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Abs t rac t 

A method for learning phonetic features from speech data 
using connectionist networks is described. A temporal flow 
model is introduced in which sampled speech data flows 
through a parallel network from input to output units. The 
network uses hidden units with recurrent links to capture 
spectral/temporal characteristics of phonetic features. A 
supervised learning algorithm is presented which performs 
gradient descent in weight space using a coarse approxi­
mation of the desired output as an evaluation function. 

A simple connectionist network with recurrent links 
was trained on a single instance of the word pair "no" and 
"go", and successful learned a discriminatory mechanism. 
The trained network also correctly discriminated 98% of 25 
other tokens of each word by the same speaker. A single 
integrated spectral feature was formed without segmenta­
tion of the input, and without a direct comparison of the 
two items. 

1 I n t r oduc t i on 

Connectionist networks offer significant advantages in ad­
dressing problems of machine perception because of their 
inherently parallel structure, which is well matched to the 
biological architecture that has served as their paradigm. 
Their learning capabilities, robust behavior, noise toler­
ance and graceful degradation are all capabilities which are 
becoming increasingly well understood and documented 

mi. 
The solution of certain perceptual problems requires 

that the temporal relationships among stimulus character­
istics be properly represented. This is especially true in 
speech recognition, where the relationship between time 
and frequency is wonderfully complex. In the production 
of speech, basic speech units (phonemes) are integrated 
into a smooth sequence, so that the acoustic boundaries 
can be very difficult to specify. Moreover, phonemes are 
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often co-produced (coarticulated), so that the phonemes 
exert a strongly context-dependent interaction. Thus, the 
perception of speech depends on the correct analysis of 
dynamic temporal/spectral relationships. 

The connectionist network approach is attractive be­
cause it offers a computational model which has inherently 
robust properties. The networks consist of simple process­
ing elements which integrate their inputs and broadcast 
the results to the units to which they are connected. Thus, 
the network response to input is the aggregate response of 
many interconnected units. It is the mutual interaction of 
many simple components that is the basis for robustness. 

The problem of designing connectionist networks which 
can learn the dynamic spectral/temporal characteristics of 
speech has not yet been widely studied. Most work in 
connectionist networks so far has focussed on the static re­
lationship between input/output pairs, such as associative 
memories [6,4], various encoding, decoding, parity and ad­
dition problems [10], and mapping from word spelling to 
phoneme labels [11]. 

Learning to associate static input/output pairs can be 
accomplished wi th layered connectionist networks wi th feed-
forward links alone. Learning pattern sequences requires 
network state information, which can be provided by feed-
back from the network output to the input [6,5,12,10,9]. 
The idea of learning pattern sequences has been applied to 
a speech task using Boltzmann machines [9]. 

The experiments reported here were designed to ex­
plore the capabilities of parallel networks to learn dynamic 
properties of time-varying data. We choose a standard 
speech recognition problem to test the extent to which 
a connectionist network could form an internal represen­
tation of the temporal/spectral characteristics which dis­
tinguish two similar words. A network architecture was 
selected in which the hidden and output units included 
self-recurrent links. This approach is distinguished from 
the pattern sequence approach in that the feedback is in­
ternal to the network and distributed. Thus, the dynamic 
response of individual units must be learned in solving the 
discrimination task. 
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2 Exper iment 
The discrimination between the minimal pair "no" and 
"go* is a typical speech recognition problem, which is in­
cluded in a standard database for evaluation of speech rec­
ognizers [1], The utterances "no" and "go" share for the 
major and final portion the voiced phoneme / o / . The "no" 
utterance is characterized by a lower energy nasal murmur 
preceding the transition to the back vowel / o / . This nasal 
murmur has a formant structure which is due to the cou­
pled resonances of the closed oral cavity and open nasal 
cavity. The "go*1 is distinguished by a very low energy 
voicing interval during the lingua-palatal closure, a brief 
burst as the closure is released, and a voiced transition to 
the ful l vowel. 

The distinction between "no 't and "go", therefore, is 
concentrated in the brief interval of relatively low energy 
at the beginning of the word. These differences consist in 
the relative voicing energy, burst spectrum, and formant 
value and transition pattern. 

2.1 Data 
The data used for this experimental work consisted of 
speech data for a single speaker (GD) from Texas Instru­
ments standard isolated word recognition database [1]. The 
speech data was played into a commercial speech recog­
nit ion device (Siemens CSE 1200), where it was passed 
through a 16-channel filter bank, full-wave rectified, log 
compressed and sampled every 2.5 milliseconds. Twenty-
six repetitions of each word comprise the corpus, for a total 
of fifty-two utterances (26 "no" and 26 "go"). The filter 
bank response to the training utterances is shown in Figure 
1. 

Figure 2: "Network Configuration showing input, hidden 
and output layers" 

2.2 Network Arch i tec ture 

For this init ial experiment, a three-layer connectionist net­
work consisting of an input layer, one hidden layer and an 
output layer was implemented, as shown in Figure 2. The 
sampled speech data flowed through the network in time 
sequential order. Thus, the 16 channel energies were ap­
plied to 16 input units, from which activation spread to­
ward the output units simultaneously as the input units 
were updated by sequential speech samples. This design 
wil l be referred to as the temporal flow model, or, more 
simply as the flow model. 

Other approaches have used an array of input units, 
and represented time along one index of the input unit 
array [8,2,3,7]. In this case, time is spatialized across units. 
The temporal flow model was chosen because it does not 
require 'chunking' of variable length utterances onto a fixed 
size network, it avoids the problem of temporal alignment 
and symmetry, and the temporal flow model seems to be 
closer to the biological model of speech processing. 

2.2.1 U n i t Funct ions 

The functions which define the unit behavior were cho­
sen from ones in common use in connectionist networks 
[11,10]. The unit outputis a nonlinear (sigmoid) func­
tion of the unit potential, which is a simple weighted sum 
of the output values of units connected by afferent links. 
The weights correspond roughly to the effect of synaptic 
strengths. The sigmoid function has the desirable proper­
ties of a bounded output, non-linear characteristics, and a 
response threshold. These functions approximate the com­
putational properties of neural cells, and have convenient 
mathematical properties for the learning algorithm used in 
this experiment. 

Figure 1: "Channel Energies for no/go pair" 
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2.2.2 Back -Propaga t ion Lea rn ing A l g o r i t h m 

For this experiment, an extended form of the back-pro-
pagation learning algorithm was chosen to accommodate 
networks wi th recurrent links [10,13]. 

The error-propagation algorithm modifies the unit con­
nection weights in order to minimize the mean squared 
error between the actual and desired output values. The 
weight change rule can be writ ten as: 

where 6j(t — r) is the error signal at unit j at time t - T, 
with respect to the target values at the output units at 
time t [13]. This error is given by: 

for a Z r-
The error signal for an output unit is defined by the 

difference between the actual and target values, times the 
unit function slope at time t: 

The value of r was l imited to a small value to l imit the 
recursive computation. The weight changes were made 
after each time step. These factors introduced approxima­
tions into the computation of the gradient. 

2.2.3 Targe t Func t i on 

The target function for the output units used in the no/go 
discrimination experiment consisted of a simple ramp. For 
the output unit which corresponded to the utterance be­
ing trained, the ramp increased from a value of 0.5 to 1.00 
over the duration of the utterance. The other unit was 
correspondingly decreased from 0.5 to 0. This represented 
the intui t ion that evidence for or against a particular word 
accumulates over its duration, and reaches a level of con­
fidence after the utterance is completed. 

3 Resul ts 
The parallel connectionist network experiments were con­
ducted on a sequential machine using a network simulator, 
wr i t ten specifically for this experiment. The network de­
scribed previously was trained on a single pair of no/go 
utterances by a single speaker for 6000 training iterations. 

The value of the squared-error term during learning 
was observed; it was neither monotonic decreasing nor 
a smooth function of the number of optimization itera­
tions. This is thought to be due to the local nature of the 
weight change algorithm, and the l imited extent of back-
propagation in time. The error value did reach sharply-
defined minimum value after 4000 iterations; the network 
at that point was chosen for further study. 

Figure 3: "Output Unit 24 Response to No/Go Pair" 

3.1 O u t p u t U n i t Response 

The response of the output units for the network at the 
selected critical point in the learning process was recorded, 
and can be seen in Figure 3. The output units respond in 
equal and opposite ways to the input stimuli; in addition, 
their time response roughly approximates a ramp. Since 
the learned response closely fits the training function, the 
network exhibits correct discrimination between the pair 
of items in the training set. 

The significance of this result should not be overlooked. 
First, the local application of a global optimization metric 
provided a successful path to the desired network response 
pattern. Second, although no segmentation decisions were 
made, the network was able to form a discriminating spec­
tral feature which was localized in time. Thi rd, the approx­
imations of constant weight value, and restrictions to max­
imum r value in the extended back-propagation algorithm 
did not prevent convergence to a good solution. Fourth, 
although the shape of the error contour is unknown, it is al­
most certainly not smooth; consequently, the learning path 
apparently avoided local minima in arriving at a solution. 

3.2 Extension to Test Set 

In order to test the generality and robustness of the inter­
nal representations obtained from the training word pair, 
the network of least squared error value was tested on a 
set of 25 additional pairs of no/go utterances by the same 
speaker. Using a simple deterministic decision algorithm, 
the input word could be clearly categorized by the network 
response. Under these conditions, the trained network suc­
cessfully discriminated all but one of the test cases (98% 
accuracy). 

The responses of the hidden units were analyzed for the 
50 test utterances as well as the 2 training utterances. In 
nearly every respect, the hidden unit responses of the test 
utterances were isomorphic to the response to the training 
data. A single hidden unit provided the discriminatory re­
sponse. In the single error case, this unit failed to respond 
to the input data. The energy levels for this utterance were 
very low, especially in the mid to upper channels. 
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4 Discussion 
Although the results of this init ial experiment are unex­
pectedly encouraging, there are several problems which 
need to be addressed. The stability of the learning algo-
rithm needs to be improved. This could be accomplished 
through better target functions, greater accuracy in com­
puting the gradient, or improved learning algorithms. These 
ideas for improvement have been addressed in subsequent 
work. More powerful optimization algorithms (second-
order iterative methods) have have resulted in stable learn­
ing and greatly increased learning speed. 

5 Conclusions 
In conclusion, several interesting results emerge from this 
experiment. Using a connectionist network wi th a tempo-
ral data flow architecture wi th recurrent Hnks, and using 
an coarse approximation of the desired output as a teach­
ing function, a successful discriminatory mechanism was 
learned. This discriminatory feature was formed without 
segmentation and without a direct comparison of the two 
items. 

The discriminatory mechanism turned out to be very 
robust, even though based on a single training sample. 
This result is very encouraging for further research wi th 
connectionist networks in deriving robust discriminatory 
features of phonetic classes. 

Obviously, the goal of this research is to structure net­
works which can learn the complete set of phonetic class 
discriminations, so that it could support real-time, con­
tinuous speech recognition. This requires larger networks, 
which for efficiency, may need to be partitioned and re-
combined. Ini t ial steps in this direction have been taken 
by training networks to discriminate the stop consonants 
in CV words using various vowels. 
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