
AN ALGORITHM WHICH AUTOMATICALLY CONSTRUCTS
DISCRIMINATION GRAPHS IN A VISUAL KNOWLEDGE BASE

by
Jan A. Mulder

Department of Mathematics, Statistics,
and Computing Science

Dalhousie University
Halifax, Nova Scotia

Canada B3H 3J5

Abstract

Model-based vision systems must be capable of dealing with large
quantities of hypothetical interpretations. Hypothesise-and-test
methods often lead to combinatorial explosions of possible inter­
pretations. Discrimination graphs prevent such explosions by im­
posing a hierarchical organisation on the domain of interpretation.
Such an organisation effectively reduces the number of interpre-
tations that the system has to deal with. This paper presents an
algorithm which automatically constructs discrimination graphs.

1 In t roduc t i on

If we are to develop a "general-purpose* vision system which can
take as input a digitised picture of any natural scene and which
produces as output a meaningful description of such a scene, then
we must equip the system with a representation which allows for
a quick and smooth access to domain-specific knowledge. Most
model-based vision systems obtain access to the knowledge base
of a particular domain after a segmentation process has scanned
the image in search for particular features. The description of
these features imposes constraints on the interpretations possible.
Features, constraints, and interpretations can be represented as a
graph (or hypergraph) with the features (n) as variables, each with
an associated domain of interpretations (d)} and the constraints
(e) as relations. The problem of finding globally consistent inter­
pretations for the image then becomes the problem of finding all
possible n-tuples such that each n-tuple is an instantiation of all
n variables satisfying the relations. This problem is equivalent to
the constraint satisfaction problem [5]. The existence of algorithms
which can solve this problem in less than exponential time has been
questioned. Depth-first backtracking, for instance, is of 0(e<f) in
its worst case performance [5]. Such an algorithm causes a major
problem for a general-purpose vision system in which we can ex­
pect domain sixes to be very large, because no advance knowledge
exists of the domain of interpretation.

The research for efficient solutions to this "exponentiality" prob­
lem has taken several directions. The search for more efficient
algorithms, among other things, has led to algorithms that do
"intelligent backtracking" [l] and to so-called network consistency
algorithms |3|. The latter is a group of polynomial time algorithms
which do not necessarily solve the constraint satisfaction problem,
but which eliminate all local inconsistencies that cannot partici­
pate in a global solution. Network consistency algorithms wil l gen­
erally reduce the overall domain sise. This makes them attractive
as pre-processors for algorithms such as depth-first backtracking.
Recent research has focused on a more effective organisation of
the domain of each variable [7]. A hierarchical organisation can

be imposed on the domain by means of discrimination graphs.

2 D isc r im ina t ion graphs

Discrimination graphs are based on the assumption that we can
classify image features in one or more dimensions (e.g. shape,

texture), the result of which is a finite number of categories for
each dimension. Discrimination graphs (DG's) are based on a
(potentially unnatural) categorisation of object classes that be­
long to a particular image feature category. A DG is a directed,
acyclic graph. Every source node of the graph is an abstract ob­
ject class which intensionally represents all the elementary object
classes that belong to a particular image feature category. The
leaves of the graph are elementary object classes. Intermediate
nodes represent subsets of the set of objects represented by their
ancestor (s).

This paper does not provide an in-depth discussion of DG's.
The idea of imposing a hierarchical domain organisation by means
of DG's was first presented in [7], an in-depth discussion is pro­
vided in (8]. Intuitively, DG's are useful because image features
can have a wide variety of interpretations for which no hierarchi­
cal organisation exists. For instance, a collection of green pixels in
an aerial photograph can be farm land, a golf course, or even the
astroturf in a stadium. Because no natural categorisation scheme
exists for such interpretations we cannot use a specialisation hi­
erarchy as a means of replacing these interpretations by more ab­
stract ones. DG's enable us to impose a hierarchical organisation
on an arbitrary set of natural objects.

Figure 1: an example of a discrimination graph

Figure 1 shows a DG for a simple character recognition prob­
lem. The image consists of one character which is a letter con­
taining horisontal and vertical line segments only. Each letter is
classified in two different ways: by the orientation of strokes and by
the number of strokes in a particular orientation (table 1). Recog­
nition takes place in steps. The strokes are the image features
and they are investigated one at a time. The DG constructed for
this situation reflects this process. The source nodes of the graph
are on the left and they represent the possible set of interpreta­
tions after investigation of one stroke. Their successors represent
the (sub)set of interpretations after two strokes have been inves­
tigated. The leaves represent the interpretations possible after all
strokes have been looked at. Al l interpretations (abstract or nat­
ural) are labeled (e.g. d1). The constraints associated with each
interpretation are shown as well. For instance, interpretation do

Mulder 855

represents all letters with at least one horisontal and at least one
vertical stroke. The letters E, F, H, L, and T satisfy this constraint.

DG's have been implemented in Mapeee-3, a sketch map inter=-
pretation program (8). Sketch maps are a useful domain for study­
ing the theory, design, implementation, and evaluation of different
knowledge representation schemes [4,2,8].

Table 1: frequency and orientation of strokes

DG's allow HI to replace a large set of natural interpretations
in the domain of each variable by a muck smaller set of abstract in­
terpretations. A network consistency algorithm called hierarchical
arc consistncy has been designed and implemented which operates
in hierarchical domains [6j. This algorithm tests the consistency
between the interpretations of adjacent variables. Inconsistent in­
terpretations are replaced by their successors in the graph after
which the consistency test is repeated. This test-replacement se­
quence continues either until a consistent interpretation is found,
or until each variable's domain is empty. Only a very small part
of the interpretations in the graph need to be considered in this
replacement operation. The worst case complexity of hierarchi-
cal arc consistency is 0(ed3). However, a few simple constraints
improve this to The combination of hier­
archical arc consistency with DG's provides a quick and smooth
transition from abstract and domain-independent interpretations
near the top of the graph to the more domain-dependent interpre­
tations at the leaves.

3 Const ruc t ing d iscr iminat ion graphs
How do we construct a graph such as the one in figure 1? The
graph is based on S premises: an explicit representation for each
natural interpretation (the leaves), an explicit representation for
each possible combination of constraints, and an explicit repre-
sentation for. the addition of a single constraint (the arcs). This
results in the creation of 14 feature categories
each with a set of possible interpretations. For each one of these
sets we create a single abstract interpretation: d1 corresponding
to corresponding to F2 etc. The feature categories are also
inter-dependent. For instance, the interpretation* of Ft can only
result from the interpretations of F2. For the construction of fig­
ure 1 we therefore need several knowledge sources, among which
are an explicit representation of the feature category dependen­
cies and the information represented in table 1. The former tells
us which transitions between feature categories are legitimate, the
latter informs us which transitions are meaningful. Based on this
information we can construct figure 1.

The presence of so many abstract interpretations, among other
t h i np , requires an algorithm that automatically construct* DG's.
Indeed, the value of using DG's would decrease if this could not
be done. However, we would like such an algorithm to be domain-
independent, that is, not dependent on an intimate knowledge of
feature categories and their dependencies. The graph in figure 1 is
optimal in the sense that all possible combinations of interpreta-
tions are explicitly represented and the addition of a new constraint
in the imag leads to a single transition in the graph. Perhaps, it
is possible to design a domain-independent algorithm which does
not necessarily lead to an optimal graph, but which still constructs
a usable one.

For one thing, the graph in figure 1 is redundant in the sense
that several feature categories have identical interpretation sets.
The graph is constructed such that the relation between offspring
and their parents is the subset relation. Subsets represented by dif­
ferent offspring may overlap. The algorithm we propose makes no
assumptions about the feature categories. It orders the categories
by the setsise of their interpretations and it merges categories with
identical interpretations. An abstract interpretation is created for
each category. The abstract interpretations with the largest setsise
become the source nodes of the DG. The graph created is binary
and the subsets represented by the two offspring of each abstract
interpretation are disjoint.

The start point for construction is a given feature dimension

FD consisting of n categories (F) with a total of $ (natural) in­
terpretations (5). Each category F has a set /, of
possible interpretations (/, 6 5) . The sise of /< may vary from cat­
egory to category and a particular interpretation Sj
may occur in more than one category.

The construction algorithm operates as follows:

1. Merge the categories with identical interpretation sets. F is
now of sise

2. For each F, create an abstract interpretation
A,. A, intensionally represents the set U of possible inter­
pretations for F,

3. Order the abstract interpretations by the setsise of their nat­
ural interpretations. The interpretation with the largest set­
sise comes first. Call this ordered list L. The abstract inter­
pretations form the elements in this list.

4. Do until L is empty:
Take the first element / from L and delete it from L.
If the setsise of / > 1 then do:

Find the element in L that represents the largest
subset of /. Call this element l1.
If the setsise of l1 is less than the integer part of
half the sise of /

then execute step i
else execute step i i .

i. Split the set represented by / into two disjoint sub­
sets of approximately equal sise, and create two
new abstract interpretations l* and 14 Each of
these interpretations represents one of the subsets.
Establish a link from 1 to its two siblings and insert
the siblings into L at a location that corresponds
to their setsise.

i i . Find the interpretatiox representing the exclu­
sion of the sets represented by I and l\. If this
interpretation does not exist then create it and in­
sert it into L at the proper location. Establish a
link from / to its siblings l1 and

Application of the construction algorithm to the character recog­
nition problem results in the graph illustrated in figure 2. Identical
interpretation sets cause a reduction in the number of feature cat­
egories. Figure 2 shows the 11 interpretations created with the
following correspondences (in parentheses) to figure 1: d1 (dx)t d?

<*io (4io><*uJt and *n (<*isj- the interpretation with largest set­
sise, d1t becomes the source node. d1 is linked with d2 and d,,
both of which already exist. Actually, the algorithm uses existing
interpretations almost all the time with the exception of a\ which
is newly created. Al l the splits are caused by step 4ii. The set
EFHLT could also have been split into the subsets EFH and LT.

856 PERCEPTION

Figure 2 is no longer an optimal graph. Al l possible combi­
nations of interpretations are still explicitly represented, but the
addition of a new constraint now sometimes requires more than
one transition in the graph. For example, the transition from d\
to d4 in figure 1 now requires 3 transitions from dl through d3
and d4 to d3,. The trade-off between figure 1 and 2 is the tradi­
tional space-time trade-off. Space-wise figure 2 is more efficient,
but accessing the proper interpretation (sometimes) requires more
time.

This paper cannot provide an extensive discussion of construc­
tion issues. Many of these are addressed in [8]. Suffice it to say
here, that the construction algorithm presented above can also be
used in knowledge bases which are organised along composition
and specialisation hierarchies. In the Mapsee-3 program, for in­
stance, objects are represented at different levels of composition
and specialisation. The natural interpretations for each feature
category are the leaves of a composition hierarchy. The construc­
tion algorithm constructs a DG at the composition leaf level. A
projection algorithm then iteratively projects this graph from one
level of composition onto the next level up, thereby constructing
an abstract composition hierarchy and a DG at each level of com­
position. This projection algorithm is also discussed in (8|.

[4] A. K. Mackworth, "Vision Research Strategy: Black Magic,
Metaphors, Mechanisms, Miniworlds, and Maps", in Com­
puter Vision Systems, eds. A. R. Hanson and E. M. Riseman,
Academic Press, New York, pp. 53-60, 1978.

[5] A. K. Mackworth and E. C. Freuder, "The Complexity of
Some Polynomial Network Consistency Algorithms for Con­
straint Satisfaction Problems", Artificial Intelligence, vol. 25,
pp. 65-74, 1985.

[6] A. K. Mackworth, J. A. Mulder, and W. S. Havens, "Hi-
erarchical Arc Consistency: Exploiting Structured Domains
in Constraint Satisfaction Problems", Computational Intelli­
gence, vol. 1, no 3-4, pp. 118-126, 1985.

[7) J. A. Mulder, "Using Discrimination Graphs to Represent Vi­
sual Interpretations that are Hypothetical and Ambiguous",
Proc. of the 9th Int. Joint Conf. on Artificial Intelligence, Los
Angeles, pp. 905-907, 1985.

[8] J. A. Mulder, "Using Discrimination Graphs to Represent Vi­
sual Knowledge", TR-85-14, Department of Computer Sci­
ence, University of British Columbia, Vancouver, Canada,
1985.

Figure 2: an automatically constructed discrimination graph

4 Conclusion

Discrimination graphs are a useful tool for imposing a hierarchical
organisation on domains which cannot be naturally organised in
this way. In combination with a hierarchical arc consistency algo­
rithm, discrimination graphs provide a quick and smooth access
to domain-specific knowledge. This paper has presented an algo­
rithm that automatically constructs discrimination graphs from a
set of naturally interpretable feature categories.

5 Acknowledgements

Comments on a draft of this paper by Jay G licks man and Bill
Havens are gratefully acknowledged. This research was supported
by NSERC operating grant A0948.

References
[1] R. M. Haralick and G. L. Elliott, "Increasing Tree Search Ef­

ficiency for Constraint Satisfaction Problems", Artificial In­
telligence, vol. 14, pp. 263-313, 1980.

[2) W. S. Havens and A. K. Mackworth, "Representing Knowl­
edge of the Visual World", IEEE Computer, vol. 16, no 10,
pp. 90-98, 1983.

[3] A. K. Mackworth, "Consistency in Networks of Relations",
Artificial Intelligence, vol. 8, no 1, pp. 99-118, 1977.

Mulder 857

