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A b s t r a c t 

We develop a discrete representation for smooth objects em­
bedded in 3-space, which describes the nesting of bumps, depres­
sions, saddles, and related features wi th in each other. The rep­
resentation is intrinsic and stable under perturbation of the sur­
face shape and embedding. The final structure is a graph of level 
set graphs. Each level set graph represents a constant topology 
of level sets for a region of the Gaussian projective plane (ob­
tained from the Gaussian sphere by identifying antipodal points) 
bounded by the images of parabolic curves, corresponding to a 
range of choices of height orientation. The graph of these graphs 
has the topology of the adjacency graph of the above Tegions on 
the Gaussian projective plane. We show what the topology of 
the graphs is, and specify what their bifurcations are. Subparts 
correspond to subgraphs or collapsed graphs in a simple way. 
Scale space transformations and smoothing correspond to simple 
bifurcations of the graph structure. 

I . I n t r o d u c t i o n 

Shape representation is crucial in image understanding, both 
for object recognition as well as signal representation. General­
ized cylinders [e.g., Bin ford 1971, Agin and Binford 1973, Nevatia 
and Binford 1977, Brooks 1981] are one well-known representa­
tion wi th a notable history. More recently, there has been interest 
in using differential geometry in shape description [e.g., Haral-
ick, Watson, Laffey 1983, Horn 1983, Nackman 1984, Brady et 
al. 1985, Besl and Jain 1985], as well as fractals [Pentland 1985]. 

Our present subject is a representation for shape based on 
tome ideas from differential topology, which turns out to be re­
lated to all 3 of the approaches mentioned above. The shapes we 
are interested in are smooth 2-dimensional surfaces embedded in 
3-space, a common class for vision. 

My starting point for this is that I want to represent an 
object as a bunch of bumps. The representation should have in-
variance properties: it should be independent of position or orien­
tat ion of the object, i.e. it should be intrinsic. It should also have 
stability properties, i.e. it should be constant under small per­
turbations of most anything involved in generating or matching 
to the representation, like noise, viewpoint, and, less obviously, 
perturbations of the shape itself. And it should degrade well 
under part ia l information; in particular it should commute wi th 
occlusion: the representation of a subpart should be a subpart of 
the representation. 

Anyway, the goals of invariance and stabil ity, like spring, 
make a young man's thoughts turn to topology and geometry, so 
that is where we look for the tools of our representation. 

Since space is l imi ted here, many details, technical and oth­
erwise, including how to make all this rigorous, are omitted. For 
a more complete description, consult [Blicher 1987]. 

I I . C a n o n i c a l g r a p h s t r u c t u r e s 

A . T h e leve l set g r a p h f o r a he igh t f u n c t i o n 

For a surface defined as a real function on the plane, the 
natural seroth order structure that is invariant under coordinate 
changes of the plane is the topology of level sets, i.e. the topology 
of contour lines. This generically leads to a binary tree structure 
where the leaves are extrema, and the branch nodes are saddles 
[Koenderink and van Doom 1979; Blicher 1983, 1984]. The ef­
fects of a scale spectrum can be expressed in the bifurcations 
of this tree's topology as the function changes. The effect of a 
generic smoothing, e.g. convolving wi th a gaussian, is to cause 
a sequence of such bifurcations in the tree structure. We wi l l 
extend this structure to an arbitrary surface. 

First, take some surface embedded in 3-spare, and choose 
a 2-direction (Figure 1). Let's look at the level sets, i.e. the 
intersections wi th horisontal planes. We can think of the surface 
embedding as a function which assigns to each point of the surface 
its z value. Then the level set structure wil l be very much like 
that of the function on the plane. The crit ical points (where the 
horisontal planes are tangent to the surface) are either extrema 
or saddles, and the component containing a regular point is a 
circle, that of an extremum is a point, and that of a saddle is a 
figure-8. So if we shrink each connected component of a level set 
to a single point, we can see that as the horisontal plane moves 
vertically, these points trace out a graph wi th the branch nodes 
at saddles, and the number of cycles of the graph is the number 
of holes in the surface. The gfaph can be thought of as the spine 
of a generalised cylinder representation of the surface. It has 
all the nice properties of the tree structure for functions on the 
plane, as well it should since the latter comes from specialising 
Morse theory for arbitrary functions to ones on the plane. 

Figure 1: The canonical graph for a given z-direction. 
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B. W h a t h a p p e n s as t h e x - d i r e c t i o n changes 

We were able to describe our shape in terms of level sets 
by choosing a particular direction for the x coordinate as spe­
c i a l Alas, if we were to choose some random other x-direction, 
we probably would get a different batch of cri t ical points and a 
different graph structure. 

The "obvious" mathematical solution to the choice of in­
direction is to consider all x-directions, and all possible graph 
structures—then things won't depend on choice of coordinates, 
since we use them al l ! The space of al l x-directions is . . . the 
Gaussian sphere. So now, every choice of x-direction, hence every 
point on the Gaussian sphere, has a graph associated wi th it that 
tells us the level set structure of the surface for that particular 
x-axis. 

Let's consider stabil i ty. Look at what happens at an atomic 
bump (Figure 2). Looked at w i th a slightly different vertical, 
it*s st i l l a bump. In particular, we can't get r id of the crit ical 
point (the tangency wi th the plane). It may move (and wi l l ) , 
but it st i l l exists somewhere, if the change in orientation is small 
enough, and if we started at a typical orientation. This tells us 
that things are not al l that bad: for typical (al l but measure sero) 
points on the Gaussian sphere, the graph structure is constant in 
some neighborhood of the point. 

Figure 2: Stabil i ty of bumps. 

When does it change? Consider what happens as we keep 
rotat ing the x-direction (Figure 3). As the extremum from our 
bump moves to the left, a saddle point moves toward it to the 
r ight, inexorably. Once they meet, poof! No more crit ical point, 
and our graph has changed. This is a saddle-node bifurcation, 
since a saddle and an extremum have annihilated each other. 
Running our rotat ion backwards would result in the b i r th of a 
saddle-node pair. Where do they meet? At an inflection, i.e. at 
a point where the curvature is sero. For a surface, this is where 
the Gaussian curvature is sero. Such points are called parabolic 
points, and they generically group to form parabolic curvet (which 

are not parabolas!). That means that if we rotate the x-direction 
somewhat differently, we can't get r id of the parabolic p o i n t -
w e l l Just h i t the parabolic curve in a slightly different place. 

The other type of bifurcation, a saddle connection, can also 
occur. This wi l l happen when changing the x-direction results 
in a saddle that was higher than another becoming lower wi th 
respect to the changing equal-height planes. From now on, we 
will only describe the part of the structure that comes f rom the 
saddle-node bifurcations. 

C . P a r a b o l i c cu rves a n d t h e Gauss ian c u r v a t u r e g r a p h 

For a compact surface, the parabolic curves—the points of 
tangency where the saddle-node bifurcations happen—generically 
are closed curves that don't intersect [Koenderink and van Doom 
I960]. Now both the surface and the Gaussian sphere are divided 
into regions by the parabolic curves. On the Gaussian sphere, the 
parabolic curves (or really their images under the Gauss map) are 
the x-directions where the level set graph bifurcates (changes its 

Figure 4: Parabolic lines on a surface and their Gaussian images. 
In general, the Gaussian image curves may have cusps. 

topology) in a saddle-node. On the surface, they are the inflec­
tions. Also, they are level sets of the Gaussian curvature function, 
for the level value of sero. Like other level sets, they exhibit a 
nesting structure, so that they, too have a graph structure asso­
ciated wi th them. The Gaussian curvature is a smooth function 
defined on the surface, so we can play the same level set graph 
game wi th i t . This yields the Gaussian curvature graph of the 
surface, which has the same topological features as the other level 
set graphs. This graph is intrinsic, though, since there is only one 
Gaussian curvature function for (a given embedding of) the sur­
face. As we smoothly change the surface (say by deforming i t ) , 
both the graph structure of the Gaussian curvature map (hence 
the parabolic lines) and of the surface level sets in each domain 
of the Gaussian sphere wi l l remain constant, while the shape and 
locations of the domains wi l l change. This wi l l continue unt i l 
we reach a bifurcation of the "parabol ic" graph, at which time 
a domain may be created or annihilated, signifying a qualitative 
change in appearance for some view aspect. 

There is a notion of scale for each of the graph structures, 
analogous to that for the level set tree of a function on the plane, 
defined by the nesting of the respective level sets. "Smoothing" Figure S: x-directions where the canonical graph changes. 
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can be effected by lopping off leaf nodes, or whole terminal sub­
graphs. 

D . T h e t o p o l o g i c a l i o d i s e 

We've seen so far that the (images of the) parabolic curves 
on the Gaussian sphere mark the normal directions where the 
level set graph undergoes a saddle-node bifurcation. Equiva-
lently, they divide the Gaussian sphere into regions where the 
topology of the level set graph is constant (modulo saddle con­
nections). We've also seen that distortions of the surface move 
these parabolic curves around on the Gaussian sphere. To cap­
ture the topology of these regions, we can use the adjacency graph 
of the regions. 

Actually, we were not completely candid about the construc­
tion of the regions on the Gaussian sphere. You may have noticed 
that it 's not entirely clear which of the 2 possible normals to a 
level plane is the right one for mapping to the Gaussian sphere 
at any given time. The answer is that really they both are, and 
the only solution is not to use the Gaussian sphere at al l , but 
to use the Gaussian projective plane obtained by identifying an­
t ipodal (diametrically opposite) points of the Gaussian sphere to 
single points. To make our pictures completely precise, we have 
to map the parabolic curves to this Gaussian projective plane by 
the antipodal identification, and consider when the normal line 
to a level plane crosses one of these curves, i.e. when either nor­
mal of the level plane crosses the parabolic curve on the Gaussian 
sphere. Figure 5a shows the result of applying the above map­
ping. We are representing the projective plane by a hemisphere, 
wi th features from the rear hemisphere of the Gaussian sphere 
mapped to the front hemisphere (which we show) by the an­
t ipodal map. In such a picture, the points on the circle at the 
boundary of the hemisphere are understood to be identified wi th 
their antipodal points (on the same circle). The dashed lines rep­
resent the parabolic curves that were on the rear of the sphere 
in Figure 4, and which now have been mapped to the front of 
the sphere by the antipodal map, so that all the features are now 
on the front of the sphere, and we therefore only depict a hemi­
sphere. This projective plane represents all the lines through 
the center of the sphere—the normal vectors wi th their sense of 
direction stripped away. Note that rotat ing a line through only 
180 degrees results in the same line again; that's why we have to 
identify ant ipodal points on the sphere. 

Figure 5: The Gaussian projective plane, (a) The images of 
parabolic curves, (b) The adjacency graph of the regions. Note 
that ant ipodal points on the periphery circle are identified. 

I t 's the regions in the Gaussian projective plane that really 
are the regions of constant level set graph. In Figure 6 we show 
some of the level set structures for our example surface. We've 
depicted the surface rotat ing relative to fixed level planes for 
clarity. The relative direction of the normal line for each set of 
level planes lies on the associated region of the Gaussian projec­
tive plane. The adjacency graph associated wi th these regions 
is shown in Figure 5b. Keep in mind that antipodal nodes on 
the outside circle are identified, even though each one has been 
shown twice to allow a comprehensible graph. 

Figure 6: Level set structures for regions on the Gaussian pro­
jective plane. (Not al l the possibilities are il lustrated.) 
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Then each node in the adjacency graph has associated wi th 
it the level set graph that describes the bump structure for z-axes 
wi th in its region (Figure 7). We call this the topological zodiac 
since it is reminiscent of some astrological charts. This graph 
of graphs completely specifies all the level set structures possible 
for the surface, and all the possible transitions between them. Of 
course further information could be appended to the structure, 
e.g., metric information about the sise of regions, their actual 
orientation, etc. 

The topological sodiac is related to the visual potential of 
[Koenderink and van Doom 1979] in that both representations 
are graphs of topological types, based on analysis of singularities. 
The former, however, represents solid shape; the latter, shape of 
outlines. The fu l l details of the relationship remain to be worked 
out. 

I I I . S u m m a r y a n d C o n c l u s l o n s 

We sought to represent protrusions w i th seroth order struc­
ture, and found that this is organised by 1st order singularities: 
cri t ical points. The changes in this structure, in tu rn , are gov­
erned by 2nd order singularities: parabolic curves. The parabolic 
curves embed in the graph structure of the level sets of Gaussian 
curvature. The resulting representation provides a stable discrete 
structure which captures some (but by no means all) of the in­
tui t ive notion of shape. It allows restriction to a range of scale, 
a characterisation of substructure, and thus permits a coarse-to-
ftne matching strategy. 

Since all the information we have used is really contained 
in the Gaussian curvature graph and the Gaussian projective 
plane adjacency graph, it should be possible to dispense wi th the 
topological sodiac (the graph of level set graphs). It seems that 
the latter should be deducible by very simple operations directly 
from the above graphs. We haven't figured out how to do that 
yet, though. 
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