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Abs t rac t 

This paper describes research in understanding system spec­
ifications written in natural language. This research involves 
the implementation of a natural language interface, PHRAN-
SPAN, for specifying the abstract behavior of digital systems in 
restricted English text. A neutral formal representation for the 
behavior is described using the USC Design Data Structure. A 
small set of concepts that characterize digital system behavior 
are presented using this representation. An intermediate repre­
sentation loosely based on Conceptual Dependency is presented. 
Its use with a semantic-based parser to translate from English to 
the formal representation is illustrated by examples. 

1 Introduction 

This work describes research in understanding system speci­
f ications wr i t ten in natural language. This research was im­
plemented in the PHRAN-SPAN 1 natural language interface 
to A D A M , the USC Advanced Design AutoMat ion System [5]. 
PHRAN-SPAN is used to capture system specifications, w i t h 
part icular emphasis on the abstract behavior of the system be­
ing specified. 

2 The System Specification Problem 

System behavior can be described by one or more processes 
(independently executing environments) that compete and/or 
communicate. For example, a serial interface might contain two 
processes, one to communicate asynchronously over a serial l ine, 
and one to communicate synchronously over a parallel bus. A 
process can: be started asynchronously (whenever specified con­
ditions become true); execute indefinitely; star t , suspend and 
terminate other processes asynchronously; exclude other pro­
cesses from executing; communicate w i t h other processes; and 
be asynchronously terminated or suspended itself when some 
specified conditions become true. These processes may run at 
different (clock) rates. Processes communicate via shared data, 
synchronize at cr i t ical points, or compete for shared resources. 
Most existing techniques for describing or specifying these types 
of processes overly restrict the solution or they cannot be used 
for complex system specifications. 

3 Relationship to Other Research 

Previous natural language specifications have been concerned 
pr imar i ly w i t h software systems [3], programs [1] and data types 

In this research, we chose a l imi ted domain, the behavior of 
d igi ta l systems. In addi t ion, our system expects a structured 
input that has been checked for spelling errors and misty pings. 

One prior endeavor involved the application of natural lan­
guage processing as an input to a design system for digi tal elec­
tronics, [7], but this work focused on the construction of a circuit 
given predefined components rather than specification. Further­
more, use of hyphenated reserved phrases made it more like an 
application-oriented programming language. 

Other recent work, like the UNIX ' Consultant (VC) [11], 
and CLEOPATRA [9], answer questions concerning a given body 
of knowledge. The P H R A N interface incorporated in this inter­
face was developed for UC. 

The research described here differs f rom UC and CLEOPA­
T R A in tha t it is creating a design entity. To create this repre­
sentation, semantic knowledge about system behavior has been 
encoded in the parser's knowledge base. 

Overview of the 
Operation 

PHRAN-SPAN 

The PHRAN-SPAN interface operation is shown in Figure 1. 
English sentences are input to P H R A N . P H R A N detects 

patterns in the sentences and produces concepts, based on its 
database of pattern-concept pairs. SPAN analyzes these con­
cepts and constructs an internal representation of design data 
for each sentence. SPAN also informs the user in English how 
each sentence has been interpreted. 

5 Components of 
Language Interface 

the Natural 

lb understand the specification of d igi ta l systems in restricted 
English text requires a corpus (a collection of wri t ings, in this 
case examples) for the domain of these specifications, a rep­
resentation for the knowledge expressed in the corpus, a formal 

lPHRasal ANalyser-SPeciflcation ANaly 3UNDx is a trademark of Bell Labs. 
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Design D a t a St ruc ture 
f ragments 

Figure 1: Overall Operation of the PHRAN-SPAN Interface 

representation for the behavior of a digi tal system, and a parsing 
technique to map the natural language into the formal behav­
ioral representation. Each of these w i l l now be described. 

5 . 1 T h e C o r p u s 

The corpus for this natural language interface was developed 
by acquiring actual specifications, having students wr i te specifi­
cations and constructing addit ional examples. These examples 
were based on a taxonomy of high-level system behavior and 
a 2000-1- word lexicon which were developed as part of this re­
search. 

Examples of the sentences taken f rom the actual specifica­
tions are provided in the following l ist: 

1. A block of data bytes is transferred by a sequence of data 
cycles. 

2. The peripheral equipment shall sample the EF code word 
which is on the OD lines. 

3. Each requestor communicates with the arbiter via two 
lines, a request line and a grant line. 

4. Select shall be dropped 100 ns after the write is begun. 

5.2 T h e C o r p u s ' K n o w l e d g e R e p r e s e n t a t i o n a n d 
t h e P a r s i n g T e c h n i q u e 

The representation of the knowledge expressed in this corpus 
was constrained by the choice of a pre-existing semantic-based 
parsing technique which was implemented by Arens in P H R A N , 
a PHRasal ANalysis program, [2]. P H R A N is a knowledge-
based approach to natural language processing. The knowledge 
is stored in the form of pattern-concept pairs. A pattern is 
a phrasal construct which can be a word, a l i teral str ing (e.g. 
D i g i t a l E q u i p m e n t C o r p o r a t i o n ) , a general phrase such as 

<component><sends><data>to<component> 

and can be based on parts of speech, for example, 
< noun-phrase > < verb >. 

Associated w i t h each phrasal pattern is a concept. The 
pattern-concept pair (PCP) encodes the semantic knowledge of 
the language. For example, associated w i t h the pattern: 

is a conceptual template called unidirectional value transfer that 
denotes a transfer of data f rom one component to another phys­
ical component. 

The concepts in P H R A N are expressed in a specification 
representation language (SRL) loosely based on Conceptual De­
pendency Diagrams (CD) as developed by Schank [10]. Our 
SRL is based on concepts of system behavior such as temporal 
constraints and value transfers and the information required to 
specify a d ig i ta l system. 

5 .3 T h e D e s i g n D a t a S t r u c t u r e : A M o d e l l i n g 
T o o l 

The Design Data Structure (DDS) [6], is the underlying repre-
sentation used both to develop the SRL for understanding spec­
ifications and also to represent the behavior of digi tal systems. 
The DDS is a unified representation of design data. It has been 
designed to support and faci l i tate the synthesis of digi tal hard­
ware systems. It is composed of four subspaces: 

1. D a t a F l o w (DFss), which covers data dependencies and 
functional definitions. 

2. T i m i n g a n d Sequenc ing (TSss), which covers t iming, 
sequence of events and condit ional branching. It is repre­
sented by a directed acyclic graph, which consists of nodes 
corresponding to events, and arcs which represent intervals 
and connect these nodes. 

3. S t r u c t u r a l (Sss), which covers the logical decomposition 
of a circuit . This subspace is similar to a schematic or 
block diagram. 

4. P h y s i c a l (Pss), which covers the physical hierarchy of 
components and the physical properties of these compo­
nents. 

TSss arc t y p e s There are four types of t iming arcs. A s i gma 
arc represents an interval of t ime (or range [8]) in the TSss. A 
t h e t a a rc represents a temporal constraint. A c h i a rc rep­
resents a casual relationship. A d e l t a arc represents inertial 
delay. 

Table 1: The DDS Bindings for the U V T . 
TSss n o d e t y p e s There are seven types of nodes in the TSss. 
For example, a w) node is a simple node that may join two 
arcs. A b e t a n o d e represents an and fork point or 
a cobegin. A mu n o d e represents an and join point. 

The relationships between these various spaces are made ex­
pl ic i t by means of bindings. These bindings and the information 
in the four subspaces are believed to ful ly characterize the de­
sign. 

5.4 The Knowledge of the Specification Domain 

The desired result of processing the natural language text is to 
fo rm a representation of the behavior in the DDS. Since P H R A N 
processes each sentence independently, it is only necessary to 
consider the fragments of DDS graphs or sub-graphs which may 
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be created as a result of reading each sentence. Then the frag­
ments can be related as a post-processing step. 

A small set of concepts that characterize system-level behav­
ior, constraints and other ancillary data were developed. These 
concepts can be grouped into classes as follows: In format ion 
Transfer consisting of Unidirectional Value Transfer (UVT), 
Bidirectional Value Transfer (BVT), and Nondirectional Value 
Transfer (NVT); Temporal Act iv i t ies consisting of 
Asynchronous Temporal Activity (ATA), Causal Temporal Ini­
tiation (CTI), Causal Temporal Termination (CTT), and Single 
Temporal Event (STE); Temporal Constraints consisting of 
Single Temporal Relation (STR), and Dual Temporal Relation 
(DTR); Control consisting of If-then-else, While, Repeat, and 
Looping; Declarations consisting of Assignment or Inheritance 
Statements, and Structural or Physical Interconnection; and 
Abstract ions of DDS Bindings consisting of Value-Carrier-
Net-Range (VCNR), and Operation-Module-Block-Range 
(OMBR). 

Formal semantic definitions of all these concepts have been 
developed and represented using DDS templates [6]. 

5.5 T h e U n i d i r e c t i o n a l Va lue Transfer 

An example of these models is the DDS template for a UVT 
shown in Figure 2 and Table 1. This template spans two of 

the DDS subspaces, the DFss and the TSss. The template for 
the UVT in the DFss is composed of three values and three 
operations and their data link arcs. The control operation may 
be associated with the source operation, where the data flow 
value, info originates or the sink operation, the destination for 
the data flow value, info or the control may be associated with 
a third independent operation. 

An example of a sentence which maps into a UVT is 
The cpu transfers the block of data bytes from the 

disk to the control store. 
If no timing information or constraints are specified in the 

same sentence then the TSss template shown in Figure 2 is used 
as the default. The default TSss template shows the timing for 
the three operations and the necessary constraints for a valid 
UVT. For example, the constraints labelled 01 and 02 represent 
the fact that the time interval for the operation control must 
begin before the end of the intervals associated with the source 
operation and the sink operation, respectively. If these con­
straints were not present it would be meaningless to associate 
the src.cnt l value or the snk.c t l value with this particular 
transfer of the value info. 

The fact that these constraint arcs emanate from a node 
labelled 0C2 indicates that the two constraints, 01 and 02 and 
the interval labelled o4 all begin concurrently. 

5.6 P H R A N - S P A N O p e r a t i o n 

PHRAN reads the sentence from left to right one word at a 
time. As each word is examined, existing patterns and concepts 
are checked for a match and retained, modified or discarded. 
The match may be based on lexical criteria, semantic criteria 
and/or syntactic criteria. PHRAN also provides look-ahead in 
the sentence to the next word and the ability to look back at 
previously matched terms with limited ability to modify those 
previously matched terms. 

The patterns and concepts for PHRAN are stored in a 
knowledge-base of pattern-concept pairs (PCP). An example of 
the pattern for the UVT concept expressed by the verb transfer 
is 

The subject of the sentence must belong to the semantic category 
of an a.component (abstract component) or a d f .opn (data 
flow operation) for this pattern to match. The next part of the 
pattern indicates that some verb form with the root of transfer 
must be present. The verb may be in a different tense, e.g., 
transferred or it may be combined with a modal verb like shall. 
The object transferred belongs to the semantic category df .val 
(data flow value). The abstract component is introduced to 
handle ambiguity. For example, a cpu may be a logical module 
or a physical block. An additional declaration or phrase like 
an appositive is required to resolve this type of ambiguity. If a 
cpu process had been specified this would be interpreted more 
precisely as a d f .opn and the pattern would also match. 

10 

Figure 2: The DDS Template for a UVT. 
Associated with each pattern is a concept that describes the 

meaning of the word phrase or sentence that matches the pat­
tern. The concept is represented as a frame [12] using the specifi­
cation representation language SRL, based on the set of concepts 
we introduced. 

For example, the concept part of the pattern-concept pair 
for the UVT in SRL is 
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The facet slots in the frame are represented by variable names 
that are prefixed with a question mark. Fillers for these slots are 
obtained when the sentence matches the pattern. For example, 
consider the sentence, 

Note the facet values for the source and sink have defaulted to 
•unspecified* since they were not included in this sentence. 

The source and sink are specified by adding two adverbial 
phrases to the sentence. These phrases must match the patterns 
associated with the desired concepts. The pattern for source is 

[from (or (a_component) (df_opn))] 

When these patterns are matched the concept associated with 
each of them modifies the UVT pattern by replacing the default 
value of * unspecified* with the value of source and sink found 
in the sentence. 

The following sentence results in a completely specified UVT: 
The cpu transfers the code word f rom the controller 

to the peripheral device. 
An option in the prototype system is for SPAN to display 

the resulting concept in English instead of the frame-like data 
structure. In this case, SPAN'S output for the above sentence is 

This sentence resulted in a data flow 
subgraph f o r a un id i rec t iona l value t ransfer . 

The source of the information is the 
controllerl. 

The sink f o r the information is the 
peripheral-device 1. 

The Information t ransferred is the 
code-wordl. 

The t ransfer is contro l led by the cpul. 

6 Cur ren t Status 

The system currently recognizes simple sentences associated 
w i t h al l the pr imi t ive concepts of our specification language, 
e.g., U V T , B V T , C T I and D T R which are required to describe 
behavior in the domain of digi tal systems. Actual pattern con­
cept pairs have been bui l t for 25 basic verb patterns common to 
specifications and 100+ nouns. In addit ion, we have added the 
abi l i ty to handle mult i -noun sequences which occur frequently 
in specifications. Also the system has been extended to detect 
ambiguity tha t can arise f rom the use of nouns and verbs that 
have the same lexical stem, e.g., transfer, interrupt, and signal. 

The system is coded in Franz Lisp and is running in inter­
preted mode on a SUN/2 workstat ion under SUN's operating 
system, Version 1.4 (UNIX BSD 4.2). Typical sentences take 
approximately 15 to 35 cpu seconds to process. No attempt has 
been made to optimize the code. 
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