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ABSTRACT 
Observable evidence from disparate sources are combined 

coherently and consistently through a hierarchically structured 
knowledge tree. Prior knowledge of spatial interactions is 
modeled with Markov Random Fields. A posteriori probabilities 
of segmentations are maintained incrementally. This paper is a 
shortened version of [Chou and Brown 87], which contains many 
more references.* 

1. A Probabilistic View of the Segmentation Problem 
Represent an image as a set of primitive elements S = 

. ., A segmentation w of the image with respect to 
a label set is a mapping from S to L. Let 

represent the label attached to a, in segmentation 
a. Let 0 be the set of all segmentations. The image segmenta­
tion problem with respect to L can be loosely described as to find 
the w) that "best fits" the information collected subject to 
the limitation of the computational resources. This section 
describes the uses of probability as the representation for vari­
ous kinds of information and the corresponding criteria for 
finding the "best fit" 

It is frequently desirable to organise segmentation labels 
as a hierarchical tree (Figure 1). Each internal node in a tree of 
labels represents the disjunction of its sons. Each cross-section 
is a mutually exclusive and exhaustive label set; i.e., a segmen­
tation problem can be denned with respect to a cross-section in a 
label tree. Using such a tree, we can represent a particular 
piece of knowledge about the labels at whatever level of abstrac­
tion that is appropriate. We use L to denote a set of mutually 
exclusive and exhaustive set of labels in a label tree H. 
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A visual module could provide opinions on any mutually 
exclusive set of labels in a hierarchical knowledge tree. We 
develop an evidence aggregation method that combines con­
sistently and coherently the opinions of the visual modules on a 
label tree. This method, based on the reasoning proposed in 
[Pearl 86], follows the Bayesian formalism. It requires only 
trivial computations. With this method, we are able to design 
individual experts for a subset of labels of the tree without hav­
ing to know about the rest of the world. The combined opinion 
can thus be fused with the image knowledge represented by the 
a priori probabilistic distributions. 

1.1. Global Prior Knowledge 
be a set of random variables indexed by 

S, with for all s. A segmentation can be considered a real­
ization, or a configuration, of this random field and can be con­
sidered the configuration space of X. Ideally the prior 
knowledge about can be represented by a probability distribu­
tion over In practice this distribution is either unobtainable 
or unmanageable due to the immense size of the sample 
space. In many image understanding applications, however, 
some restricted classes of distributions can model the image 
adequately due to the local behavior of the image phenomena. 
In this paper, we will exclusively use Markov Random Fields 
(MRFs) as the a priori models for but the work illustrated 
here can be extended to other image models as well. Section 2 
will discuss the MRF model in detail. 

1.2. Local Visual Observations 
In our treatment, the opinions of independent vision 

modules are expressed as likelihood ratios. For example, module 
A is an expert on the label set' After observing 
0„ the module reports one likelihood ratio for each label in LA. 
A likelihood ratio is the probability of the observation given that 
one label truly applies divided by the probability of the observa­
tion should none of the labels in apply. For example, the 
likelihood ratio reported for label /, is: 

(1.0) 

The methods for designing such modules are well known. 
Interested readers can consult [Bolles 77] and [Sher 87]. 

For a purpose that wil l soon become clear, we impose the 
following assumption of conditional independence between spa­
tially distinct observations: 

(1.1) 

where the superscript A indicates the observations of the module 
A. This assumption has been used implicitly in numerous appli­
cations and is valid whenever the noise processes are spatially 
independent [Derin and Cole 86][Marroquin et al 85]. 
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1.3. Poster io r P robab i l i t y and Bayesian Es t ima t ion 

Following the Bayesian formalism, the goodness of a seg­
mentation can be evaluated in terms of its a posteriori expected 
loss, 

where the P(f\0) denotes the posterior probabil ity of f given the 
observation 0. Bayes' rule can then be used to derive the a pos­
teriori probabil ity 

(1.3) 

From (1.1), observe that scaling a l l by a constant factor 
for fixed s does not change the posterior distr ibut ion in (1.3). 
This fact allows us to combine the likelihoods without having to 
normalize the results 

The choice for the loss function depends on the characteris­
tics of a particular application In [Geman and Geman 84], the 
Maximum A Posteriori (MAP) estimation is used. A simulated 
annealing procedure w i th a stochastic sampler (Gibbs sampler) 
carries out the computation. In [Marroquin et al 85], the Max-
imixer of the Posterior Marginals (MPM) estimation is proposed. 
This approach, computing the a posteriori probabilities for the 
segmentations given the set of opinions from the early modules 
and the a priori probabil i ty distr ibut ion, can support both the 
MAP and MPM estimation methods as well as other Bayesian 
estimations. 

2 . M a r k o v Random Fie lds 

Markov Random Fields have been used for image modeling 
in many applications for the past few years [Geman and Geman 
84] [Marroquin et al 85] [Der in and Cole 86]. One of the most 
successful applications of MRFs is to model the spatial interac­
tions of image features. In this section, we review the properties 
of MRFs and describe how to encode prior knowledge in this for­
malism. 

2.1. De f in i t i on 

be a set of random variables indexed by 
S and E a set of unordered 2-tuple i i representing the con­
nections between the elements in S. The set E defines a neigh­
borhood system N - where N$ is the neighborhood of 
s in the sense that 

Let b e a configuration o f , a n d t h e 
set of al l possible configurations. We say X is a Markov Random 
Field wi th respect to N and P, where P is a probabil i ty function, 
i f and only i f 

(2.1) 

(2.2) 

The conditional probabilities in the right-hand side of (2.2) 
are called the local characteristics that characterize the random 
field. An in tu i t ive interpretation of (2.2) is that the contextual 
information provided by S - s to a is the same as the information 
provided by the neighbors of s. Thus the effects of members of 
the field upon each other is l imited to local interaction as defined 
by the neighborhood. A very desirable property of MRFs that 
makes them attractive to scientists in many disciplines is the 
MRF-Gibbs equivalence described in the following theorem. 

2.2. MRF-G ibbs Equ iva lence 

Hammersley-Clifford Theorem: A random field X is an 
MRF wi th respect to the neighborhood system N if and only if 
there exists a function V such that 

C is the set of total ly connected subgraphs (cliques) wi th respect 
to N. Z is a normalizing constant, so that the probabilities of al l 
realizations sum to one. 

Several terminologies from Physics can provide in tu i t ion 
about the Gibbs measure - the right-hand side of (2.3). T is the 
temperature of the field that controls the flatness of the distr ibu­
t ion of the configurations. A potential V is a way to assign a 
number to every subconfiguration of a configuration 
where the sum of the local potentials, is the energy 
of the configuration . A system is in thermal equilibrium 
when the probabilit ies of its configurations follows the Gibbs 
measure. 

2.3. Encod ing P r i o r Know ledge 

For the image segmentation problem, we must choose an 
appropriate neighborhood system and a potential function for the 
random field X over the image S to represent prior knowledge 
about the image. The neighborhoods should be large enough to 
capture the interactions between the pr imi t ive elements but st i l l 
small enough for a machine to carry out the computations 
required to make an estimation. The higher the energy measure 
of a configuration, the less l ikely it is to occur. 

3 . C o m b i n i n g Op in ions o f Ea r l y V isua l Modules 

Most research on evidence combination has focused on 
updating the "be l ie f in a given hypothesis about an individual 
element when a piece of new evidence becomes available [Pearl 
86]. This approach, however, is not suitable for our purpose. We 
believe that an information fusion mechanism should constantly 
mainta in a representation of knowledge to reflect the total infor­
mation available, except possibly for transient periods of t ime for 
aggregating evidence locally. Mainta in ing "marginal be l i e f 
requires the effects of updating local "be l ie f to be spatially pro­
pagated, thus violat ing such a requirement. 

In this section, we l im i t our attention to an indiv idual ele­
ment s of S. We show how the opinions about s can be combined 
and provide the probabilistic justi f ication for the proposed 
method. In Section 4 we show how the updating of this jo in t 
probabil i ty distr ibut ion given a new set of opinions about a set 
of pr imi t ive elements can be carried out w i th simple operations. 

3.1. Representat ions and C o m b i n a t i o n Rules 

As in Pearl's construction [Pearl 86], we assume the seg­
mentation labels can be organized as a hierarchical tree H (e.g. 
Figure 1). Node / denotes the hypothesis that the corresponding 
pr imi t ive element is of label /, The numbers main­
tained in our method indicate the degrees of hypothesis 
confirmation or disconfirmation provided by the collected evi­
dence. 

Let denote the current degree of confirmation/ 
disconfirmation for node /. The probabilistic interpretations for 
the a's w i l l be given in Section 3.2. In i t ia l ly , a/ is set to uni ty 
for every / indicating "neither confirmed nor disconfirmed". 
Besides a, each internal node / keeps one value, w1 for each son 
i. In i t ia l ly , wl is set to the a priori probabil i ty of i given /. 
Obviously, the of each node sum up to uni ty in i t ia l ly . 
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Suppose a module A reports its opinion as a set of l ikel i ­
hood ratios is a set of mutual ly exclusive 
labels contained in H as described in Section 1.2. The 
corresponding a's are updated according to the rule: 

. - .. (3.1) 

To maintain the coherence of the a's, the effect of this opinion 
has to be propagated throughout the label tree by the following 
process: 

(1) Every node sends a message, to its father 
and each of its sons. 

(2) Any node k that receives a message m from its father, 
passes m to a l l its sons and replaces , that is, 

(3.2) 

(3) Any node j that receives a message m from one of its sons 
(say i), updates w{ by mwi, i.e., 

(3.3) 

and sends a message m' to its father, where 

(3.4) 

then updates a} and al l the according to 

(3.5a) 

(3.5b) 

where the summation in (3.4) is taken over al l the sons of 
J-
The combination and propagation procedures are commuta­

t ive and associative, so their order is irrelevant. 

3.2. P robab i l i s t i c Jus t i f i ca t i on 

The above method fits in the Bayesian formalism if we 
maintain two notions of conditional independence. First, evi­
dence 0A that bears directly on a label / says nothing about the 
descendants o f / : 

(3.6) 

(3.7) 

Second, the observations of different modules are conditionally 
independent. 

where the product on the r ight-hand side is over a set of modules 
and 0 is the union of their observation 0 A ' s 

As suggested by Pearl, (3.6) states that when the observa­
t ion is a unique property of /, common to al l its descendants, 
once we know / is true/false, the identity of or does not 
make _ more or less l ikely. (3.7), impl ic i t ly used in Pearl's 
scheme, states that each piece of evidence observed by the early 
modules provides independent information about a label. We 
believe that the disparate types of image clues in vision applica­
tions satisfy this assumption. 

We define consistent states of a's as the states in which for 
each available opinion, al l of the a's are either updated accord­
ing to rules (3.1) - (3.5), or none of the a's have been changed 
w i t h respect to this opinion. We say that a set of opinions derives 
a consistent state if a l l opinions in this set, and no other opin­
ions, have been used to update the a's. The following theorem 
relates the a's to the l ikelihood probabilit ies at consistent states. 

Theorem 1 [Chou and Brown 87]: Let a\ denote the a value 
for / at the consistent state t, and be the probabil ity of 

given the label where denotes the union of those 

observations that form the set of opinions that derives the state 

for (3.8) 

where c, is a constant depending only on t, given (3.6) and (3.7). 

Applying Theorem 1 and Bayes' rule, we have: 

Corollary 1: Let a/ denote the a value for / at the con­
sistent state is the prior of a set of mutual ly 
exclusive and exhaustive labels L, then the posterior probability 

at the consistent state t is 

To summarize: We have developed an evidence combination 
method for a hierarchy of hypotheses based on the notions of 
conditional independence given by (3.6) and (3.7). This scheme, 
besides having al l the characteristics listed in [Pearl, 86], has 
the following advantages: 

(1) The computations involved are extremely simple. Simpler 
and fewer messages must be passed. Normalizations are 
never needed since relative degrees of 
confirmation/disconfirmation are maintained instead of pro­
babilities (Theorem 1). 

(2) This scheme decouples the notion of evidence and a priori 
belief. In the next section we show this characteristic is 
very helpful when the prior knowledge is represented as an 
MRF. 

4 . Comb in ing P r i o r Knowledge w i t h Observat ions 

In this section, we move our attention to the relationships 
of segments of the image S. Recall that in the last section, each 
pr imit ive element is associated w i th a set of a's to maintain the 
opinions of the early visual modules. Let denote the set of a's 
associated wi th s€S, and be the a value for label / in 
Define a global consistent state to be a state of the B's at which 
each is in a consistent state. 

Assume that the prior knowledge about the image is 
represented as an MRF X over S, X,EL - a mutual ly exclusive 
and exhaustive label set in H, w i th respect to a neighborhood 
system N. (1.1), Theorem 1, Bayes rule, and the Hammersley-
Clifford Theorem lead to the conclusion that the a posteriori 
Gibbs measure of a configuration to at a global consistent state t 

(4.1) 

Only simple local operations are needed to update the 
energy measure and local characteristics as new opinions from 
the early visual modules become available. Therefore, M A P and 
MPM estimations can easily be implemented in the proposed 
framework (Section 5). We believe that based on this property, 
novel estimation algorithms can ul t imately be designed that 
incrementally improve their estimations as more and more infor­
mation arrives. For now, the existing Bayesian estimation 
methods can be invoked at any global consistent state to provide 
the up-to-date estimations. 

5. Exper imen ta l Resul ts 

We demonstrate the method using two images of overlap­
ping rectangular patches (Fig 2a, 3a). Each patch in the first 
image corresponds to a geometrically identical patch in the 
second. The intensities of the patches in each image are ran­
domly selected from the range [0, 255], w i th no intensity correla­
t ion between images. Gaussian zero mean noise is added, w i th 
standard deviation 16 and 12 respectively. These two images 
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can be considered as two different sources of information about 
the same set of rectangular objects. 

A set of likelihood edge detectors, an early version of the 
detectors described in [Sher 86], provides a set of likelihood 
ratios for each pixel given the win-
dow of intensities centered at it, where NE denotes the 
hypothesis that the given pixel is not an edge element, and E, 
denotes the hypothesis that the given pixel is an edge of one of 
the four (horisontal, vertical, and two diagonal) orientations. 
The likelihoods are computed using a model for step edges and a 
Gaussian model for additive noise. Figure and 3b show the 
Maximum Likelihood Estimation (MLE) for edges in Figure 2.a 
and 3.a respectively. That is, a pixel s is on if and only if 
max B 

t 

We use a homogeneous and isotropic MRF with a third 
order neighborhood system over the image lattice to encode a 
body of basic knowledge about edges. Cliques of size 3 are used 
to discourage parallel and competing edges, whereas cliques of 
size 2 are used to encourage line continuations, region homo­
geneity and to discourage breaks in the line forming process. 
The potential assignments for the cliques are chosen conserva­
tively in the sense that estimation methods based on (4.1) make 
as few false detections of edges as possible while maintaining 
reasonable detectability. 

A software package has been implemented to study the 
behavior of various estimation criteria and schemes [Chou and 
Raman 87]. Here we show the results of using this package to 
perform MPM estimations based on the Monte Carlo procedure 
proposed in [Marroquin et al 85]. Figure 2c and 3.c show the 
MPM estimations based on the statistics collected over 300 itera­
tions. Considering Figures 2.a and 3.a to provide only partial 
evidence to support the NE and E,'s hypotheses, Figure 4.a and 
4.b show the MLE and the MPM estimations resulting from 
applying the upward propagation rule (3.3H3.5). Here the ini­
tial 

Alternatively we can consider that Figure 2.a and 3a 
independently support the same set of hypotheses. By applying 
rule (3.1), we obtain Figure 5.a and 5b representing the MLE 
and the MPM estimations based on the combined information. 
Observe the lines detected in the lower left quadrant of Figure 
5b that do not show up in either of Figure 2c and 3.c, and the 
false detections in Figure 2.c and 3c that are removed in Figure 
5b. These sorts of results can not be achieved by multi-modal 
segmenters that rely on Boolean operations to combine evidence. 

6. Future Research 
We are currently improving the MRF model to handle 

curved lines. One of our ultimate goals is to encode all kinds of 
geometrical and photometrical constraints in terms of local 
clique potentials in an MRF that has general connectivity. The 
stochastic estimation methods are computationally very expen­
sive. We are now designing a deterministic estimation algo­
rithm that incremently improves its estimation as new evidence 
arrives. We believe this method of information fusion can be 
applied to problems other than image segmentation as well. 

Acknowledgements 
We would like to thank Dave Sher for providing his likeli­

hood edge detectors, Rajeev Raman for designing and imple­
menting software for the experiments, and Henry Kyburg for 
providing many valuable suggestions. 

REFERENCES 
1 Bolles, R. C. "Verification Vision for Programmable 

Assembly." In Proc. IJCA/-77. Aug. 1977, pp. 569-575. 
2 Chou, P. B. and C. M. Brown, "Multi-Modal Segmenta­

tion Using Markov Random Fields." In Proc. Darpa 
Image Understanding Workshop, Feb. 1987, pp 663-670. 

3 Chou, P. B. and R. Raman, "Relaxation Algorithms 
Based on Markov Random Fields." Technical Report 212, 
University of Rochester, Computer Science Depart­
ment, Apr. 1987. 

4 Derin, H. and W. S. Cole, "Segmentation of Textured 
Images Using Gibbs Random Fields." Computer Vision, 
Graphics, and Image Processing, 35, 1986, pp. 72-98. 

5 Geman, S. and D. Geman, "Stochastic Relaxation, Gibbs 
Distributions, and the Bayesian Restoration of Images." 
IEEE Transactions on Patter Analysis and Machine Intel­
ligence, PAMI-6, No. 6, 1984. 

6 Marroquin, J., S. Mitter, and T. Poggio, "Probabilistic 
Solution of Ill-Posed Problems in Computational Vision." 
Proc. Darpa Image Understanding Workshop, Dec. 1985. 

7 Pearl, J. "On Evidential Reasoning in a Hierarchy of 
Hypotheses" Artificial Intelligence, 16, No. 2, Feb. 1986. 

8 Sher, D. B., "Advanced Likelihood Generators for Boun­
dary Detection." Technical Report 197, University of 
Rochester, Computer Science Department, Jan 1987. 

782 PERCEPTION 


