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ABSTRACT

There are a variety of factors that
affect the performance of an expert
system. This paper presents an
evaluating method focusing on the
complexity, costs and efficiency of
inference structure in a rule [/
Knowledge-source based expert system.
The performance measuring factors
proposed here, when fedback to
Knowledge engineers, can help them gain
a quantitative understanding of
reasoning performance of Knowledge
acquired at the (early) stages of
the development life cycle, and
enable them to make a numeric comparison
and a choice among several structures,
or have some refinements. This paper
also presents some application
examples of this evaluating method and
describes an evaluating facility
based on it.

| INTRODUCTION

In the last decade, expert systems
and tools for building them have been
being developed at a surprisingly
rapid rate [Waterman, 1985]. This makes
evaluation of expert system more and
more important in its development
process. As pointed out in [Gaschnig, et
al., 1983], evaluations pervade the
expert system building process and are
crucial for improving system design and
performance, but the existing techniques
for evaluating these systems are few
and primitive. Certainly many
evaluating methods used in other
software systems [Shneiderman, 1980]
could be applied to expert systems,
but an expert system is unique in the
sense that it is a Knowledge-based
system containing human expertise, and
has many distinguishing features such
as heuristic searching, reasoning, high
level representation , etc.. Therefore,
expert system should have its own
evaluating techniques.

Gaschnig and others in their paper

have presented many general
evaluating criteria concerning on what,
how, and when the evaluation should be

.performed. Our approach , on the other

hand, emphasizes the performance of

inference structure which means
complexity, costs or efficiency in the
context of this paper, i.e, the degree

of difficulty, effort, or the reasonable
time for a system with such an inference
structure to attain certain goals. As
was proposed in [Newell, 1982], there
does exist a distinct computer
system level, the Knowledge level, lying
immediately above the program level.
Accordingly, our point is that this
evaluation is performed at the Knowledge
level whereas the others for common
software systems are performed at the
program level.

J. McDermott, et al.CMcDermott, et

al., 1978] have first made an approach
and presented several exciting results
on the efficiency of certain
production system implementations
focusing on impacts of conflict set
finding strategies. The evaluating

method presented here is towards the
inference structure itself, as the
reasoning network constituted by the
intrinsic relationships of Knowledge has
a great influence on the performance of

expert system.

The application significance of this
evaluating method has been shown in
the sense that it helps Knowledge
engineers

(1) obtain a quantitative
inference performance of acquired
Knowledge. Example 1, for instance,
gives the evaluating result of an expert
system.

(2) make a numeric comparison of
performance among several structures
(normally with the same function in
problem solving). For instance, Example
2 analyzes the impacts of a
generalization strategy on the inference
performance, and Example 3 compares two
mechanisms for pattern consistency
checking.

(3)choose, refine or reorganize the

measure  of
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inference structure without the
destruction of the function to enhance
the performance of the system, and speed
up the reasoning. For instance, Example
2 indicates the effectiveness of this
generalization strategy for knowledge
refinement, and Example 3 shows that a
mechanism for pattern-consistency
checking can be improved further.

The development of this model is
motivated by our work on expert system
development environment [He, 1986], as
knowledge acquisition may be performed
after or before the selection of
supported system building tools. Also in

KMIX [Yang, et al., 1986], it is
possible to modify the control strategy
statically or dynamically. That is

why we need to make an estimation on
inference structure itself, and have a
prior probabilistic perspective of
performance in control strategy applied.

This will enable us to have an
approximate preview of performance at
early stages in the development life
cycle.

I THE NETWORK MODEL OP INFERENCE
STRUCTURE

The first stage of our evaiuating
method is to abstract the inference
structure from a collection of
kaowledge plece embodied within an
expert systens . The following network
model of inference structure is
adapted from the theory of Petrl
Netvork [(Peterson, 1981]).

An inference structuore, R, is defined
as a four-tuple, R=(S8, T, I, 0}, where
Se{s,, By,..., By} is a {finlte set of
states ; T=(t,, t,, ...,tw} I8 a finite
set of inference transitions, SN T=@; I
Iis an _input mappipg function defined as
1:8--> or T-~> : 0 is_an ogtput
mapping ;ftlnnrdefined as Q:9-->2 or
T--> . » 2 are the pover sets of
S, T respectively.

The semantices of § and T are that 8 is
the abstract specification of static
properties of knowledge; T , on the
other hand, thelr intrinsic inference
relationships. [{ each state s;in [(tg )
satisfies the property predicate F,;(s;:),
then each state 8; In O(te) satisfies
the property predicate Q,(s;).

An inference structure can be depicted
via a Zraph: a circle represents a
state, and a bar represents an inference
transition.

An inference structure satisfies the
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following properties:

YV 1,3 (Wi, I(sj)y=®(ag, O(L{2))
Y oi,) (#cty, O(ngdI=ii{s;, I(t )}
where #(x,y) s he umber of
element x in ¥, ¥ is & bag allowing the
multiple appearance of an element.

2V L T{)Iel AO(L )00 )

33 C I(mp )4 AO(n; )= )
33 CIinp)ag AO(s )40 )

{3) There exists no Inference cycle,
f.e., for any partial inference path
B, by, 8, Y ... w4 s vhere 3, e
in  O¢(s;, ) for k =1,...,n and s;, is in
0Ct3,) for ke 2,...0+1 , B: ¥ By,

Froperty 1 validates the correctness
of function ! and ©; Property 2
warrants the inltiality and
terminality of reasoning; Property 3
excludes the self-reference of Inference
transitions. This constraint is used
to prevent reasoning loops and ia
further discussed in Section I¥. The
latter two statements in Property 2
can be derived directly from Property 3
{the procf s omttted here),

In the rest of this sectlion, we
illustrate an inference structure BRc
abstracted from rules b5, 6, 7, 8 and
23, and the related parameters
specifijed in [Van Nelle, Chapter 3],
which s part of the inference structure
in CLOT [BuchanandShortliffe, 1984). The
transitlon is named in accordance with
the rule, B0 is the state to the
parameter,

Re = (8, T, 1, )

8 = {ciindef, family, Eighleed, oneet,
bldtype}

T = {t6, t6, t7, t8, t23)

{(clindef) = {t5, t6, t7, t8)

O(clindetf) = &

I(tamlly) = &

O(famlly) = (tB)

I(sigbleed) = {t23 }

O(sigbleed)={t6,t6,%7,t8}

l{ionget) = &

O(onset) = {tB}

I(bldtype) = @&

O(bldtype) ={t7,t8,t23)

I(tE) = {famlly, smigbleed)

O(tB) = (¢clindef}

J(t8) = {sigbleed, onset}
0(t6) = {clindef}

1{t7) = (wigbleed, "bldtype}
O(t?) = {clindef}

1{t8) = {sjgbleed, bldiype}
0(t8) = {clindef)

1(t23) a (bidiype)
0(t23) = {sigbleed)

Figure 1 shows the graphical
representation of Iinference astructure
Re.



Fig. 1 Inéigrence atructure Rc,

111 ESTIMATIONS OF THE PERFORMANCE
NEABURING FACTORS

The next stage c¢f our method is to

derive the z-transform performance
function of the inference structure
abstracted.

Generally, the contrel strategies

which can be applied +to inference
structure are basically data-driven,
goal-directed, and Opportuniatic
searching. During their applicatlions,
the efforts of testing, wmatching,
activating, acting, wewitching, etc. of
inference transitions have the greatest
Influence on the speed of reasoning.
Thua In our appreoach, each transitlon t
in T s designated a performance factor
p which is a measure of complexity,
costa, or efficiency, whose value and
semantics are determined depending on
the detai]l situation confronted and
required, Then the performance factor of
a partlal inference path, s t; s; t;
vae B b 8g,  18 defined as the sum
of the performance factor of all
transitions in this path, i.e., By, -
As the numaber of partlal inference
paths routed with a specific
performance factor p may be varicus
from one reasoning time to another,
N{p> wstands for its mean value.

Let

£(z) = }:’ N(p)nz’

where $(z) 1is deflned as the z~
transforn performance function of
inference structure which involves the
classical z-transform of feedback
control theory [EKatsuhlko, 1970].

G=(xtxe8 (0)ef AL(XIE )}

Let riy,x) denote the partial
inferance relation between x and ¥, 1.e.
Yy & O(x) and x & I(Y).

z=transiorm
is dus to

The derivation of the
performance function f£{z)

the propagation of the so-called
performance accumulator A The
computational process fip described as
follows.

{1) For each inference transition t in
T, designate Titp= 2"to t;, where p;
is the performance factor of | TR
designate performance accuymulator A(s)al
to every state s in G: initialize a
1ist called OPEN to be G,

(2) For any element x in OPEN, 1f A(X)
is known, then x is replaced as I(x)}
added into OPEN after the application of
propagating rules 1 and 3; 1§ A(x) 1a
unknown, but A(ri{x,y>) !s known for all
¥ in O(x), then apply propagating rules
2 and 4 to compute A(x), where the
statement *A(x) is known' means that
A{X) has been obtained.

(3) Repeat step (2) until 1{(x)=@ and
A(x) is known for all x in OPEN.

3 AL

X $OPEH

(4) f(z)=

Property 2 of R stated 1n Section 1]
holds the condlition of Ge& and OPEN4@
in (4). Property 3, however, warrants
the terwminality of computational loop
mentioned in (2 and (3).

The propagating rules used above are
listed an follows:

Propagating rule 1:
if x ise in 8 and A(Xx) is known , then
for all ¥ in 1(x}, let

Ar(x,¥)) = (1-(1-1/B)° a0
where b=i1(x)!

Propazating rule 2:
if x is 'n T, and for all ¥ in 0O(x},
A(r(y,x>} is known, then let

Alx) = 55 Alr(y,x))»Ti{x)
y& o1y

Propagating ruie 3:
It x is in T and A(X) is Kknown, then
for all ¥ in I(x), let

Alrix,y)) = A(x}

Propagating rule 4:
1f x is In 3, and for all y in O(x)
A{r{y.,x)) Ls known, then let

Ax) = 3 Alr(y.x))
40w
The computaticnal model of the
propagating rules are derived under
the probabilistic consideration. The
following shows the deduction process
0of rule 1.
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Supposing that the transitions which
can deduce the state x are t, , t3,...,
ty, d.e. T(x) = (tyl 1<(=i<=b}, then the
average probability that t; is used for
the derivation of x is

b1
q + (1-q)q +h... + {l1-q) ¢
= 1-(1- 1/b)

where q is the mean probability of
successful activation of a transition,
which is approximated as 1/b. In  the
above statement, the first item denotes
that t{ is selected first, and the
other items denote t is selected after
the unsuccessful activations of others
in I(x). Thus the ©propagating factor
used, in the rulel is weighted as 1-(1-
1/b)

The final evaluating stage s to
compute performance measuring factors
of inference structure R. Let the

result of the above computation be
f(z) = lihﬂp) z*

where N(k) & O and N{i) = 0O
Then let

for i>k.

BF = f{1)
DF = £'(1)/£(1}

where £'(1) is the differentiation of
f{z) with 2=1,

MDF = k

Here breadth factor BF is a measure of
total searching breadth to achieve
the flnal goal while reasoning; depth
factor. DF is a measure of the mean
periormance factor of partial inference
path routed while reasoning; MDF, then,
is the maximum of the performance
facters amongat such patha.

Other meaguring factors are derlved
directly from the four-tuple of
inference structure R, i.e., ITI , the
total number of inference transitione in
R ; (8!, the total number of states in
R:; Fl, where F= { x| x & 8
(I(x)=@F A O(x)403}.

As an example of the application of
this evaluating wethod, the z-transforms
performance functieon of Rc {llustrated
in Section II is

f(z) = 2,73z » 2.73z2"
thus

ITI = & 181 = & IFI = 3
BF = .47 DF = 1.6 MDF = 2
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IV SCOPE AND EXAMPLES OF THE APPLICATION

In this evaluating mod

correlated with the effort of

reasoning horizontally in matching,
selection, confliction resolution,
switching, etc., which is the most
important factor affecting the
reasoning speed of system. The greater
BF is the more effort is needed. DF
and MDF, on the other hand, are measure
of the vertically-accumulated effort
in checking, matching, activation and
action etc.. IT! and 1Si are often
associated with the size of storage.
1FI involves the number of primitive

data which need to be acquired.

Commonly, it is easily found in  most
of the knowledge-based expert systems
the track of reasoning network often
constituted via a set of rules or
knowledge sources. It is therefore
tractable to abstract inference

structure from them. Property 3 of an
inference structure stated in Section |1l
seems to be a major limitation of the
application which excludes the self-
referencing inference transitions in
the system. When such a system like
MYCIN is confronted, the additional
mechanism is needed to avoid reasoning
loops, so is the propagation process
stated in Section IlIl to prevent the
computing loops. The similar problem has
also been explored in [He&Yu, 1986], and
the solution can be the marking method
discussed in [Buchanan&Short Ilife, 1984]

or others. Another problem arises in
determining the performance factor of
transitions and the size of state,
which requires the abstraction is
performed under a fixed standard. One
of the further direction of this
approach is to explore the volume
factor of inference structure, which
has been investigated as f'(l) in our
work, but its application

significance remains to be clarified.

It should be noted that although this

method is motivated for rule or
knowledge-source based reasoning
network, Example 3 below, however, is
to evaluate two pattern-consistency
checkers, which indicates that the
inference structure is a kind of the
cognitive modeling of human
reasoning. The application scope of
this method is therefore extended
further.

The following examples show the
application significance of this

method. The performance factor of each
transition is assigned as 1, X function



is valued as z.

A. Example 1 : evaluating a geological
expert system GPE

GPE is a geologlcal prospecting system
developed at Zhe}iang University {He,
et al., 1985) with a similar structure
to PROSPECTOR. The results of evaluation
are listed as follown:

ITI = 86 IS = 120 1(Fl = 49

BF = 9.09 DF = .70 MDF = 8§
B. Example 2 : comparing two Kkinds of
inference structures

Here we apply a kind of
generalization strategles used in
knowledge learning and refinement

[Michalski, et al. 1884} to inference
structure Rgau , which resilts in
structure R, a8 depicted in Figure 2.
we cnly conslder BF and DF which have

the greatest impacts on the reasoning
speed.
BF,, = 2n(1-(1-1/2m" DR, = 1
BF,, = 3/2en(1-(1-1/n)") DF = 2
9 9

L LSy Y
-1

Fig.2 Intersnce ptructure Ru iw shown in (&), snd » kind
ot its genersl ized sturcture, Ay , is shown in 107,

Generally speaking, BF has more impact
on the reasoning speed than DF, As the
searching breadth of Rua is about 25X
less than that of Ria . If this
generalization in s’ , 85 ,...,84 is
repeated, it wi}} be diminished by about
43%, b7Tx, 68X, ... with respect to
this evaluating mocdel. Considering
the flinally-generalized structure |is
a full binary__tree iihe inference
structure with n=2 ,|Fi=2 ’ then for
this structure, w(3/4"«2™ , and for
Rya, BFs{1=-(1-2""2" )e2™ . The former ls

about 1- e/(e~1)%(3/4)" less than the
latter, where e=2,7]183.
C. Example 3 : rafining a pattern-
consistency checker

In the implementation of OPSE's high

performance pattern matching mechanism
Rete, it is necessary to make aure
that the bound variables in patterns

after matching are conslstent with the
same value. As stated in (Forgy, 19821,
Rete uses a linear checker which s
depicted in Flgure dla) via an
inference structure with four pattern
variables. We think 1t was adopted
because of 1its convenience in the
implementation. The refinement propomed
in (Zhang, et al., 1986} 18 to use
binary checking aethod which [s depicted
in Flgure 3(hb) with four pattern
variables. The former structure Iis
called Rf, and the latter, Rz. When the
number of pattern variables are n, the

evaluating restlts are listed as
follows,

For Rf{

{TI = 2(n-1) I8} = 2n IFI = n

BF 2 0.32n* DF % 0,33n NDF = n

For Rz

IT! = 2(n~1) 18] = 2n iFl = n

BF * ¢.63n*log,n
MDF % Jog,n +1

DF 2 0.500logyn

BF, DF, and MDF of Rz are only about

log,n/n percent as many as those of Rf
without the increass of IT!, IS} and
iFl., We belteve that It is wmore
efficient to use such a refined
structure for pattern consiatency
checking if rules are not allowed
to be modified or added dynamically at

running time.

ia) ) 1]

Fig. 3 Interence atructure R4 is shown in (&},
Rz is mhown In (b},

V AN EVALUATING FACILITY

EVAL is an avaluating facility
that Zives the estimation reaults of
evaloation for inference atructure
during the development of Kknowledge-

based expert system in terms of the
evaluating method described above. EVAL
is an interactive aystem developed at
Zhejiang University, and serves as a
peripheral device for-KMIX. EMNIX is a
general-purpose knowledge base system (
i.e., a tool)> which integrates and
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uniformly specifies the domain and
control knowledge. As every knowledge
entity in  KMIX is specified as a
state machine with constraints, it can
be divided into a collection of
substates, then knowledge sources

constitute the inference relationships
between those states. EVAL accepts a
collection of knowledge entities, and
abstracts an inference structure from
them, then calculates its performance

measure factors.

ACKNOWLEDGMENTS

We thank Wang Shenkang,
Xuejun, Zhangwei, Wang Weining, Tong
Xuejun, Zhang Lei, and Tongming at
the Artificial Intelligence Laboratory

Gao Ji, Cao

of Zhejiang University, and Hang
Jiangchao at the Academic Sinica, for
commenting early drafts and
providing valuable discussions.
REFERENCES

[1] D.A. Waterman, A Guide to Expert
System, (Addison-Wesley, Mass., 1985)
[2] J. Gaschnig, P. Klahr, H. Pople, E.
Shortliffe, and A. Terry, Evaluation
of expert systems issues and case

studies, in F. Hayes-Roth, D.A. Waterman
and D.B. Lenat (Eds.), Building
Expert Systems (Addision-Wesley, Mass.,
1983)., 241-280

[3] E. Shneiderman, Software Psychology
: Human Factors in Computer and
Information Science, (Winthrop, Mass.,
1980).

[41 J. McDermott, A. Newell and J.
Moore, The efficiency of certain
production system implementations, in
D. A. Waterman and F. Hayes-Roth
(Eds.),Pattern-Directed Inference
Systems (Academic Press, NY, 1978),
155-176.

[5] A. Newell, The knowledge level,
Artificial Intelligence 18 (1982) 87-
127.

[6] B. G. Buchanan, E. H. Shortliffe
(Eds.), Rule-Based Expert Systems
The MYCIN Experiments of the Stanford
Heuristic Programming Project,
(Addison-Wesley, Mass., 1984).

[7] C.L. Forgy, Rete: a fast algorithms
for the many patterns / many objects
pattern match problem, Artificial
Intelligence 19 (1982) 17-32.

REASONING

[8] He Zhijun and Yu
Selected Papers on
Intelligence, Computer
Intelligent CAD, (Al
University, China, 1986).

Ruizhao, (Eds.),

Artificial
Vision, and
Lab/ Zhejiang

[9] He Zhijun, Expert system development

environment, in [8] 1-21.

CIO] Yang Tao, He Zhijun, and Yu
Ruizhao, Knowledge modeling and the
KMIX general-purpose knowledge base
system, in C8] 44-60.

[11] He Zhijun, Gao Ji, Lu Zhiqing, and

Ru Zhiming, GPE: a geological
prospecting expert system, in the 3rd

National Conf. on Application of
microcomputer, Nanjing, China, Oct.,
1985.

[12] J.L. Peterson, Petri Net Theory and
the Modeling of Systems, (Prentice-Hall,
NJ, 1981)

[13] W. Van Melle, A domain-independent

system that aids in constructing
knowledge-based consulation programs,
STAN-CS-820, Stanford University, 1980.
[14] Zhang Wei, Yu Ruizhao, and He
Zhijun, Optimum networking in  many
patterns / many objects matching,
Technical Report, Dept. of Computer
Sci&Engr., Zhejiang University, Oct.,
1986.

[15] R.S. Michalski, J.G. Carbonell and
T.M. Mitchell (Eds.), Machine
Learning, (Tioga, CA, 1984)

[16] Katsuhiko Ogata, Modern Control
Engineering, (Prentice-Hall, NJ, 1970).



