants don't
change over time, all perspectives agree on the behavior
of constants. If there was no fermentation happening in
either vat (i.e. the alcohol concentration was constant in
both vats), and the concentration of alcohol was higher in
vat two, then both logging devices would agree on this even
though their timing motors differed.

Proposition 8 Interval Constant Rule

If a parameter K is a constant over {7, %iy1), and K1), then
Jor all parameters P, if P ia a covering perspective over the
interval (4, Yig1), then Kfrf:iﬂ].

"The antagonistic effect of the chain rule makes this rule by far
the hardest to prove. | owe special thanks to Dave McAllester who
suggested a successful approach; see [6] for the details.

3.4 Rules from Qualitative Arithmetic

Research in qualitative simulation [1,3,10,5] has developed
constraints on derivative values for parameters in ADD,
MULT, and monotonic function constraints. For example,
if X xY = Z and the derivatives of X and Y are posi-
tive, then Z must have positive derivative as well. These
rules can be generalized to include relative change values
at transition points and over intervals. Here, | present just
the rule for an MULT constraint at a transition point.

Proposition 7 Multiplication Rule

IfX, Y, and Z are parameters which are related by the con-
straint, Z = MULT(X,y). then the following table displays
the possible relative change values for Z at a transition
point:

Y
1P | P
fhi ;. i any
X t I
b eny U, I

4 Evaluation

To test this theory a program, CA, has been written in ZE-
TALISP on a Symbolics lisp machine. When a user selects
an example, CA runs QSIM [5] on the example to produce
a set of qualitative behaviors for the example. The user se-
lects a behavior and also a set of perturbations in the form
of initial relative change values for the independent param-
eters. CA translates the QSIM behavior and perturbations
into ARK® assertions. At this point ARK forward chains
using the rules of the last section. Figure 3 shows the en-
coding of proposition 3 as an ARK rule. The simplicity of
the transformation leads to confidence in the correctness of
the implementation. And the fact that most rules get used
in each explanation, establishes their utility.

(= (and (d/dt 7x ?v) ; v is derivative
{tc v %int P¢ Tx)  ; 7c in rel. change of Tv
{oppositerc ?c Toc)) ; from perspective of 7x
(duration Tint Toc) ;if tcis{, Tocis §
DURATION-RULE} ; ?int is transition interval

Figure 3: Propositions are Encoded into ARK Rules

4.1 Differential Analysis Usually Works

Since ARK maintains justifications for all its assertions, it
is possible to generate explanations for CA's conclusions.
Consider the spring/ block example. The system is defined
in terms of four independent parameters: spring constant
K, mase M, poaition X, and velocity V and two others:

*ARK it a 'clean' descendant of AMORD [2] implemented by
Howie Shrobe and others.
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acceleration A, and force F' obeying the following equa-
tions: A = £V, V = £X, F = MULT(M,A), and
F = MULT(K, X). In addition M and K are constant.
The initial conditions are specified as follows: M(0) >
0, K(0) <0, V(0) =0, and X(0) =20 < 0.

Since energy conservation is not made explicit in the
equations, QSIM produces three passible behaviors for this
system: stable oscillation, decaying oscillation, and ex-
panding oscillation. Although comparative analysis could
be done on any of the behaviors, ] assume in this exam-
ple that the user selects the (correct) interpretation: stable
cscillation.

Assuming we are interested in the system’s behavior
when the block’s mass is increased, we must select the ini-
tial relative change values for the independent parameters:
Mg, K "0! V“Ol and X "o-

Given this information, CA correctly deduces that the
block will take longer to reach the rest position (X =
0) from its original negative stretched position. Figure 4
shows the explanation for this fact that CA generates by
throwing away all perspective information once computa-
tion is finished. I have annotated the explanation with the
names of rules used in each step.

Assuming M is increased:
X doesn’t change and
K doesn’t change and
F equals K times X

(self-reference

{interval constant)

So F doesn’t change. {multiplication}
and
M increases and {interval conatant)
F equals M times A
So A decreases. {multiplication)
So V decreases. (derivative)

So the time duration increases, (duration)

Figure 4: CA Generated Explanation

At present CA has been tested for several different per-
turbations on over a dozen examples [6J. While it has never
produced an incorrect answer, CA doesn't always produce
a result.

4.2 Differential Analysis is Incomplete

There are three factors that can cause differential qualita-
tive analysis to fail to predict all of the relative changes in
a perturbed system: nonexistence of an answer, ambiguity
resulting from the qualitative arithmetic, and the nonexis-
tence of a useful perspective.

4.2.1 No Answer Possible

Some questions simply don't contain enough information.
For example: "What would happen to the period of oscil-
lation, if the mass of the block was heavier and the spring
was more stiff?" Noone can answer this question, because
there is no answer. The increased mass tends to increase
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the period, but the increased sping constant tends to de-
crease it. Thus the duration might increase, decrease or
remain unchanged.

422 Ambiguity

Since differential analysis uses the same weak qualitative
arithmetic utilized by other forms of qualitative reasoning,
it should not be surprising that ambiguity causes a prob-
lem here as well. Consider the spring/block system of the
last section. Differential analysis correctly predicts that
the block will take longer to reach the first transition, the
block's rest position. But the period of oscillation requires
four transitions: starting from a negative initial position,
X transitions to zero, then to a positive maximum, then to
zero, and finally to its original position. Because of ambigu-
ity in the extreme positions of X, differential analysis can
make no prediction about duration of these last three tran-
sition intervals. Why is this? Because of the qualitative
arithmetic, it is impossible to show that X||,. i.e., that X
sweeps out the same distance when the mass is increased.
As a result, X is not known to be a covering perspective
so the derivative and duration rules can not be used. Thus
there is no way to determine the relative change value for
the whole period.

If the structural description of the spring is augmented
with equations describing conservation of energy,” CA can
deduce that since potential energy is equal to force times
distance, increasing the block's mass leaves total energy
unchanged. This allows it to recognize X as a covering
perspective and deduce that the duration increases for each
of the period's four transition intervals.

4.2.3 No Useful Perspective

Other questions are even more difficult to answer: "What
would happen to the period of oscillation if the initial dis-
placement is increased?" Since people have trouble with
this question, it should not be surprising that differential
analysis cannot answer the question either. In fact, the an-
swer is "period does not change", but the only way to show
this is to solve the differential equation for an equation for
period and notice that it is independent of amplitude. The
difficulty is rooted in the fact that no useful perspective ex-
ists to provide a handle on the problem. There is no system
parameter P such that V||:;'”. Clearly X won't work as a
perspective, since it doesn't sweep out the same range in
the two cases. In fact, it is easy to prove that no artifical
perspective could satisfy the equation [6].

5 Related Work

Despite its importance, little work has been done on com-
parative analysis. Forbus discussed differential qualitative

°As Kuipers did to make QSIM eliminate physically impossible
behaviors of the spring leaving'only the correct stable oscillation pre-
diction [5].



analysis [3, pages 159-161], but attempted no implementa-
tion. He defined quantities g, greater than g, over an in-
terval, t, if for all instants in the interval, gy > g3 measured
at that instant. Unfortunately, this definition has several
problems. Since the quantification is over a single interval
of time, it is impossible to make comparisons of systems
whose time behavior changes as a result of a perturbation.
Thus his attempt to formalize "distance equals rate times
duration" in predicate calculus is useless. Rates can only
be compared if the duration of an interval is unchanged!

But even if the quantification was ok, Forbus' compari-
son is almost never a useful one to make. In the spring/block
case, for example, it simply isn't the case that the heavy-
block is always moving slower than the small-block; the
periods get out of phase. The key to solving these prob-
lems is in the use of perspectives, discussed in this paper.
The comparison on velocity (necessary to predict that the
period lengthens) is valid only from the perspective of po-
sition.

Other fields of study address related problems. Engi-
neering sensitivity analysis considers quantitative answers
to comparative analysis questions. However, sensitivity
analysis does not generate explanations, and it could not
solve the spring/block problem without an explicit equa-
tion for period.

6 Conclusions and Future Work

This paper has discussed the problem of comparative analy-
sis and emphasized the differential solution technique. The
major advance over previous work is definition of interval
comparisons using perspectives. This has allowed a fast im-
plementation of the technique, precise formalization, and a
proof of soundness.

But differential qualitative analysis is just one way to
solve comparative analysis problems. Another technique
is EXAGGERATION which solves the original spring/block
problem with following explanation:

“If the mass were infinite then the block wouldn't move,
so the period would be infinite. Thus, if you increase the
mass by only a little bit, then the duration of the period
would increase a bit as well."

Exaggeration is a kind of asymptotic analysis—the per-
turbation is taken to the limit to make the effect more easily
visible. Exaggeration is common in intuitive descriptions
of physical behavior and appears quite powerful. As the
example shows it often results in a concise explanation.

But exaggeration is also tricky. It works only when
the system responds monotonically to perturbations. Fur-
thermore, it requires non-standard analysis to reason about
infinity; it's quite easy to concoct a plausible exaggerated
argument which is faulty. A careful formalization of the
technique is the topic of current research.

Perhaps the greatest liability of differential qualitative
analysis is its incompleteness. Although exaggeration is
likely to be incomplete as well, early results suggest that it
will work in cases when differential analysis fails. A pro-

gram which uses both techniques could prove exceptionally
powerful.
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