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ABSTRACT I In t roduc t ion 

This paper presents results of the application to epis-
temic logic structures of the method proposed by Carnap 
for the development of logical foundations of probability 
theory. These results, which provide firm conceptual bases 
for the Dempster-Shafer calculus of evidence, are derived 
by exclusively using basic concepts from probability and 
modal logic theories, without resorting to any other theo­
retical notions or structures. 

A form of epistemic logic (equivalent in power to the 
modal system S5), is used to define a space of possible 
worlds or states of affairs. This space, called the epistemic 
universe, consists of all possible combined descriptions of 
the state of the real world and of the state of knowledge 
that certain rational agents have about it. These repre­
sentations generalize those derived by Carnap, which were 
confined exclusively to descriptions of possible states of the 
real world. 

Probabilities defined on certain classes of sets of this 
universe, representing different states of knowledge about 
the world, have the properties of the major functions of 
the Dempster-Shafer calculus of evidence: belief functions 
and mass assignments. The importance of these episte­
mic probabilities lies in their ability to represent the ef­
fect of uncertain evidence in the states of knowledge of 
rational agents. Furthermore, if an epistemic probability 
is extended to a probability function defined over subsets 
of the epistemic universe that represent true states of the 
real world, then any such extension must satisfy the well-
known interval bounds derived from the Dempster-Shafer 
theory. 

Application of this logic-based approach to problems of 
knowledge integration results in a general expression, called 
the additive combination formula, which can be applied to 
a wide variety of problems of integration of dependent and 
independent knowledge. Under assumptions of probabilis­
tic independence this formula is equivalent to Dempster's 
rule of combination. 

The research work described in this paper was sponsored by the 
U.S. Army Signal Warfare Center, under Contract DAAL02-85-C-
0082, and by the National Science Foundation, under Grant DCR-
85-13139. 

The research work presented here was motivated by the 
need to improve the understanding of issues in the analy­
sis and interpretation of evidence. In the context of this 
paper, the term evidence is used to describe the informa­
tion, usually imprecise and uncertain, that is conveyed by 
observations and measurements of real-world systems. We 
have sought to gain such an understanding by examining 
the basic concepts, structures, and ideas relevant to the 
characterization of imprecise and uncertain knowledge. 

Our approach is strongly based on Carnap's method­
ology (Carnap 1956, 1962) for the development of logical 
foundations of probability theory. In his formulation, Car­
nap developed an universe of possible worlds that encom­
passes all possible valid states of a real-world system. Infor­
mation about that system, if precise and certain, identifies 
its actual state (e.g., a detailed diagnosis of a disease). If 
imprecise but certain, this information identifies a subset 
of possible system states (e.g., a number of possible diag­
noses). If uncertain, then the information induces a pro­
bability distribution over system states (e.g., probability 
values for specific diagnoses). 

It is important to note, however, that in Carnap's char­
acterization no distinction is drawn between degrees of pre­
cision or detail when the information is uncertain. This 
representational shortcoming renders impossible the mod­
eling of information that only assigns degrees of likelihood 
values to some subsets of possible states (i.e., instead of 
prescribing those values over all such subsets that are of 
relevance to the modeler). This type of information, pro­
viding some knowledge about the underlying probability 
distributions but not all the distribution values, is quite 
common in practical applications (e.g., in a medical diag­
nosis problem, tests and existing medical knowledge indi­
cate that there is a 60% chance of liver disease but fail to 
provide any information about the likelihood of individual 
instances thereof). 

Seeking to generalize Carnap's approach to allow for 
the treatment of this type of uncertain information we di­
rected our attention to epistemic logics — a form of modal 
logics developed to deal wi th problems of representation 
and manipulation of the states of knowledge of rational 
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agents. Originally studied by Hintikka (Hintikka 1962), 
their use in artificial intelligence problems was proposed by 
Moore (Moore 1980). Recently epistemic logics have also 
been applied to the design of intelligent robots (Rosenschein 
and Kaelbling 1986). 

In our extension of the Carnapian ideas the starting 
point is a generalization of Carnap's space of possible worlds, 
or universe. This generalization, obtained by consider­
ing representations of both the state of the world and the 
knowledge of rational agents, is called the epistemic uni­
verse. Described in the next section, the epistemic universe 
contains several interesting and important subset families. 
Two of these collections have as members truth sets and 
support sets, which are related, respectively, to different on-
tological and epistemological properties of possible worlds. 
Furthermore, these families have the properties of sigma 
algebras, i.e. the basic domain of definition of probability 
functions. 

Again following Carnap's lead we define probabilities 
on these sigma algebras and consider their relationships. 
We differ from Carnap, however, in that we view evidence 
as generally providing information about the t ruth of some 
propositions while failing to give any indication about the 
truth of others. Evidence is further regarded as a poten­
tial modifier of our state of knowledge; accordingly, uncer­
tain evidence is represented as a conventional1 probability 
function defined on the algebra of epistemic sets. This 
probability is then shown to have the structure of the ba­
sic functions of the Dempster-Shafer calculus of evidence 
(Dempster 1967, Shafer 1976). Furthermore, if such an 
epistemic probability is extended to the sigma algebra of 
the t ruth sets (representing probabilities of the t ruth of 
propositions that describe the world), then the extension 
must satisfy the bounds of the Dempster-Shafer theory. 
These bounds correspond to the well-known concepts of 
lower and upper probability functions and, in this partic­
ular regard, our results are in agreement wi th the char­
acterization made by Suppes (Suppes 1974) of the role of 
uncertain information in determining the probability dis­
tr ibution values that underlie rational choices in decision 
problems. 

Our approach is also related in several ways to the prob­
abilistic logic approach of Nilsson (Nilsson 1986) — the 
major differences being in the use of epistemic concepts 
and the derivation of global conditions for probability ex­
tension, in contrast to formulas derived from interval pro­
bability theory or from approximate-estimation techniques. 

In addition, this work has similarities wi th that of Halpern 
and McAllester (Halpern and McAllester 1984) — the dis­
similarities in this case being in the methods used to model 
uncertainty. It is important to note, however, that Halpern 
and McAllester represent likelihood formally as the proba-

1Thia function, satisfying the axioms of probability theory, is de­
fined unambiguously on the sigma algebra of epistemic sets. 

bility of knowledge (in the epistemic-logic sense) of prepo-
sitional t ru th , using an interpretation that is similar to ours 
in several significant respects. 

Section 4 deals wi th the problems associated with the 
combination of the knowledge of several mutually trusting 
agents. Under assumptions that guarantee that the inte­
grated knowledge is solely the logical consequence of the 
states of knowledge of the agents, several results are pre­
sented, including a general formula for knowledge combi­
nation. This additive combination formula may be applied 
to several knowledge integration problems involving either 
dependent or independent evidential bodies. For the latter 
case, the corresponding result generalizes the Dempster's 
rule of combination. 

It is important to emphasize that the results of Sec­
tions 3 and 4, identifying the Dempster-Shafer calculus 
of evidence with the probability calculus in the epistemic 
universe, were derived by the direct application of conven­
tional probability theory concepts without having to intro­
duce other multivalued logic notions. The insight gained 
by using an epistemic model as the basic foundation of the 
Dempster-Shafer calculus of evidence has made possible 
the extension of this evidential formalism by the incorpo-
ration of new formulas for combining dependent evidence 
and for utilizing conditional knowledge. 

In the exposition that follows, we have not included 
the proofs of any of the theoretical results obtained in the 
research being discussed, as such extensive discussion is 
well outside the scope of this paper. The reader interested 
in the actual details wi l l find them discussed in a related 
work (Ruspini 1986a). 

I I The Epistemic Universe 

A. The Carnapian Universe 

Carnap's logical approach to probability starts with the 
construction of a space of possible worlds that encompasses 
all valid states of a system of interest. First, all proposi­
tions (actually instantiated first-order-logic predicates in 
Carnap's formulation) of relevance to the system 

are considered. Al l possible conjunctions of the type 

where every proposition appears only once either as itself or 
as its negation, are then considered. After discarding log­
ical impossibilities, the resulting set of logical expressions 
includes all possible system states that may be represented 
using the propositions p, q,.... 

Each such state corresponds to the t ruth of an atomic 
proposition about the system in question. These atomic 
propositions are equivalent to the elementary events in­
troduced in most treatments of basic probability theory. 
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Obviously, by construction, only one such proposition can 
truly describe the state of the world. The space of atomic 
propositions, or universe, is therefore a collection of all 
possible alternative states of the system. 

Possible worlds can also be regarded as functions that 
map each relevant proposition into its truth-value (i.e. t r ue 
or false) or, alternatively, as subsets of true propositions 
(i.e., those mapped into the t r ue truth-value). If a possi­
ble world is viewed through a "conceptual microscope" as 
illustrated in Figure 1, it can be seen to contain all true 
propositions in that world, including the negations of those 
that are false. Two possible worlds wi l l always be different 
since at least one proposition which is true in one of them 
wil l be false in the other. 

Figure 1: The Carnapian Universe Under the Microscope. 

The space of possible worlds (considered as a proba­
bilistic space) is the basic structure used by Carnap to 
relate the values of probability functions of subsets associ­
ated with relevant propositions on the basis of the logical 
relationships between those propositions. 

B. Epistemic Considerations 

Carnap's logical approach, while enabling a clearer un­
derstanding of the relations between logical and probabilis­
tic concepts, suffers from a major handicap: it assumes that 
observations of the real world always determine unambigu­
ously probability values for every subset in the universe. 
This assumption leads inevitably to problems associated 
wi th the need to define probability values when the under­
lying information is not rich enough to furnish them. 

If, for example, we have certain (i.e., sure) information 

that a guest to a party we are hosting is fond of French 
wine, we would ordinarily consider, in a nonprobabilis-
tic setting, that this information constrains our spectrum 
of beverage choices (assuming, of course, that we aim to 
please our guest and are able to do so) without identify­
ing what particular label or vintage he is likely to prefer. 
If, instead of being sure, our informant is uncertain and 
believes there is an chance that our caller wi l l like 
French wine and a chance that he wil l opt for beer, it 
is unreasonable (simply because uncertainty has now en­
tered the picture) to assume that this information can be 
used to assign probabilities for particular choices of wine 
or beer when before, in a world of certainty, we regarded 
similar information as being only capable of identifying a 
subset of possibilities. 

These considerations have led to the development of 
schemes to represent uncertain information as constraints 
on the values of valid probability distributions. Interval 
probability theories (Williams 1976), of which the Dempster-
Shafer calculus is a particular case, are important examples 
of this technique. 

The approach we have followed here, however, proceds 
from a different logical foundation. Starting from the no­
tion that certain information improves our knowledge by 
reducing the scope of possible valid states, it considers that 
uncertain information is associated with a probability func­
tion defined on some subsets (actually a sigma algebra) of 
the universe, rather than on tvtry subset of the universe. 
While in the case of certain information we say that we 
know that the system state is in a subset of possible states, 
in the case of uncertain information we similarly affirm, 
with some degree of likelihood, that that state is in in a 
certain region of the universe. The corresponding proba­
bil ity values constrain the values of other probability func­
tions defined over richer subset collections (i.e., probability 
extensions). 

To identify a model that constitutes the basis for defin­
ing probabilities that take values over epistemic structures, 
we must look at abstract formalisms that allow proper 
differentiation between states of the world and states of 
knowledge. This framework is provided by epistemic log­
ics. 

C. Epistemic Logics and Epistemic Universes 

The starting point for our generalization of the Car-
napian universe is again a collection of propositions about 
the real world, denoted by p, q, r, s , . . . . We consider, in ad­
dit ion, more complex propositions obtained therefrom by 
negation, conjunction, and disjunction.2 The resulting set 
of propositions is called a frame of discernment. Each of 
its members, describing a state of the world, is called an 
objective proposition or objective sentence. 

In addition to objective sentences, we shall also deal 
3 We also consider the material implication —► defined, as usual, in 

terms of the negation and disjunction operations. 
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with propositions that represent states of knowledge about 
the real world. When only one rational agent is concerned, 
the simplest of these epistemic propositions are denoted 
by representing knowledge of their corre-
sponding objective counterparts. We shall also consider ex­
pressions formed by combination of epistemic and objective 
propositions through disjunction, conjunction, implication, 
and negation, as in the examples 
The set of all such propositions, which encompasses the 
frame of discernment as a subset, is called the sentence 
space, denoted by 5. 

The next step in constructing an extension of the Car-
napian universe is the generation of all possible states by 
the assignment of truth-values to propositions in the sen­
tence space. In addition to compliance with the axioms of 
ordinary propositional logic, we shall also need the follow­
ing axioms, which supply the unary operator K with the 
required epistemilogical semantics: 

This system is equivalent to the modal logic system S5 
(Hughes and Creswell 1968). 

The space of possible worlds generated on the basis of 
the above schemata is called the epistemic universe and 
is denoted by When seen through our imaginary 
conceptual microscope, as shown in Figure 2, each pos­
sible world includes, as before, all objective propositions 
that are true in that world. Each possible world, however, 
includes also all true epistemic propositions representing 
knowledge of the t ruth or falsehood of 
propositions and, in addition, propositions describing ig­
norance regarding the t ruth or falsehood of certain propo­
sitions 

It is important to note that, in the epistemic universe, 
possible worlds may share the same set of true objective 
propositions, even though the states of knowledge (i.e., true 
epistemic propositions) wi l l be different in each case. 

In the remainder of this work we wi l l require to employ 
two important relations. 

The first, called logical implication and denoted by =>, 
holds between propositions in sentence space. This rela­
t ion, well known in modal logic, is used to indicate the fact 
that in any possible world the t ru th of some proposition 
implies that of another. In other words, if then it is 
logically impossible for q to be false if p is true. 

Figure 2: The Epistemic Universe Under the Microscope. 

The second relation, called the accessibility relation and 
denoted by ~, holds between possible worlds in the episte­
mic universe. Two possible worlds are related through the 
accessibility relation if the same epistemic propositions are 
true in both worlds.8 Clearly, such world pairs cannnot be 
discriminated on the basis of the information (i.e. knowl­
edge) available in each of them. 

D. Special Sets in the Epistemic Universe 

Several subsets of the epistemic universe are of impor­
tance in the definition of probability functions that ade­
quately represent the effects of uncertain evidence in knowl­
edge states. 

The subset of all possible worlds where an objective 
proposition p is known to be true, i.e. in which the episte­
mic sentence Kp is true, is called the support set of p and 
is denoted by k(p). 

The epistemic set for an objective proposition p is the 
set of all possible worlds in which p is the most specific 
proposition that is known to be true (i.e., p is the conjunc­
tion of all objective propositions q such that Kg is true). 
The epistemic set e(p) consists of possible worlds where 
Kq is true if and only if q is logically implied by p, i.e., 

PairB of possible worlds in the same epistemic set 
are always related by the accessibility relation ~. 

Epistemic sets and support sets are related by the set 

3 As characterised here, this relation is identical to the accessibility 
relation of modal logic only in the case of systems such as S5, where 
the accessibility relation is assumed to have the properties of a classical 
equivalence relation. 
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equation 

which is of essential importance to establish the relation­
ship between epistemic constructs and the Dempster-Shafer 
calculus. Epistemic sets corresponding to different propo­
sitions (i.e., those that are not logically equivalent — de­
noted simply by ^ in this work) are disjoint — the above 
expression, therefore, represents the disjoint partit ion of 
support sets in terms of epistemic sets. Furthermore it can 
be proved that 

Finally, truth sets are important subsets of the episte­
mic universe that are directly related to the t ruth of ob­
jective, rather than epistemic, propositions. The t ruth set 
t(p) for an objective proposition p is the collection of all 
possible worlds where the prposition p is true. 

Since p is true in a possible world Ml whenever Kp is 
true in W, then it follows that the support set k(p) is a 
subset of the truth set t(p). It is also true that k(p) is the 
largest support set contained in t (p) . 4 

The inclusion relations between t ru th , support and epis­
temic sets are graphically illustrated in Figure 3. This 
figure shows the t ruth set t(p) for a proposition p; its cor­
responding support set k(p); and the epistemic sets for 
several propositions which imply p (including the episte­
mic set for p itself). As noted before, epistemic sets e(q) 
for propositions q that do not imply p are disjoint from the 
support set k(p) and intersect the complement t(p) of the 
truth-set t(p). 

I l l Epistemic Probabi l i t ies 

A. Sigma Algebras 

The collections of subsets defined in the previous sec­
tion are of particular importance in a number of respects. 

First, epistemic and support sets have a clear epistemo-
logical interpretation as representations of similar states of 
certain (i.e., sure) knowledge. Furthermore, the effect of 
uncertain information on states of knowledge can be rep­
resented by probability values assigned to these sets. 

Truth sets, on the other hand, represent states of the 
world that share some ontological property. Probability 
values assigned to these sets represent the likelihood of 
certain events in the real world — namely, the t ruth of the 
proposition associated wi th the t ru th set. Because of the 
relations between knowledge and t ruth embodied in the ax­
iom schema (E ) , these probability values can be expected 

4Furthermore, use of the negative introspective axiom (E5) showe 
that that k(p) is the largest union of epistemic sets that is contained 
in t[p). This axiom, however, is not required to prove any of the other 
results discussed in this work. 

to bear some relation, however, to probability values over 
support and epistemic sets. This relationship is discussed 
below. 

Truth sets, on one hand, and epistemic and support 
sets, on the other, generate (by union, intersection, and 
complementation) sigma algebras of the epistemic universe, 
called the truth algebra and the epistemic algebra, respec­
tively. Sigma algebras5 are the proper domain of definition 
for probability functions. This fact has often been ignored 
in the past when, usually for the sake of simplicity, proba-
bilities have been assumed to be defined on every subset of 
some space. Consideration of the proper domain of defini­
tion for probabilities is, however, a most important issue in 
probability theory (e.g., when relating joint and marginal 
distributions). 

B. Probabilities, Supports and Masses 

A probability function defined over the sigma algebra 
of support and epistemic sets is called an epistemic pro­
bability. Epistemic probabilities represent the effect of un­
certain evidence on a rationl agent's state of knowledge. 
This effect can always be represented without ambiguity 
as the result of either previous experience or rational con­
siderations. Under conditions of perfect probabilistic in­
formation (in conventional approaches this is assumed to 
be always available) the corresponding probability is de­
fined for each atomic proposition. At the opposite end, the 
vacuous epistemic probability function assigns a probabi­
lity of 1 to the epistemic set e(U) and a probability of 0 to 
every other subset (i.e., the evidence does not convey any 
information). 

Two functions, both defined in the frame of discern­
ment, can be associated in a natural manner with an epis­
temic probability. 

The first of these, called a mass function and denoted 
by m, is defined by the expression 

i.e., as the probability of the epistemic set associated with 
the objective proposition p. 

The second function is called the support function and 
is denoted by 5. It is defined by the expression 

Support functions and mass functions are related by 
the equation 

which is valid for every objective proposition p in the frame 
of discernment. From this basic equation, by using re-
sults from combinatorial theory (Hall 1986), it is possible 

6Sigma algebras are families of subsets that are closed under the set-
theoretic operations of complementation, countable union, and count-
able intersection. 
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Figure 3: Relations Between Epistemic, Support, and Truth Sets. 

to show that S and m are belief and mass functions, re­
spectively, in the sense of Shafer (Shafer 1976). 

In particular, it may be seen that m is expressed in 
terms of values of the support function S by the equation 

where \p -■ q\ is the number of different (i.e., not logically 
equivalent) propositions r such that and where 
the sum is over all propositions q that imply p. 

Furthermore, the following inequality, utilized by Sha­
fer as an axiom for belief functions, can be derived as a 
necessary and sufficient condition characterizing support 
functions: 

where | / | is the cardinality of the index subset J. 

It is important to emphasize that the epistemic proba­
bility P associated wi th mass and support functions is a 
conventional probability defined on the epistemic algebra 
of the epistemic universe. 

C. Lower and Upper Probabilities 

Since both t ruth sets and epistemic sets are subsets of 
the epistemic universe, it is reasonable to ask what kind of 
relations exists between the probability values of members 
of either class. Answers to this question are obtained by 
considering the problems associated with the extension of 
an epistemic probability to a probability function defined 
over the t ru th algebra. 

The problem of probability extension has received a 
great deal of attention in probability theory (see, for ex­

ample, Neveu, 1964). The standard procedure for its solu­
tion is to define lower and upper probabilities for sets not 
included in the domain of definition (i.e., sigma algebra) of 
the probability function being extended. 

The lower probability of a set X is the probability of 
the largest subset6 of the sigma algebra (i.e., where the 
probability is actually defined) contained in X. Similarly, 
the upper probability of X is the probability of the smallest 
measurable subset that contains X. 

If P. and P* denote the lower and upper probability 
functions, respectively, then well-known results of probabi­
lity theory state that probability extensions P always exist 
and that the value P(X) satisfies the inequality constraints 

In addition, the bounds provided by P. and P. may always 
be attained by some extension and are therefore the best 
possible. 

If these basic theoretical results are applied to the epis-
temic universe, it can be seen that the value of 
any epistemic probability extension P on the t ru th set t(p) 
must satisfy the inequality 

where PI is the plausibility function of Shafer, defined by 

These basic results confirms the validity of the well-
known interval bounds of the Dempster-Shafer calculus. 

6 More correctly, this value is equal to the probability of any maxi­
mal measurable subsets contained in the set X under consideration. 
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Furthermore, lower and upper probabilities provide a gen­
eral methodology to assess the impact of evidence upon 
understanding of the real-world state. The basic approach, 
according to these results, consists of representing knowl­
edge as probabilities in an appropriate epistemic algebra, 
followed by estimation of the values of the lower and upper 
probabilities of t ru th sets. 

IV Combinat ion o f Knowledge 

This section briefly describes the results of investiga­
tions concerning the combination of the uncertain knowl­
edge of several rational agents. For the sake of simplicity 
the results presented here are confined to problems involv­
ing the combination of the knowledge of two agents (Ex­
tensions to an arbitrary number of agents being straight-
forward). 

Each of these two agents is assumed to have obtained 
information about the state of the world through observa­
tion devices that may possibly be dependent or correlated 
to some degree. 

Construction of the epistemic universe that includes 
both the possible states of knowledge of the two agents, 
as well as the results of their integration requires the intro­
duction of three unary operators: and '. , representing 
the knowledge of each agent, and the unsubscripted oper­
ator K, describing results of knowledge combination. It 
is assumed that neither agent has information about the 
extent or nature of the information available to the other 
(i.e., propositions such as K 1 K 2 p are always false), and 
that each agent's domain of knowledge (i.e., the sentence 
spaces and and their related frames of discernment) 
may be different. 

Since the operator K describes the results of integrating 
the knowledge of two agents, it is necessary to introduce an 
axiom that assures that the combined knowledge is solely 
a function of the states of knowledge being fused: 

( C K 1 ) The proposition Kp is true if and only if there exist 
propositions and such that \ and are 

The epistemic universe constructed wi th this augmented 
framework is called a logical product universe. In this uni­
verse it is possible, as before, to define epistemic, support, 
and t ru th sets. However, since three epistemic operators 
are involved, these sets must be distinguished by subscripts 
that identify the respective knowledge sources. 

denote the epistemic sets for the 
proposition p that are associated wi th the epistemic oper­
ators K , K 1 , and K 3 , respectively, then the basic set equa­
tion that relates these sets is 

where the union is over propositions p1 and p2 (in the re­
spective domains of knowledge of _/ such that 
the conjunction is logically equivalent to p. 

If P is an epistemic probability in the logical universe,7 

the above set equation may be combined with basic proba­
bil i ty results relating marginal and joint probability dis­
tributions to derive the following general expression for 
knowledge combination, called the additive combination 
formula: 

where K is a constant that makes 

Under assumptions of independence of the (marginal) 
epistemic algebras for K1 and K2, the above formula be­
comes a generalization of the Dempster's rule of combina­
tion 

Simple cases of combination of dependent evidence, such 
as those governed by compatibility relations, may also be 
derived directly from the additive combination formula, as 
we have discussed elsewhere (Ruspini 1986a). 

In more general cases, the corresponding expressions 
must combine the knowledge of the two agents (expressed 
by the additive combination formula) wi th knowledge about 
the dependence relations between the two evidential bod­
ies. The latter information is typically modeled as proba­
bilities defined on a subalgebra of the epistemic algebra. 

V Conclusion 

This paper has presented results that closely relate pro­
bability functions in epistemic universes to the concepts 
and constructs of the Dempster-Shafer calculus of evidence. 
The epistemic structures presented above also furnish im­
portant insight that is very useful to enhance the calculus 
of evidence by the development of expressions that allow 
for different types of dependent evidence to be combined. 
These expressions are the current object of our investiga­
tions, which focus particularly on the problems of combin­
ing multiple evidential bodies that share common informa­
tion. 

In addition, we are also concerned wi th problems re-
lated to the use of conditional evidence (i.e., evidence that 
is valid only when some proposition is true). This research 
expands upon and enhances our previous results in this 
area (Ruspini 1986b). 

Our long term objectives include the treatment of prob­
lems involving combination of the knowledge of multiple 
agents that are aware, to different extents, of the informa­
tion available to one another. The corresponding issues are 

7 More precisely, this if the case if P if defined in the richer product 
epistemic algebra generated by the intersection! 
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of central importance in the design of distributed artificial 
intelligence systems with planning and counterplanning ca­
pabilities. 
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