
Understanding System Specifications
Wr i t ten in Natural Language

J o h n J . G r a n a c k i , J r . , A l ice C . Parker and Y i g a l Arens
D e p a r t m e n t o f E lec t r i ca l Engineer ing-Systems

Un ive rs i t y o f Sou thern Ca l i f o rn ia
Los Angeles, CA 90089-0781

Abs t rac t

This paper describes research in understanding system spec­
ifications written in natural language. This research involves
the implementation of a natural language interface, PHRAN-
SPAN, for specifying the abstract behavior of digital systems in
restricted English text. A neutral formal representation for the
behavior is described using the USC Design Data Structure. A
small set of concepts that characterize digital system behavior
are presented using this representation. An intermediate repre­
sentation loosely based on Conceptual Dependency is presented.
Its use with a semantic-based parser to translate from English to
the formal representation is illustrated by examples.

1 Introduction

This work describes research in understanding system speci­
f ications wr i t ten in natural language. This research was im­
plemented in the PHRAN-SPAN 1 natural language interface
to A D A M , the USC Advanced Design AutoMat ion System [5].
PHRAN-SPAN is used to capture system specifications, w i t h
part icular emphasis on the abstract behavior of the system be­
ing specified.

2 The System Specification Problem

System behavior can be described by one or more processes
(independently executing environments) that compete and/or
communicate. For example, a serial interface might contain two
processes, one to communicate asynchronously over a serial l ine,
and one to communicate synchronously over a parallel bus. A
process can: be started asynchronously (whenever specified con­
ditions become true); execute indefinitely; star t , suspend and
terminate other processes asynchronously; exclude other pro­
cesses from executing; communicate w i t h other processes; and
be asynchronously terminated or suspended itself when some
specified conditions become true. These processes may run at
different (clock) rates. Processes communicate via shared data,
synchronize at cr i t ical points, or compete for shared resources.
Most existing techniques for describing or specifying these types
of processes overly restrict the solution or they cannot be used
for complex system specifications.

3 Relationship to Other Research

Previous natural language specifications have been concerned
pr imar i ly w i t h software systems [3], programs [1] and data types

In this research, we chose a l imi ted domain, the behavior of
d igi ta l systems. In addi t ion, our system expects a structured
input that has been checked for spelling errors and misty pings.

One prior endeavor involved the application of natural lan­
guage processing as an input to a design system for digi tal elec­
tronics, [7], but this work focused on the construction of a circuit
given predefined components rather than specification. Further­
more, use of hyphenated reserved phrases made it more like an
application-oriented programming language.

Other recent work, like the UNIX ' Consultant (VC) [11],
and CLEOPATRA [9], answer questions concerning a given body
of knowledge. The P H R A N interface incorporated in this inter­
face was developed for UC.

The research described here differs f rom UC and CLEOPA­
T R A in tha t it is creating a design entity. To create this repre­
sentation, semantic knowledge about system behavior has been
encoded in the parser's knowledge base.

Overview of the
Operation

PHRAN-SPAN

The PHRAN-SPAN interface operation is shown in Figure 1.
English sentences are input to P H R A N . P H R A N detects

patterns in the sentences and produces concepts, based on its
database of pattern-concept pairs. SPAN analyzes these con­
cepts and constructs an internal representation of design data
for each sentence. SPAN also informs the user in English how
each sentence has been interpreted.

5 Components of
Language Interface

the Natural

lb understand the specification of d igi ta l systems in restricted
English text requires a corpus (a collection of wri t ings, in this
case examples) for the domain of these specifications, a rep­
resentation for the knowledge expressed in the corpus, a formal

lPHRasal ANalyser-SPeciflcation ANaly 3UNDx is a trademark of Bell Labs.

688 NATURAL LANGUAGE

Design D a t a St ruc ture
f ragments

Figure 1: Overall Operation of the PHRAN-SPAN Interface

representation for the behavior of a digi tal system, and a parsing
technique to map the natural language into the formal behav­
ioral representation. Each of these w i l l now be described.

5 . 1 T h e C o r p u s

The corpus for this natural language interface was developed
by acquiring actual specifications, having students wr i te specifi­
cations and constructing addit ional examples. These examples
were based on a taxonomy of high-level system behavior and
a 2000-1- word lexicon which were developed as part of this re­
search.

Examples of the sentences taken f rom the actual specifica­
tions are provided in the following l ist:

1. A block of data bytes is transferred by a sequence of data
cycles.

2. The peripheral equipment shall sample the EF code word
which is on the OD lines.

3. Each requestor communicates with the arbiter via two
lines, a request line and a grant line.

4. Select shall be dropped 100 ns after the write is begun.

5.2 T h e C o r p u s ' K n o w l e d g e R e p r e s e n t a t i o n a n d
t h e P a r s i n g T e c h n i q u e

The representation of the knowledge expressed in this corpus
was constrained by the choice of a pre-existing semantic-based
parsing technique which was implemented by Arens in P H R A N ,
a PHRasal ANalysis program, [2]. P H R A N is a knowledge-
based approach to natural language processing. The knowledge
is stored in the form of pattern-concept pairs. A pattern is
a phrasal construct which can be a word, a l i teral str ing (e.g.
D i g i t a l E q u i p m e n t C o r p o r a t i o n) , a general phrase such as

<component><sends><data>to<component>

and can be based on parts of speech, for example,
< noun-phrase > < verb >.

Associated w i t h each phrasal pattern is a concept. The
pattern-concept pair (PCP) encodes the semantic knowledge of
the language. For example, associated w i t h the pattern:

is a conceptual template called unidirectional value transfer that
denotes a transfer of data f rom one component to another phys­
ical component.

The concepts in P H R A N are expressed in a specification
representation language (SRL) loosely based on Conceptual De­
pendency Diagrams (CD) as developed by Schank [10]. Our
SRL is based on concepts of system behavior such as temporal
constraints and value transfers and the information required to
specify a d ig i ta l system.

5 .3 T h e D e s i g n D a t a S t r u c t u r e : A M o d e l l i n g
T o o l

The Design Data Structure (DDS) [6], is the underlying repre-
sentation used both to develop the SRL for understanding spec­
ifications and also to represent the behavior of digi tal systems.
The DDS is a unified representation of design data. It has been
designed to support and faci l i tate the synthesis of digi tal hard­
ware systems. It is composed of four subspaces:

1. D a t a F l o w (DFss), which covers data dependencies and
functional definitions.

2. T i m i n g a n d Sequenc ing (TSss), which covers t iming,
sequence of events and condit ional branching. It is repre­
sented by a directed acyclic graph, which consists of nodes
corresponding to events, and arcs which represent intervals
and connect these nodes.

3. S t r u c t u r a l (Sss), which covers the logical decomposition
of a circuit . This subspace is similar to a schematic or
block diagram.

4. P h y s i c a l (Pss), which covers the physical hierarchy of
components and the physical properties of these compo­
nents.

TSss arc t y p e s There are four types of t iming arcs. A s i gma
arc represents an interval of t ime (or range [8]) in the TSss. A
t h e t a a rc represents a temporal constraint. A c h i a rc rep­
resents a casual relationship. A d e l t a arc represents inertial
delay.

Table 1: The DDS Bindings for the U V T .
TSss n o d e t y p e s There are seven types of nodes in the TSss.
For example, a w) node is a simple node that may join two
arcs. A b e t a n o d e represents an and fork point or
a cobegin. A mu n o d e represents an and join point.

The relationships between these various spaces are made ex­
pl ic i t by means of bindings. These bindings and the information
in the four subspaces are believed to ful ly characterize the de­
sign.

5.4 The Knowledge of the Specification Domain

The desired result of processing the natural language text is to
fo rm a representation of the behavior in the DDS. Since P H R A N
processes each sentence independently, it is only necessary to
consider the fragments of DDS graphs or sub-graphs which may

Granacki, Jr., Parker, and Arens 689

be created as a result of reading each sentence. Then the frag­
ments can be related as a post-processing step.

A small set of concepts that characterize system-level behav­
ior, constraints and other ancillary data were developed. These
concepts can be grouped into classes as follows: In format ion
Transfer consisting of Unidirectional Value Transfer (UVT),
Bidirectional Value Transfer (BVT), and Nondirectional Value
Transfer (NVT); Temporal Act iv i t ies consisting of
Asynchronous Temporal Activity (ATA), Causal Temporal Ini­
tiation (CTI), Causal Temporal Termination (CTT), and Single
Temporal Event (STE); Temporal Constraints consisting of
Single Temporal Relation (STR), and Dual Temporal Relation
(DTR); Control consisting of If-then-else, While, Repeat, and
Looping; Declarations consisting of Assignment or Inheritance
Statements, and Structural or Physical Interconnection; and
Abstract ions of DDS Bindings consisting of Value-Carrier-
Net-Range (VCNR), and Operation-Module-Block-Range
(OMBR).

Formal semantic definitions of all these concepts have been
developed and represented using DDS templates [6].

5.5 T h e U n i d i r e c t i o n a l Va lue Transfer

An example of these models is the DDS template for a UVT
shown in Figure 2 and Table 1. This template spans two of

the DDS subspaces, the DFss and the TSss. The template for
the UVT in the DFss is composed of three values and three
operations and their data link arcs. The control operation may
be associated with the source operation, where the data flow
value, info originates or the sink operation, the destination for
the data flow value, info or the control may be associated with
a third independent operation.

An example of a sentence which maps into a UVT is
The cpu transfers the block of data bytes from the

disk to the control store.
If no timing information or constraints are specified in the

same sentence then the TSss template shown in Figure 2 is used
as the default. The default TSss template shows the timing for
the three operations and the necessary constraints for a valid
UVT. For example, the constraints labelled 01 and 02 represent
the fact that the time interval for the operation control must
begin before the end of the intervals associated with the source
operation and the sink operation, respectively. If these con­
straints were not present it would be meaningless to associate
the src.cnt l value or the snk.c t l value with this particular
transfer of the value info.

The fact that these constraint arcs emanate from a node
labelled 0C2 indicates that the two constraints, 01 and 02 and
the interval labelled o4 all begin concurrently.

5.6 P H R A N - S P A N O p e r a t i o n

PHRAN reads the sentence from left to right one word at a
time. As each word is examined, existing patterns and concepts
are checked for a match and retained, modified or discarded.
The match may be based on lexical criteria, semantic criteria
and/or syntactic criteria. PHRAN also provides look-ahead in
the sentence to the next word and the ability to look back at
previously matched terms with limited ability to modify those
previously matched terms.

The patterns and concepts for PHRAN are stored in a
knowledge-base of pattern-concept pairs (PCP). An example of
the pattern for the UVT concept expressed by the verb transfer
is

The subject of the sentence must belong to the semantic category
of an a.component (abstract component) or a d f .opn (data
flow operation) for this pattern to match. The next part of the
pattern indicates that some verb form with the root of transfer
must be present. The verb may be in a different tense, e.g.,
transferred or it may be combined with a modal verb like shall.
The object transferred belongs to the semantic category df .val
(data flow value). The abstract component is introduced to
handle ambiguity. For example, a cpu may be a logical module
or a physical block. An additional declaration or phrase like
an appositive is required to resolve this type of ambiguity. If a
cpu process had been specified this would be interpreted more
precisely as a d f .opn and the pattern would also match.

10

Figure 2: The DDS Template for a UVT.
Associated with each pattern is a concept that describes the

meaning of the word phrase or sentence that matches the pat­
tern. The concept is represented as a frame [12] using the specifi­
cation representation language SRL, based on the set of concepts
we introduced.

For example, the concept part of the pattern-concept pair
for the UVT in SRL is

890 NATURAL LANGUAGE

The facet slots in the frame are represented by variable names
that are prefixed with a question mark. Fillers for these slots are
obtained when the sentence matches the pattern. For example,
consider the sentence,

Note the facet values for the source and sink have defaulted to
•unspecified* since they were not included in this sentence.

The source and sink are specified by adding two adverbial
phrases to the sentence. These phrases must match the patterns
associated with the desired concepts. The pattern for source is

[from (or (a_component) (df_opn))]

When these patterns are matched the concept associated with
each of them modifies the UVT pattern by replacing the default
value of * unspecified* with the value of source and sink found
in the sentence.

The following sentence results in a completely specified UVT:
The cpu transfers the code word f rom the controller

to the peripheral device.
An option in the prototype system is for SPAN to display

the resulting concept in English instead of the frame-like data
structure. In this case, SPAN'S output for the above sentence is

This sentence resulted in a data flow
subgraph f o r a un id i rec t iona l value t ransfer .

The source of the information is the
controllerl.

The sink f o r the information is the
peripheral-device 1.

The Information t ransferred is the
code-wordl.

The t ransfer is contro l led by the cpul.

6 Cur ren t Status

The system currently recognizes simple sentences associated
w i t h al l the pr imi t ive concepts of our specification language,
e.g., U V T , B V T , C T I and D T R which are required to describe
behavior in the domain of digi tal systems. Actual pattern con­
cept pairs have been bui l t for 25 basic verb patterns common to
specifications and 100+ nouns. In addit ion, we have added the
abi l i ty to handle mult i -noun sequences which occur frequently
in specifications. Also the system has been extended to detect
ambiguity tha t can arise f rom the use of nouns and verbs that
have the same lexical stem, e.g., transfer, interrupt, and signal.

The system is coded in Franz Lisp and is running in inter­
preted mode on a SUN/2 workstat ion under SUN's operating
system, Version 1.4 (UNIX BSD 4.2). Typical sentences take
approximately 15 to 35 cpu seconds to process. No attempt has
been made to optimize the code.

7 Acknowledgements

This research was supported by the National Science Foundation
under Computer Engineering grant #DMC-8310744 and John
Granacki was part ia l ly funded by the Hughes Aircraf t Co.

References

[1] R.J. Abbo t t . Program description by informal English de­
scriptions. C A C M , 26(31):882-894, November 1983.

[2] Arens. CLUSTER: An Approach to Contextual Language
Understanding. PhD thesis, University of California, Berke­
ley, 1986.

[3] R. Balzer. A 15 year perspective on automatic program­
ming (invited paper). IEEE Transactions on Software En­
gineering, SE-11(11):1257-1268, November 1985.

[4] J.R. Comer. An Experimental Natural-Language Processor
for Generating Data Type Specifications. PhD thesis, Texas
A & M University, May 1979.

[5] J. Granacki, D. Knapp and A. Parker. The A D A M de­
sign automation system: overview, planner and natural lan­
guage interface. In Proceedings of the 22nd A CM/IEEE De­
sign Automation Conference, pages 727-730, A C M / I E E E ,
June 1985.

[6] J .J. Granacki. Understanding Digital System Specifications
Written in Natural Language. PhD thesis, University of
Southern Cal i fornia, November 1986. Department of Ele-
crt ical Engineering.

[7] M.R. Grinberg. A Knowledge-Based Design Environment
for Digital Electronics. PhD thesis, University of Mary land,
1980. Dept. of Computer Science.

[8] D.W. Knapp, J.J. Granacki and A.C. Parker. An expert
synthesis system. In Proceedings of the ICC AD Conference,
pages 164-165, IEEE, September 1983.

[9] T. Samad and S.W. Director. Toward a natural language
interface for C A D . In Proceedings of the 22nd ACM/IEEE
Design Automation Conference, pages 2-8, A C M / I E E E ,
June 1985.

[10] R.C. Schank. Conceptual Information Processing. Vol­
ume 3 of Fundamental Studies in Computer Science, Amer­
ican Elsevier Publishing Co., New York, N.Y., 1975.

[11] Y. Arens Wilensky, R. and D. Chin. Talking to UNIX in
English: an overview of UC. CACM, 27(6):574-593, June
1984.

[12] P.H. Winston and B.K.P. Horn. LISP. Addison-Wesley,
1984.

Granacki, Jr., Parkr, and Arens 691

