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ABSTRACT

We formalize a mathematical approach to probabilistic
logic for zero-order logic and derive new inequalities that are
necessary and sufficient for consistent probability assignments
to propositions. We prove that a complete theory of
probabilistic logic requires the a priori assignment of 2k-1
probabilities for a system with k basic propositions. We also
show that a proposal due to Cheeseman, namely, to regard
measures of confidence in knowledge systems as expectations
that are conditioned on unknown distributions, does not work
in general. We demonstrate this by showing that several
certainty measures proposed for expert systems are not
consistent with  the derived inequalities for probabilistic
logics.

| INTRODUCTION; PROBABILISTIC LOGIC

A common practice in machine reasoning systems is the
assignment of a measure of plausibility to any statement.
Several such assignments exist and have been the subject of
experiments (Freedman and Shooman 1985; and Tong et al
1983). Some authors (Cheeseman 1985; Nilsson 1986; and
Pearl 1985) have proposed probability theory, based on a
classical Bayesian approach, for the basis of a formal theory
of plausibility assignment for knowledge systems. (For surveys
of other systems of assignment, see (Freedman 1986; Prade
1985; and Reseller 1964). Part of the problem of deriving
consistent and complete probability assignments to statements
concerns the formalization of the statistical dependencies
between statements. Another problem concerns the definition
of the correct sample space for statements.

Recently, (Nilsson 1986) has defined a sample space for
propositions that results in a fundamental method of
assignment, called probabilistic logic. Probabilistic logic is
based on classical probability theory, with the standard
operators for negation, conjunction, disjunction, and
implication. Notation for these operators are given in
PROLOG notation as:

not{A) AB A:B B:- A

Let L be a set of propositions At. A probability
function on L (a probabilistic logic function) is a map

p: L -->[0,1]
that is subject to two rules:
RI. If A is a tautology, then p{A)=].
R2. If not(A,B) is a tautology, then p{A;B} = p(A) + p(B).

A classical probability theory is a triple (S.. f.. &) of a
sample space S, a Boolean algebra of Borel sets fl, and a
measure & defined for . Since we are concerned here with a

discrete sample space, the probability theory is given by a
"probability" P that is defined on all subsets of S that satisfies

(i) KS)=1

(;i) M) = 0, where & denotes the empty set,

(iiiy (A UNION B) + (A INTERSECTION B) = F(A) +
P(B) for all A.B in S,

In order to justify the use of a probability theory in
logic, one must show that conditions (1) and (2) imply that p
has an interpretation as a classical probability on a relevant
sample space. The correct sample space recently defined by
(Nilsson 1986) is given by the following:

Definition: The Nilsson Space N(L) of a set L of propositions
is the set of all consistent assignments of truth values to the
elements of L.

For example, if L = (A, B, B:-A), then N(L) = [xl, x2, x3,
x4) where

xl = (T.T.T); 22 = (T,F.F);, x3 :» (F.T,T); x4 = (F.,F.T)

Truth value assignment is given by the truth function t,
defined by:

t(A) = 1 if A is assigned truth T;
t(A) = 0 if A is mssigned false F;

We note that in this example, the truth value of B:-A is
uniquely determined by the truth values of A and B.
Consequently, N(L) is in one-to-one correspondance with the
Nilsson space for L*= (A, B). Here, L* is an example of a
basic space associated with L.

Definition: A basic space associated with a set L of
propositions is a maximal subset L* of L, such that the
elements of L* can be assigned arbitrary truth values and then
uniquely determine the truth values of all the other elements
of L.

This implies tha cardinali f N be #i
ANy = 228 ty of N(L) can be given a5

Consequently, all basic spaces derived from a given L have
the same cardinality.

We note that in the above example, neither (A, B:-A) or
(B, B:-A) are basic sets, since in both cases, not all truth
assignments for (A, B, B:-A) are possible: (F,F) is excluded in
the first case, and (T,F) is excluded in the second case.
Moreover, the value of the third proposition cannot be
determined: (F,T) does not determine t(B) in the first case,
and (T,T) does not determine t(A) in the second case. This
implies that not every set of propositions admits a basic space.
This leads to the following:

Definition: A set of propositions L is well-formed if has a
basic space.

Given a proposition A in L, the indicator function for
A, I4(x), Is the function from' N(L) to (0,1) defined by:
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Iz{x) is the value of KA) in the amsignment x.
In our sbove example,
In(xy) = I, Iy p(xg) = 0, Iy(x,) = 0.
Definition: A Nilsson probability distribution is n clessical
probability defined on N(L).
,I:efiniuon. The induced probability of a proposition A p(A)

p(A) = P(HA) = 1)
= 5% P(t{A)=1) + 0* P(t(A) = 0)
= Ex*I (%)
=E(lp

where E is the expectation of [A in the Nilsson probability
distribution,

i INEQUALITIES FOR_PROBABILISTIC LOGIC
Properties of the indicator function are:
I Lyp(x) =I(x)* Ixx)
. Lup(x) = max(I(x}, In(x))
- Lp(x) + In(x) - Li{x) * Tp({x)
B, Laayx) = 1-L(x)
Thess properties are also seen in the induced probabilities:
Pl. p{A.B} = p{AY*P(B) + cov(A,B)
P2. p(AB)  + D(A;B) = p(A) + p(B)
P plnot(A)) = 1-p{A}
Definition: Let L* be a basic set of a well-formed set L of

propositions. The full space L* is the sot of all conjunctions
of distinct elements of L'

Any probability amsignment on L" must satisfy » set of
i ities.  Givern the two tautologies A;not{A} and
not{A,n0t(A)) we have

1 = p(A;not{A)) = p(A) + p(noH(A))

Since Aw(A B)(A.pot(B)) and (A B).(A not{B)) is the pegation
of a tautology,

p{A) = p(A,B) + p(A,00t(B)), so that
P(A,B) < min{p(A}.p(B))

By an inductive argument, we have the following inequality
comstraint For k = }. card(L'):

ClL: 0 < p{A Ay, Ay} $ min (D{A)M{Ag)...0(A ) 5 1,
This proves the theorem:
Theorem 1: Any probability nasignment on a well-formed set

L which satisfies the rules R! and R2, must alsc satisfy the
inoquality comstraint C1.

940 REASONING

I NECESSARY AND SUFFICIENT CONDITIONS FOR
T PROBABILETICIOGIC

Our main theorsm ix:

Theorem 2: A probability assignment N{L*} on L~ (that is
derived from a probability assignment of a well-formed sat L)
is consistent with rules R1 and R2, if snd only if it is the
probability induced by a uniquely defined Nilsson probability
distribution.

Our proof is based on classical linear algebraic and
geometric methods, see (Guggenheimer 1977).

The condition in Theorem 2 is necesssry since Cl is
implied by Pi-P3. For sufficiency, we have to show that
given probabilitiey for elements in 1.~ (all conjunctives), and a
set of indicator functions, there exists 3 unique induced
Nilsson probability distribution.

Let the elements of L* be indexed from 1 1o
N=card(L*). We define the vector r t0 be the vector of sl
probabilities masigned to these elements, wugmented by u "I"
In other words,

1 = (p{ey), P(ey), ..., Pley), )T

{where T deno notes vector transpose). Since N= 200d(M). 1 s
a vector in 2 ) dimensional space. Let x be the vector of
the (unknown) Nilsson distribution (in the same space), and
let H be the matrix whose values are the values of the
indicator function

by = I(x;)
where i denotes the index associated with the i-th element in
L4, and j denotes the index of the j-th element in N{L*).

From the definition of induced Nilsson probabilility (and
expectation), the matrix-vector product r = H x holds.

For example, if

L=L"=1*w=(AB), and N(L) = {xl. x2, x3, x4} = {{T.T}.
{T.F), (F,T), {F,F)) then we have

p{A) Tp(xy} [p(xg) Tn(xy) 1,(xy) L3Y
p{B) Ip(x;)  1glxy)  Ip(xg) lplxy Xy
p(A.B) IA,B(II) I‘.!(I’) ]l_a(l') IA'.(I4) Xg

| 1 i 1 1 Xy

rtiws of H corresponding to Ay, Ag.... A contain
2‘""(" ones; all other entries are zero. The last row has all
ones. In our sbove example, this i seen when we evaluate
the indicetor functions, 30

plA) i | o 0 Xy
p(B) 1 0 1 o %
plA.B) I 0 0 o x5

i U X

The zaro indicator funcnou (mll pmpnuuons assigned F) is the
column {0, 0, ...0,1)F. The last row in H implies that x; + x,
+ .4+ Ay=],

The matrix H can be reduced to the identity matrix by
clemontary matrix operations (Gaussian elimination) starting
with the row corresponding to

Ay Agyes Auﬂlﬂ.‘)

This zow iz zero exoept for ons "1". H is not singular and

consequently, x = H-r, uniquely.



We now show that 0 < x, 5 I, for vector x. All rows of
H (except the last row of H that consists of all 1's) can be
considered to represent vectors in the faces of the unit cube
{in card(L")-1 dimensional space) in the hyperplane
“J_]-l Since the coordinates of thess rows consist of caly
and the rows (considered as vectors) are linearly
mdepondom we can obtain all vertices of the unit cube by
aby linear combination of vectors. Consequently, given any
Nilsson probub:luy distribution n, the set of all matrix-vector
products {H n} is the convex hull of the all vertices of the
unit cube. This implies that the vector r is also in the convex
hull of the unit cube. Since x=H-Ir is unique, x must also be
a Nilsson probability distribution. (QED)

IV APPLICATIONS

We have shown that a complete theory of probnbnhsﬂc
logic based on N:hlon distributions requires the a priori
assignment of 25_§ probabilities for 2 system with k basic
propositions, In practice, such an assignment is possible only
for small values of k., However, we can always rely on the
following:

Corrollary: All inequalities between probabilities defined on a
woll-formed Boolean logical system are consequences of C1.

(nge examples of derived inequalities are Nilssons's inequality
1).
DL p(B:~A) + p{A)-1 < p(B) < p(B:-A)

D2, 1-p{A) £ p(B:-A) £ min(p(A), p(B)) + 1-p(A)
D3, max(p(oot(A)),p(B))sp(B:-A)smin(1,p(now(A) + p(B))
DA p(Hy| Ep, EgyerrEyheee En) € D(H,) * min(p(D; | H,).

Cheeseman (1) has proposed to regard measures of
confidence attached to statements in expert systems
("uncertainty calculi”) as expectations that are conditional
upon unknown probability distributions. We show that this
approach does not work in genmeral by reviewing some
uncertainty calculi thet have been proposed and investigated
in (Freedman 1986, Freedman and Shooman 1985; Prade 1985;
and Tong ot a1 1983).

The system of Lukasiewicz-Goguen postulates the
following measure of confidence ¢:

LGl. cof{A.B) = max (D, c{A) + ¢(B) -1)
LG2, ofB:-A) = min (1, c(B)/c(A))

Rule LG is consistent with Cl. In order to check if Rule
LG2 is also consistent with probabilistic logic, we consider it
a3 & measure of confidence for modus ponens. According to
Choeseman's approach, we interpret LG2 in the following

wiy.
o(B:-A) = E( p(B:-A) | A,n)

where o i3 some unknown probability distribution. However,
g;:m the definition of conditional probability and constraint

P(B:-A) | A;n) =p(AB | n) /A | 0)

smin( I, (B | 0) / A | ).

LG2 thea implies p{B | n) = p(A.B | ) and, by LG1, p{A
| 8} = i, which i not valid for arbitrary probablluy
Emignments, Consequently, LG2 with LG} is not consistent
with probabilistic logic.

The system of Dienes ia based on

DUL. ofA.B) = c{A)*(B)
DU2. o{B:-A) = max {1 - ¢({A), c(B))

Rule DU implies that for sey probabilistic interpretation
E (p{(A | B,n)) = E( p(A) | n)

If this is applied to a Nilsson probability, DU2 shows that
p(B:-A) = 1 - p{A) + p{B) *p(B) > 1 - p(A)

Nilssons inequality D1 shows that p(B:-A) > p{B); therefore,
DU2 is valid only if p(B) > 1 - p{A). Consequently, DU2 is
oot &n assignment (compatible with any interpretation as an
expectation) that is consistent with probabilistic logic.

The Zadeh-Godel assignment is

Z1. c(A,B) = min{c(A), «(B))
Z2. cfB:-A) = min (1, c(B)/c(A)}
Z3. clnot{A)) = 1 - ¢(A)

This assignment is compatible with the interpretation
c{A) = max p(A | n)

where the maximum ranges over all probability vectors n.
This assignment, while consistent, seems overly optimistic.
This assignment is also an example of a Dempster upper
probability {Dempsier 1967).

¥ CONCLUSIONS AND FUTURE WORK

Our theory places probabilistic logic on a8 firm
mathematical foundation. On this basis, we already have
obtained limit theorems for Dempster theory that greatly
reduce computation in Demster-Shafer theory. We are now
developing probebilistic limit theorems for Bayesinn, fuzzy,
and rule based reasoning systems.
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