
Dominance and Subsumption in Constraint-Posting Planning

Michae l P. Wel lman 1

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

Abs t rac t
By integrating a dominance prover into the plan
search process, the traditional constraint-posting
planning paradigm can be generalised to permit par­
tially satisfiable goals. In this approach, the view of
planning as theorem proving is retained, although the
emphasis is on proving theorems about dominance
relations on classes of candidate plans. Plan classes
are generated by posting constraints at various lev­
els of abstraction, then classified within a plan lat­
tice that manages inheritance of properties and dom­
inance characteristics. An analysis of TWEAK demon­
strates how to recast existing planning ideas in this
framework, providing insight into the planner's capa-
bilities with a dominance-proving interpretation. The
plan lattice representation highlights the role of plan
subsumption in optimizing search.

I . Introduct ion
One glaring l imitat ion of the traditional AI robot plan­
ning paradigm is its view of goals as logical predicates on
world states. Such a view precludes the consideration of
uncertainty except in rare cases where either uncertainty
is adequately captured in tolerances or execution moni­
toring wi th replanning is viable. Even in the absence of
uncertainty, planning to satisfy goal predicates provides
no mechanism to choose among the plans that achieve the
goal nor any guidance about what to do when no such
plan exists. The literature has offered ad hoc solutions to
overcome some of these limitations in specific cases, for ex­
ample, simple resource allocation mechanisms or domain-
specific meta-planning rules.

Alternate views, such as Bayesian decision theory, of­
fer more comprehensive choice criteria but do not address
the planning task of constructing strategies from more
primitive actions.

In this paper I describe a formal framework for plan­
ning that permits the broader range of choice criteria nec­
essary in an environment of partially satisfiable goals wi th
multiple objectives. At the same time it can incorporate
many of the principles, representations, and techniques of
existing research on planning. Central to the framework is

1 Supported by National Institutes of Health Grant No.
R01 LM04493 from the National Library of Medicine.

the notion of planning as the derivation and propagation
of dominance relations among classes of candidate plans.

Definitions and explanations of the structures consti­
tut ing the planning framework are provided in the sec­
tions below. The theoretical apparatus is illustrated with
an investigation of TWEAK, a nonlinear constraint-posting
planner [Chapman, 1985a]. Although TWEAK is defined in
terms of logical goal predicates, an interpretation in terms
of the dominance relation provides insight into its capabil­
ities and efficiency. An analysis of TWEAK's search proce-
dure highlights the role of plan subsumption computations
in this approach to planning.

I I . The Plan Lattice
Let C be the planning language, or equivalently, the set
of all syntactically valid plans. For example, if A -
{ a i , . . . , a n } is an alphabet of primitive actions, then
L = A* is the language of linear plans. The language
of nonlinear plans is similar, extended by an encoding for
partial orders. A plan class is any set of plans, P C l.
P is also called a partial plan when it represents a set of
constraints that incompletely specifies the plan we are con­
cerned about.

We can view the planning process as one of incre-
mentally adding constraints to candidate plan classes unti l
some problem is solved regarding the plan to be executed.
In traditional planning the problem is to identify a plan
that satisfies the given goal. Wi th a more versatile evalu­
ation criterion, the problem is to find the best plan. Ex­
cept for some special cases where convenient optimization
techniques are applicable, it is not possible to determine
whether a given plan is optimal by examining it in iso­
lation. It may be more reasonable to answer questions
about the optimal plan without necessarily constructing a
complete description.

The partial plans generated during the planning pro­
cess can be organized in a specialization lattice according
to the subset relation. An example of a plan specialization
lattice appears in Figure 1. The node in the graph marked
uA*a1A*" denotes the set of all plans with at least one
instance of action a t . The set of plans beginning w i th a1

forms a subclass, as does the set of plans where a1 is fol­
lowed by a2 .

The plan lattice representation of a search space

884 REASONING

supports a constraint-posting approach to planning. A
constraint-potting planner, illustrated best by MOL-
GEN [Stefik, 1981], can be more efficient than a planner
that evaluates only complete plans. Flexibility is gained
by allowing many forms of constraints rather than, for in­
stance, just adding actions to a sequence or specifying ex­
act bindings for variables. However, these advantages de­
pend on having some justification for the constraints based
on properties of the partial plan. For example, MOLGEN
knows that for a screen operation to be useful, it must se­
lect the appropriate bacteria. Thus, when adding a screen
step to a plan, MOLGEN is justified in posting a constraint
of the form (resists antibiotic-1 bacterium-4); constrain­
ing the antibiotic to a particular chemical agent would be
unjustifiably specific at this stage.

By adding only the constraints that have the best jus­
tifications, a planner implements a least commitment strat­
egy. An extreme form of least commitment propagates
only provable properties of admissible plans. In practice,
however, real planners, like MOLGEN, have to make guesses
when no provable constraints are available. The least com­
mitment heuristic tends to minimize both the likelihood of
wrong guesses and the extent of backtracking required to
recover from such mistakes. A policy of working on plan
classes at high levels of abstraction is simply a particu­
lar form of least commitment strategy. Because it avoids
backtracking, a search procedure that preserves the entire
lattice of partial plans corresponds to "no commitment"
planning.

I I I . Dominance in the Plan
Lattice

To speak meaningfully of dominance among plan classes,
we need to introduce a preference relation, over plans.
In categorical planning, for example, one plan is preferred
to another if it achieves the goal and the other does not.
To state this in terms of the situation calculus [McCarthy
and Hayes, 1969], we write:

(1)

G is the goal predicate, defined on situations resulting from
the robot performing a plan in a given situation. Here a,

denotes the init ial situation. Two plans that both achieve
or do not achieve the goal are equally preferred, or indif­
ferent, denoted 1 The expression means that

is preferred or indifferent to
The preference relation characterises the choice cri­

terion employed by the planner. A planner based on ex­
pected ut i l i ty takes

(2)

The discussion of dominance that follows does not depend
on any particular criterion for plan choice. Although we
assume that is a total order on plans, we do not insist
that the planner be given a complete or even an explicit
description of the preference relation.

We say that a class of plans dominates another if, for
any plan in the second class, some plan in the first class is
preferred or indifferent. It should be emphasised that it is
possible to prove dominance without identifying the supe­
rior plan—otherwise this approach provides no advantage
over branch-and-bound search. The dominance relation,
D, is defined as follows:

(3)

The strict version of dominance, D' is defined similarly,
except that here a particular plan in the first class is pre­
ferred to any in the second.2

(4)

Clearly, strict dominance implies dominance. In addition,
the properties below follow easily from the definitions:

D is reflexive, transitive, and complete. (5)

D' is anti-reflexive, transitive, and asymmetric. (6)

(7)

(8)

(9)

(10)

(")
These properties serve as dominance propagation

rules within the plan lattice. By (8) and the transitivity
of Dy dominance by a particular class is inherited in the
plan lattice. Strict dominance is also inherited, by (11)
and weak dominance inheritance. Thus, markers or links
indicating dominance relations need be stored only at the
upper envelope of classes to which they apply. Dominance

sThis difference is required because of the possibility of infinite
plan classes with no maximal elements. If (4) were exactly a strict
version of (3), then such a class would strictly dominate itself. For the
same reason, a definition of weak dominance that merely substituted

in (4) would not entail the reflexive property. Assuming
every plan class has a maximal plan is unreasonable, even if it is
appropriate to require that t does.

Wellman 885

is propagated upwards in the lattice by application of the
union properties (9 and 10), which also hold for D'.

A plan class is restricted by asserting that it is weakly
dominated by one of its subsets. In the MOLGEN exam­
ple given above, if is the class of plans that include the
screen operation, and is the subclass that includes the
resists relation as well, then asserts that (re­
sists antibiotic-1 bacterium-4) is a valid constraint. The
new dominance assertion represents progress because it
lets us focus our attention on a smaller set of plans. Thus,
deriving these restrictions is an important task of the dom­
inance prover.

Constraints might be posted to explore the search
space even though the dominance relation does not prov-
ably hold. Often, such constraints are justified by identi­
fiable assumptions that imply dominance. We can express
this case by asserting the conditional dominance relation,

for S an assumption proposition

(12)

Normal dominance is just d t r u e . As an example
of conditional dominance, suppose that we are uncertain
about the identity of the organism of interest; it could be
either bacterium-£ or bacterium-S. For i = 2 and 3 let s
be the proposition "Bacterium-i is the organism of inter­
est" and the plan class that restricts p1 to those plans in
which the resists relation holds between antibiotic-1 and
bactcrium-i. Then we have , and

By the definition of conditional dominance (12),
w e g e t A p p l i c a t i o n o f (10) yields the
result

Of particular value are conditional dominance rela­
tions where S itself contains dominance assertions. For
example, if asserts that
given the optimal plan is in ?\ we can further confine at­
tention to This is one way to derive the restrictions
mentioned above. In fact, this is precisely the strategy
employed by both Pednault [Pednault, 1985] and Chap­
man [Chapman, 1985b) to l imit the search space of their
planners. We wi l l see how this works for the latter example
in Section V below.

Reasoning about conditional dominance can be im­
plemented straightforwardly via any mechanism for rea­
son maintenance [de Kleer, 1986a, McAllester, 1982]. The
interesting task for the dominance prover is to come up
wi th meaningful conditions that imply useful dominance
relations.

I V . Planning
A program manipulates the plan lattice by repeatedly per­
forming the following steps (not in any particular order):

• Generate new plan classes by adding constraints to
undominated classes.

• Construct and refine the prediction/evaluation part of
the world model.

• Derive and propagate dominance relations among plan
classes. Strengthen conditional dominance relations.

We wil l say that a program performing these tasks is
planning. Note that in this view planning is not a search
for a single plan to execute, but an exploration of proper-
ties of admissible plans. A planner performs useful work
by refining the plan lattice, even if the lowest-level classes
are never reduced to singleton sets. If, after much compu­
tat ion, the planner has narrowed the admissible plans to
a set that contains 10400 or possibly an uncountable in­
finity of plans, this may seem like l i t t le progress. But if
we can determine that all plans contain, for example, an
appendectomy, we solve a significant problem.4

The prevailing view of planning as construction of a
completely specified course of action is never totally ac­
curate. Planners devote their resources to isolated deci­
sions, as in whether or not to perform an appendectomy,
without specifying all other features of the plan. A plan
to obtain some bananas is complete only with respect to
a have-bananas goal; in the larger context of satisfying all
physical and emotional needs forever, the agent never stops
planning. Figuring out how to get the bananas is a small
act of refinement on THE BIG PLAN.

The framework presented so far should be regarded
as an abstract model of planning with partially satisfiable
objectives. It generalizes the case of goal predicates and
applies to uncertain situations. Rather than prove that a
plan necessarily achieves a goal, as in traditional AI plan­
ning, the planner tries to prove properties of the optimal
plan. These properties define the class of admissible plans.

To instantiate the abstract model to a particular plan­
ning mechanism, one needs to specify:

• The plan language,

• A constraint language (representation for partial
plans).

• A domain modeling language, including a way to de­
scribe the effects of actions and a representation for
the preference relation,

• A dominance prover.

The structures described earlier—the plan lattice and
dominance relations—serve mainly as theoretical machin­
ery for analysis of this class of planners. Specifying the
languages and the dominance prover is the real work in
designing a planner.

4Plan classet wi th fuch huge cardinalities should be the norm,
not exceptions. If the plan language includes real-valued parameters,
then all but the tightest constraints still leave an uncountable set of
candidate plans. The plan class "Administer a dose of drug X within
the next minute* includes individual plans where the drug is given
at any point in the 60-second interval.

886 REASONING

As a simple il lustration, consider mathematical opti­
mization techniques as planners. Optimization is a special
case of dominance proving where the program tries to find
a singleton dominator, often in one step. For example, if
our plan language is 39 and the domain model consists of
a linear objective function and a set of linear constraints
among the elements of the vector, then our dominance
prover should be a linear programming algorithm. In this
case there are no partial plans. Branch-and-bound integer
programming is an example of an optimization procedure
that does make use of partial plans and explicit dominance
proving.

In the development of the planning model up to now,
we have paid l i t t le attention to efficiency. The computa­
tional value of planners in this framework depends on a
judicious choice of the languages and algorithms that de­
fine i t . Although it is difficult to characterize efficiency at
the present level of generality, there are a few high-level
issues that can be identified at this point. First, the addi­
tion of constraints during lattice refinement cannot be ar­
bitrary. The planner must generate constraints that relate
to the problem at hand and are meaningful to the domi­
nance prover. Unless the prover can establish dominance
relations on the lattice, refinement is irrelevant. Second, it
is important to consolidate the plan lattice to avoid redun­
dancy and further the propagation of dominance relations.
We wil l examine this topic further in Sections VI and V I I
below.

V . A n Extended I l l us t ra t ion :
Tweak

In the introduction I suggested that existing planning work
can be recast in this framework. In this section I examine
TWEAK [Chapman, 1985a, Chapman, 1985b], a nonlinear
planner that captures much of the state-of-the-art in a neat
algorithm. Though TWEAK belongs to the mainstream
planning tradit ion in considering only goal predicates, its
main ideas can be expressed clearly in terms of the plan
lattice and dominance relation.

As described in the previous section, the way to in­
stantiate this planning framework is to define the various
representations appearing in and operations performed on
the plan lattice. The plan language for TWEAK is particu­
larly simple. A plan is a sequence of steps, each specifying
an action applied to some objects. The term "nonlinear"
refers not to plans, but to the representation for incom­
plete plans, or plan classes.6 A plan class is nonlinear if it
specifies only a partial order on its steps. There are two
other sources of incompleteness in TWEAK: steps may be
missing, and steps may refer to variables rather than con­
stant objects. Thus any partial plan in TWEAK may be
specified by the steps it includes, the ordering constraints

8 A planner with a parallel execution capability (for example, a
multi-agent planner) could actually have a nonlinear plan language.
The constraint language for such a planner would be more complex.

on the steps, and the constraints on the designations of
variables in the steps.

The domain modeling language is also quite simple.
The effects of actions are completely described by finite
sets of pre- and post-conditions on each step. A world
model corresponding to each plan class records the sta­
tus of goal and condition propositions in a propositional
database. Finally, is defined by the categorical planning
preference relation (l) . In TWEAK, G is simply a conjunc­
tion of propositions.

The interesting part of TWEAK is not these represen­
tation languages, but the dominance properties that are
applied. The power of the planning algorithm derives from
the fact that, given a partial plan, we need to consider only
a few types of constraints to guarantee that if a satisfactory
completion of the partial plan exists, one also exists among
its constrained subclasses. Constraints are posted via plan
modification operators. For our purposes it helps to regard
these operators as functions that return constrained plan
classes given a starting plan class and possibly some other
arguments. We need five plan modification operators:

Each returns the set of elements of P that satisfy the
indicated constraint. Addstep constrains the partial plan
to include an instance of step t. Order confines P to those
plans in which step s is applied before step t. Note that if
this (or the result of any modification operation) is a con­
tradiction, then the function returns the empty plan class.
Analogously, if the constraint is already implied, the op­
erator is the identity function on P. The code si gnat e (ab­
breviated cod) and noncodesignate (ncod) functions add
the appropriate constraints to the elements indicated. In
general, there may be several ways to implement a codes-
ignation among complex elements (such as predicate in­
stances) in terms of their primitive constituents. Finally,
the ifcodesignate (ifcod) function constrains z and w to
codesignate if x and y do.

TWEAK is defined by a nondeterministic procedure
that achieves a goal by applying combinations of these op­
erators to a partial plan. Chapman presents the procedure
as a simple graph ([Chapman, 1985a, page 1024], [Chap­
man, 1985b, page 11]) where the paths from start to end
exhaust the possible sequences of plan modifications that
can restrict a partial plan P to achieve a goal proposition p
at step s. A completely analogous description in our func­
tional notation is the expression appearing in Figure 2.
This complicated expression, consisting of a combination
of plan classes formed by various modifications on rep­
resents the set of plans nondeterministically explored by
Chapman's algorithm.

Wellman 887

Let P' denote this plan class. In the figure, E is the
set of establishers; that is, actions that possibly assert the
goal proposition. C and W are the potential clobbercrs (ac­
tions that negate the goal) and white knights (actions that
re-establish the goal), respectively. The function conseq
on steps returns the consequent propositions, or postcon­
ditions, of the action. That there is a plan in p' that
achieves the goal if there is one in P can be captured by
asserting This is a restriction, because each of
the components of the P' expression is itself a subset of P.

The main theoretical contribution of TWEAK boils
down to this dominance condition. TWEAK refines P by
adding constraints unt i l it finds a partial plan that neces­
sarily achieves the goal, that is, a class provably containing
only goal-achieving plans. The theoretical apparatus we
have developed can help us understand this process.

Each term in the expression of Figure 2 corresponds
to a plan class which is a subset of These distinguished
plan classes serve as intermediate structure in the plan
lattice depicted in Figure 3. This lattice reflects a decom-
position of the search space based on the TWEAK algo­
rithm. The plan classes wi th subscripts denote parameter-
ised classes; a complete diagram of this lattice would in­
clude, for instance, an At for every t For the directed
links, the plan class pointed to is defined by the boxed set
operation applied to the others. Thus and

A l l connections indicate specialization of
plan classes from higher to lower levels.

Because it would be difficult for the planner to gen­
erate a description of P.1 directly from the definition of
Figure 2, in practice it is necessary to manipulate represen­
tations of these intermediate classes. The TWEAK search
procedure nondeterministically chooses intermediate plan
classes to instantiate and combine unt i l it finds a subset
of P1 that necessarily achieves p at s. In the process, the
algorithm recursively invokes itself, taking one of the inter­
mediate classes as P and forming the structure of Figure 3

Figure 3: The plan lattice corresponding to the space
searched by the TWEAK algorithm.

beneath i t .

V I . Classif icat ion and
Dependency-Directed Search

It is possible that a recursive invocation of the TWEAK
dominance relation would reveal that some intermediate
plan classes at one level are dominated by more restricted
classes at lower levels. More generally, propagation via (8)
through (11) may uncover dominance conditions wi th in or
between levels which can be exploited to reduce the search
space.

These possibilities suggest an addition to the plan­
ning steps listed at the beginning of Section IV. When
partial plans are generated, they are classified by finding
their greatest lower and least upper bounds in the plan
lattice.0 Classification serves to consolidate the lattice, re-
sulting in a maximal propagation of the known dominance
conditions.

The dominance relation provides us wi th a class of no-
good sets to be used in pruning the search space. Planners
without a notion of dominance can consider only contradic­
tory plans (that is, empty plan classes) to be nogood; other
pruning criteria must be built into the control mechanism.
The discussion above illustrates that although TWEAK's
search procedure implicit ly takes advantage of the fact

cannot exploit the dominance consequences
for intermediate plan classes.

Consolidating the plan lattice through classification
prevents redundancy in plan space search. Notice, for ex­
ample, that the plan class Dq depends only on q, even

6The term classified is used here in th t same sense that concepts
are clari f ied in KL-ONE [Schmolse and Lipkis, 1963). Swartout and
Neches [Swartout and Neches, 1986) represent plans by the goals
they are intended to achieve and employ a classifier to construct a
taxonomy of intents. Their decision-making program selects from the
taxonomy the most specific plan for the purpose at hand. Because
this taxonomy comprises compiste plans, their use of classification falls
outside of the planning framework developed here.

888 REASONING

though its position in the expression for P' is within the
scope of c. A chronologically backtracking search would
generate this class for every (c,q) pair encountered during
the iteration, resulting in a duplication of effort if clobber-
ers share consequents.

A simple dependency-recording mechanism would
most likely avoid this and similar redundancies. A clever
enough scheme might even recognize that are
the same when However, it is doubtful that
any of the standard dependency maintenance mechanisms
would catch the more subtle relationships that hold be­
tween classes created on successive recursive invocations
of the planning algorithm. A precise characterization of
avoidable redundancies is rarely offered in descriptions of
planners.

Following the terminology used by de Kleer in de­
scribing his assumption-based t ruth maintenance system
(ATMS) [de Kleer, 1986a], each plan class is an assump-
tion context represented by the plan modification opera­
tors defining i t . The plan specialization lattice corresponds
to the context lattice of the ATMS with context subset re­
placed by plan subsumption. Indeed, an implementation
using an ATMS would be just as powerful as the clas­
sification scheme presented here, provided that we could
construct a propositional interface [de Kleer, 1986b] capa­
ble of communicating the relevant implications of partial
plans. In our case, though, this does not appear feasible.
A mapping of partial plans to sets of propositions would
force us to create distinctions (for instance, in unique iden­
tifiers for steps) that would fail to preserve isomorphism
characteristics.

Like the assumption-based approach, the plan lattice
structure facilitates the exploration of multiple consistent
contexts simultaneously.7 But contrary to the ATMS view,
we are not interested in finding all solutions (the class of
all plans that achieve the goal). Therefore, we can restrict
the domain of assumption sets that need to be considered
to those explicitly created as plan classes by the planning
algorithm.

To recap, the scheme presented here offers two sources
of benefits wi th respect to plan search efficiency. First, the
dominance relation provides a major new class of nogoods
which may potentially shrink the search space. Second,
consolidation of the lattice through classification of par­
tial plans takes advantage of dependencies that might be
obscured by an interface wi th a propositional TMS.

V I I . The Complexity of
Subsumption

As for knowledge representation mechanisms, the key oper­
ation in plan classification is the computation of subsump­

TThis contrasts wi th the dependency-directed backtracking em­
ployed by TWEAK. The design of SCHEMER [Zabih, 1987, Zabih tt
of., 1M7]—a dependency-directed interpreter for a non-deterministic
LISP—illustrates this difference and highlights the issues in construct­
ing a propositional interface for arbitrary dependencies.

tion relations [Brachman and Levesque, 1984]. We saw
above that classifying plans as they are generated mini­
mizes the search space.8 Conversely, a perfect dependency
mechanism is in effect computing these subsumptions.

Unfortunately, nonlinear plan subsumption is NP-
complete.9 This is true even for plan classes derived ex­
clusively from addsttp and order operators, that is, partial
orders on steps. The exponential potential of subsumption
lies in the combinatorial number of possible mappings be­
tween the steps of the two plan classes. If, however, we
can specify the correspondences between steps (for exam­
ple, which put-on in corresponds to which in then
subsumption is at worst quadratic. In practice we will gen­
erally not have complete correspondences, but typically
the possible mappings between steps wil l be highly con­
strained. Actions may map only to others of the same type,
therefore the computation wil l not be prohibitive as long
as plan classes do not contain many steps of a single type.
Codesignation constraints also help to restrict the possible
mappings, as do explicit identifications among steps which
may be provided by the planner when introducing steps in
several partial plans at once. Finally, we might consider
restricting the constraint language so that subsumption is
tractable, perhaps to tree-shaped partial orders.

The effect on subsumption complexity of proposed ex­
tensions to the constraint language should also be consid­
ered. For example, we could allow actions themselves to
be expressed at multiple levels of abstraction (as in the
sequence low-dose steroid therapy is-a steroid therapy is-
a drug therapy) without significant cost in complexity, as
long as action subsumption itself is not expensive.10 Ex­
tending the plan modification operators to include union
and intersection, as suggested by Figure 3, is not as be­
nign. Intersection (conjunction) presents no problem be­
cause the plan modification operators associate and com­
mute, but computing subsumption among classes that are
unions (disjunctions) of other classes appears substantially
more difficult.

V I I I . Summary
In this paper I have introduced and applied some ana­
lytical tools for studying and designing constraint-posting
planners. The main components of this framework are

8For true optimality we must also determine the most general
plan class that is dominated. This corresponds to extracting the
minimal nogood assumption set, which is not generally feasible. Note
that minimality is with respect to a particular constraint language;
slight changes may have dramatic effects on the dominance prover's
ability to derive nogood sets at high levels of generality. For example,
Pednault [Pednault, 1985] achieves stronger dominance results by
including protected conditions as constraints on plans.

9The proof, by reduction from EXACT COVER BY 3-SETS, was
provided by Ronald L. Rivest, personal communication.

10Given a static action lattice, action subsumption takes logarith­
mic time. If actions are described more flexibly—perhaps as dy­
namically generated KL-ONE concepts—then subsumption is more
complex [Brachman and Levesque, 1984].

Wellman 889

a specialisation lattice and a dominance relation defined
over plan classes. These concepts were motivated wi th
simple examples from MOLGEN and a more detailed ac­
count of TWEAK. The power of the TWEAK algorithm re­
sides in a central dominance result which allows the plan­
ner to restrict attention to a small subset of the possi­
ble completions of a partial plan. Explicit characterisa­
tion of the dominance relation allows the planner to rec­
ognise that certain plan classes need not be explored, even
though they might contain a valid plan. Although stan­
dard dependency-directed backtracking methods improve
search efficiency, the only way to ensure complete lack of
redundancy is to classify the partial plans in the lattice by
computing subsumption among plan classes. This prob­
lem is NP-complete for nonlinear planning, but constraints
commonly arising in practice may render the computation
tractable. Recognising the centrality of subsumption sug­
gests a novel approach to analysing the complexity impli­
cations of plan constraint languages.

The true test of the scheme presented here wil l be how
well it supports tasks that require planning in the presence
of uncertainty and partially satisfiable objectives. I am
currently applying this framework to the design of a plan­
ner for the task of formulating decision models from a large
medical knowledge base. The domain modeling language
and dominance prover proposed for this task are based on
ongoing work on qualitative influence networks [WeIIman,
1987a, Wellman, 1987b].

Acknowledgments
Discussions wi th Zak Kohane, Ramesh Pat i l , Ron Rivest,
Elisha Sacks, Peter Szolovits, Kate Unrath, Tom Wu, and
Ramin Zabih contributed to the style and content of this
paper.

References
[Brachman and Levesque, 1984] Ronald J. Brachman and

Hector J. Levesque. The treatabil i ty of subsumption
in frame-based description languages. In Proceedings
of the National Conference on Artificial Intelligence,
pages 34-37, American Association for Art i f icial In­
telligence, 1984.

[Chapman, 1985a] David Chapman. Nonlinear planning:
A rigorous reconstruction. In Proceedings of the Ninth
International Joint Conference on Artificial Intelli­
gence, pages 1022-1024, 1985.

[Chapman, 1985b] David Chapman. Planning for con­
junctive goals. A I -TR 802, Massachusetts Institute
of Technology, Art i f ic ial Intelligence Laboratory, 545
Technology Square, Cambridge, M A , 02139, Novem­
ber 1985. Revised version to appear in Artificial In-
telligence.

[de Kleer, 1980a] Johan de Kleer. An assumption-based
TMS. Artificial Intelligence, 28:127-182, 1986.

[de Kleer, 1986b] Johan de Kleer. Problem solving wi th
the ATMS. Artificial Intelligence, 28:197-224,1986.

[McAllester, 1982] David Allen McAUester. Reasoning
Utility Package User's Manual. A I M 667, Mas­
sachusetts Institute of Technology, Artif icial Intel­
ligence Laboratory, 545 Technology Square, Cam­
bridge, M A , 02139, 1982.

[McCarthy and Hayes, 1969] J. McCarthy and P. J.
Hayes. Some philosophical problems from the stand­
point of artificial intelligence. In B. Meltzer and D.
Michie, editors, Machine Intelligence 4, pages 463 -
502, Edinburgh University Press, 1969.

(Pednault, 1985] Edwin P. D. Pednault. Preliminary re­
port on a theory of plan synthesis. Technical Note 358,
SRI Art i f icial Intelligence Center, August 1985.

[Schmolse and Lipkis, 1983]
James G. Schmolse and Thomas A. Lipkis. Classi­
fication in the KL-ONE knowledge representation sys­
tem. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 330-332,
1983.

[Stefik, 1981] Mark Stefik. Planning wi th constraints
(MOLGEN: part 1). Artificial Intelligence, 16(2):111-
140, 1981.

[Swartout and Neches, 1986]
Wi l l iam Swartout and Robert Neches. The shifting
terminological space: An impediment to evolvability.
In Proceedings of the National Conference on Artifi­
cial Intelligence, pages 936-941, American Associa­
tion for Arti f icial Intelligence, 1986.

[Wellman, 1987a] Michael P. Wellman. Probabilistic se­
mantics for qualitative influences. In Proceedings
of the National Conference on Artificial Intelligence,
American Association for Arti f icial Intelligence, 1987.

[Wellman, 1987b] Michael P. Wellman. Qualitative prob­
abilistic networks for planning under uncertainty. In
John F. Lemmer, editor, Uncertainty in Artificial In­
telligence, North-Holland, 1987.

[Zabih, 1987] Ramin Zabih. Dependency-Directed Back­
tracking in Non-Deterministic Scheme. Master's the­
sis, Massachussetts Institute of Technology, Cam­
bridge, M A , January 1987.

[Zabih et a/., 1987] Ramin Zabih, David McAUester, and
David Chapman. Non-deterministic lisp wi th
dependency-directed backtracking. In Proceedings
of the National Conference on Artificial Intelligence,
American Association for Art i f icial Intelligence, 1987.

890 REASONING

