
A FRAMEWORK FOR INCREMENTAL SYNTACTIC TREE FORMATION

Gerard Kempen

Experimental Psychology Unit, University of Nijmegen,
Montessorilaan 3, 6525 HR Nijmegen,The Netherlands.

ABSTRACT.

A syntactic tree formation system is described for use in
incremental sentence generators, i.e. generators which allow for
parallel planning of conceptual content and linguistic expression.
The system achieves full generality in the sense that (1) all forms of
incremental production (upward expansions, downward
expansions, and insertions) are covered, and (2) branches of a
syntactic tree are grown in a maximally independent way (3) while
at the same time grammatically of the utterance as a whole can be
maintained (aside from 'syntactic deadlocks'). The tree formation
system is called Incremental Grammar (1G). Two novel ideas are
the use of node-arc-node segments as elementary building blocks
(e.g S-subject-NP, S-object-S, NP-head-N, PP-object-NP), and
the introduction of feature matrices associated with segments rather
than with nodes.

1. INTRODUCTION

The problem of incremental sentence generation has begun to
attract the attention of AI researchers, computational linguists and
psycholinguists (Joshi, 1987; MacDonald & Pustejovsky, 1985;
Kempen, 1978). In psycholinguistics, incremental generation
accounts for the observation that speakers plan their utterances
partly from left to right and sometimes 'talk themselves into a
corner' (syntactic deadlock, self-corrections). In the context of
interactive AI systems, the need for an incremental generation
strategy arises whenever those systems attempt to spare the user
long pauses between the successive utterances of a natural-
language interface. In combination with synthetic speech, an
incremental generator may produce a very natural output.

Although it is gradually being recognized that incremental
generation imposes special requirements upon syntactic
mechanisms, no satisfactory framework for incremental syntactic
tree formation has emerged. Linguistic formalisms which have
addressed the issue more or less explicitly, are Functional
Unification Grammar (Appelt, 1985) and Tree Adjoining Grammar
(Joshi, 1987). However, as pointed out by De Smedt & Kempen
(1987), they can handle only certain types of'incrementation' and
do not achieve a full solution.

In Section 2, I put forward three basic demands to be made
upon truly incremental tree formation systems. A framework
satisfying these requirements is described in Section 3. Finally,
Section 4 is devoted to a comparison with existing syntactic
formalisms and to some evaluative remarks.

2. INCREMENTAL GENERATION: IMPLICATIONS FOR
TREE FORMATION

De Smedt & Kempen (1987) distinguish three types of
incrementation: upward expansion, downward expansion, and
insertion. A combined illustration is provided by utterance (1).

Kempen 655

The increments (separated by slashes) are also shown in the
boxed parts of Figure 1. Figure lb is an upward expansion of la
because the original root node (NP) has become the daughter of a
new parent (S). Downward expansion is exemplified by Figure
lc: the increment is attached as a subtree to an already existing
node. Figure Id shows a case of insertion: the increment is added
inbetween two existing nodes. (One may view insertion as a
combination of upward and downward expansion.) All three
varieties of incrementation should be within reach of an
incremental tree formation system This is the first requirement.

The second requirement reflects the observation, as witnessed
by (1), that increments may be very small, sometimes no longer
than a single word. Therefore the grammar should enable
growing individual branches without imposing unnecessary
constraints upon the simultaneous growth of other branches. In
other words, the grammar needs a 'vertical' orientation:
Establishing connections between mother and daughter nodes,
between daughter and grand-daughter, etc. (or vice-versa) should
be its primary concern. Existing grammar formalisms tend to have
a 'horizontal' orientation: Their rules typically specify
combinations of daughters for a given mother node, that is, they
emphasize sisterhood. Phrase structure rules are the best example.
An incremental generator, on the other hand, needs a type of rule
which stresses mother-daughter relationships (allowing for
inferences concerning sisterhood). From the point of view of
incremental generation, the main advantage of 'vertical' rules is
that the development of two or more sister branches need not be
initiated at the same point of time.

The third requirement addresses maintenance of grammatical
coherence in the course of utterance realization. The chronological
order in which the various constituents are attached to the
syntactic tree clearly need not be identical to their left-to-right
order in the resulting utterance. This applies in particular to
languages with rigid word order patterns such as English, Dutch
and French. If the generator would overtly realize constituents
immediately after their being attached to the tree, massive
ungrammaticality would ensue. An example is provided by the
finite (main or auxiliary) verb in main clauses of Dutch and
German. In many circumstances, this constituent occupies an
obligatory 'second position*. Now suppose the subject and direct
object constituents are attached to the S-node earlier than the finite
verb (subject at position 1, direct object at 3). Overtly realizing
subject and direct object before attachment of the finite verb
would lead to a sequence of constituents which will remain
ungrammatical, irrespective of how it is completed by further
constituents. What is needed, apparently, is a device which
prevents the utterance realization process to skip over obligatory
constituents with reserved positions.

3. SYNTACTIC TREE FORMATION IN INCREMENTAL
GRAMMAR

The grammatical framework developed below is called
Incremental Grammar (IG). It may be viewed as abstracted from
Kempen & Hoenkamp's (1987) Incremental Procedural Grammar
framework (IPG) by leaving out psycholinguistic processing (i.e.
'procedural') aspects. Two important innovations are reported
here for the first time: the introduction of node-arc-node segments
as elementary building blocks, and a more systematic treatment of
features and feature transport than was given in IPG. The latter
includes the idea of associating feature matrices not only with
nodes but also with the larger segments.

3.1 Tree Structure

IG trees consist of labeled nodes and arcs. Names of syntactic
categories serve as node labels; arcs are labeled by syntactic
functions. A simple example is given in Figure 2.

The elementary building blocks are node-arc-node triplets
called segments. Table 1 lists 19 segment types needed in many
natural language grammars. The mother node of a segment
('root') is a phrasal category: Sentence (clause), Noun Phrase,
Prepositional Phrase or Adjectival/Adverbial Phrase. The
daughter node (' foot') is either a phrasal or a lexical category
(Verb, Noun, Pronoun, Cardinal Number, Article, Coordinating
Conjunction, Subordinating Conjunction, etc.). The arc labels
have been selected from a small set of syntactic functions such as
Head, Subject, Direct Object, Indirect Object, Modifier,
Quantifier, etc.

Figure 2. Syntactic tree corresponding to the Dutch equivalent of
These guests have decided to travel by car.

The members of a coordination are dominated by an arc labeled
'Conjunct', and the coordinating conjunction by 'Sequencer1 (cf.
Figure 3).

There are three composition operations: concatenation,
insertion, and furcation. They all involve merging identically
labeled nodes from two segments. In case of concatenation, the
root node of one segment is merged with the foot of the other
one. Strings of one or more concatenated segments are branches;
they, too, have a foot and a root. Furcation is a merge of two root
nodes. In case of insertion, one node of a segment/branch is
replaced by a segment/branch whose root and foot labels are
identical (to each other and to the replaced node).

The composition operations are illustrated by the incremental
construction of Dutch sentence (3a) out of the six segments listed
in (3b).

656 NATURAL LANGUAGE

The first word of sentence (3a) can be realized after concatenating
segments A and B. (I assume that nominative case is selected only
after the NP has been assigned the role of Subject.) The second
word follows after furcating C with the Subject branch. Furcation
of the resulting structure with Object branch D gives the third
increment. Then segment E is inserted into D at root node S
(effectively 'lowering' the Object NP) and segment F furcated
with the embedded S. The result is depicted in Figure 4.

Table 1. Important types of segments. Alternative node labels are
separated by slashes.

Figure 3. Syntactic tree corresponding to the Dutch equivalent of
John, Mary and Peter.

3.2 The Lexicon

The lexical entries in an IG lexicon are arranged in the form of a
hierarchy of objects, each object representing a segment or
segment type. Figure 5 illustrates a small portion of the IG
lexicon for Dutch. The lines represent inheritance links between
objects: a lower segment possesses all properties of its parent(s).
except those which are explicitly overwritten. (De Smedt, 1984
advocates the utilization of object-oriented programming
techniques for the representation of lexical knowledge, e.g.. for
the purpose of default reasoning.) The entry for the Dutch verb
willen (to want) is shown in simplified form at the bottom of
Figure 5. The inheritance links dominating the object 'willen-vtrb
'indicate that willen is an instance of an S-Head-V segment. The
expression furcate(...) says that this segment is forked with a S-
Subj-NP segment and either an S-Obj-NP or an S-Obj-S segment
(cf. (3bD) and (3bE)). This exemplifies how subcategorization
restrictions on verbs can be stated very easily. Notice also that the
inheritance hierarchy minimizes redundancy. For instance, the
fact that segments have a foot, an arc and a root need be
mentioned only once, namely, at the topmost member of the
hierarchy.

3.3 Features and Feature Transport

The structure of a segment is more complex than discussed so far.
In fact, it is a set of features which is partioned into subsets
associated with root, arc and foot. The subsets are conveniently
depicted as feature matrices. For instance, a more detailed
notation for one of the two NP-Head-N segments in Figure 2 is
shown in (4).

Figure 4. Syntactic tree corresponding to sentence (3a).

The example shows that all three kinds of incrementation
distinguished in Section 2 are within reach of IG: upward
expansion (A+B), downward expansion (B+C, C+D), and
insertion (D+E). Moreover, the nature of the segments and the
composition operations defined over them lends the grammar a
vertical rather than a horizontal orientation.

The feature matrix at the right lists features which are shared by
root and foot. The values of 'cat' (= category) and 'fn'
(= function) are labels serving to identify segment type (e.g. NP-
Head-N). Undefined values are indicated by underscores
('J).The 'addr' (= address) and 'dest' (= destination) attributes
defined for root and arc, respectively, refer to an aspect of word
order computation which I will discuss below in Section 3.4. The
'lemma' attribute of the segment's foot takes as its value a pointer
to a morpho-phonological specification (Kempen & Huijbers,
1983).

3.4 Functional and Positional Trees

In the foregoing I have paid no attention to word order. In fact,
the trees discussed so far contain no information on this score.
For this reason I call them functional trees. Word order is
computed in the course of a mapping from functional into
positional trees. It proceeds as follows.

To each segment of a functional tree, a value is assigned for
two attributes: destination (point of attachment, 'address') and
precedence (serial position amidst segments attached to the same
node).

A destination evaluates to an address, i.e., a number
associated with the root node of the current segment or one of its
ancestors. The default case is 'dest = addr (root)'. Under certain
conditions (e.g. related to WH-constituents) the destination value
is computed by evaluating special functions imported from the
lexicon.

The precedence value of a segment is a sequence of one or more
rank numbers. For instance, the four segments attached to the top
S-node in Figure 2 might be assigned precedence values 1, 2.1,
2.2 and 3. (A partial set of precedence rules for Dutch, which are
mostly applicable to German as well, is worked out and justified
in Kempen & Hoenkamp, 1987.) The positional tree belonging to
a functional tree is assembled by attaching all segments to their
destination node and ordering them from left to right according to
their precedence values. (Branches which, in the course of the
mapping process, have lost their lexical segment, are pruned
away at the lowest furcation point.) The hierarchical structure of a
positional tree is often identical to that of its functional counterpart
(in Figure 2, for example), but sometimes the positional tree is
flatter. A case in point is Dutch sentence (3a) whose functional
tree is depicted in Figure 4. This effect — the IG equivalent of
Clause Union — comes about as follows.

The lexical entry for the Dutch verb willen (to want, cf. Figure
6) lists a special rule which causes the value of the address feature
of its object complement S-node to be overwritten by 'addr (root)'
in case it is a non-finite clause. The two segments dominating the
object NP appels now look basically as in (6).

In the course of determining a destination ('addr (root)') for
the lower segment, the embedded S is accessed. Since the address
listed there evaluates to the topmost S, the lower segment is
attached to the top-S rather than to the embedded S. The S-Head-
V segment dominating the infinitive verb eten (to eat) undergoes
the same fate. Left without offspring, the upper S-Obj-S segment
is pruned. A flat positional tree is the result, depicted in Figure 6.
(Numerical arc labels are rank numbers referring to serial
positions within phrases.)

The introduction of feature matrices necessitates reconsidering
the operation of node merging discussed above. I define it here as
the unification (in a sense similar to Kay, 1985) of the associated
feature matrices, including the shared component. For example,
furcation of segments (5a) and (5b), both belonging to the tree in
Figure 2, yields (5c).*

Unification is an effective mechanism for distributing feature
information over syntactic constituents. The burden put upon it is
considerably smaller, though, than in Functional Unification
Grammar because it operates in conjunction with the tree
formation mechanism discussed in Section 3.2.

658 NATURAL LANGUAGE

3.5 Utterance Realization

When the positional tree dominating a new increment is finished
and values for all necessary features have been computed, it is
passed on to the Utterance Realization module. Here, various
morphological and phonological operations take place whose
nature I cannot go into (see Kempen & Hoenkamp, 1987; Van
Wi jk & Kempen, 1987). The important point, in the present
context, is that the positional tree spanning a new increment (or a
full sentence) is processed in depth-first, left-to-right manner. The
output of the realization module is a phonological representation
(of a complete or fragmentary sentence) containing all information
needed for further phonetic processing.

I owe a solution to the problem, raised at the end of Section 2,
of obligatory constituents which have not yet been attached to the
tree. How can the Utterance Realization module be induced to halt
at the position reserved for such missing constituents? The danger
of skipping a reserved position is lurking whenever constituents
further down to the right have already been attached. It can be
warded off effectively by the following convention. A dummy
head segment is obligatorily connected to every phrasal node of
the functional tree, until a regular head has been selected. The foot
node of a dummy head segment has an empty feature matrix, but
otherwise receives the same treatment as a regular one. So it wi l l
show up in the positional tree at the reserved position. When
running into the defective feature matrix, the Utterance Realization
module wi l l come to a halt**.

** Under certain special circumstances, phrases are permitted to remain
without a head. Gapping is a case in point (e.g. Robin wrote a book and
John a paper, where a S-Head-V segment is missing in the second
conjunct). For a detailed treatment of conjunction reduction, see Pijls &
Kempen, 1986.

4. EVALUATION, RELATED WORK, CONCLUSION

I have described a framework for syntactic tree formation which
meets the basic requirements of incremental sentence generation.
To my knowledge, no satisfactory alternative is available to date.
Other grammatical formalisms reported in the literature fall short
in several respects.

Transformational Grammar does not generate anything smaller
than full sentences. A l l base-generated structures have to pass the
transformational component of the grammar, and transformations
are defined for sentences only. Formalisms which use some form
of phrase structure rules (not only Transformational Grammar but
also Lexical-Functional Grammar and Generalized Phrase
Structure Grammar) are biased towards downward expansion.
Upward expansion and insertion are impossible wi thout
additional machinery. In addition, as already observed in Section
1, these rules have a horizontal rather than a vertical orientation.
Functional Unification Grammar seems biased to downward
expansion, too. Categorial Grammar, on the other hand, only
allows for upward expansion. Tree Adjoining Grammar can
handle insertion very well, and is probably unbiased. However,
the elementary trees serving as building blocks are roughly the
size of a deep clause, so it is questionable whether TAG could
handle smaller increments.

These brief assessments are concerned with current versions
of the grammar formalisms, which of course were designed for
other purposes. How easily they could be tailored to the demands
of incremental production without losing sight of their original
goals, is difficult for me to judge. Moreover, it remains to be seen
whether IG can develop into a viable syntactic formalism living
up to the standards of present-day linguistic research. One who
wishes to evaluate IG from this point of view be referred to
Kempen & Hoenkamp (1987) and Pijls & Kempen (1986). Using
the more complicated IPG framework, these authors present
detailed treatments of various complicated constructions of Dutch,
including interrogatives (WH-movement), object complements
(cross-serial dependencies), and coordination (gapping, forward
and backward conjunction reduction). The essence of their
conclusions generalizes to the IG framework, as interested
readers may judge for themselves. These papers also explain how
semantic/conceptual structures computed by an AI system can be
mapped into IG trees for the purpose of overt expression by
artificial language generators.

ACKNOWLEDGEMENT

I owe considerable debt to the members of the Language
Technology Project of the University of Nijmegen with whom I
had numerous discussions on matters of syntax: Fieny Pijls, Bart
Geurs, and in particular to Koenraad De Smedt.

REFERENCES

Appelt, D. (1983) Planning English sentences. Cambridge:
Cambridge University Press, 1985.

De Smedt, K. (1984) Using object-oriented knowledge-
representation techniques in morphology and syntax
programming. In: Proceedings of ECAI '84. Pisa, Italy.

Ktmpen 659

De Smedt, K. & G. Kempen (1987) Incremental sentence
production, self-correction, and coordination. In: G. Kempen
(ed.) Natural language generation: new results in Artificial
Intelligence, Psychology, and Linguistics. Dordrecht/Boston:
Kluwer Academic Publishers, 1987.

Joshi, A.K. (1987) Tree Adjoining Grammar — Relevance to
generation. In: G. Kempen (ed.) Natural language generation:
new results in Artificial Intelligence, Psychology, and
Linguistics. Dordrecht/Boston: Kluwer Academic Publishers,
1987.

Kay, M. (1985) Parsing in functional unification grammar. In:
D.R. Dowty, L. Karttunen & A .M. Zwicky (eds.) Natural
language parsing. Cambridge: Cambridge University Press,
1985.

Kempen, G. (1978) Sentence construction by a psychologically
plausible formulator. In: R. Campbell & P. Smith, (eds.) Recent
advances in the psychology of language (Vol. 2: formal and
experimental approaches). New York: Plenum Press.

Kempen, G. & Hoenkamp, E. (1987) An incremental procedural
grammar for sentence formulation. Cognitive Science, 11(2).

Kempen, G. & P. Huijbers (1983) The lexicalization process in
sentence production and naming: indirect election of words.
Cognition, 14, 185-209.

McDonald, D. & Pustejovsky, J. (1985) TAG'S as a grammatical
formalism for generation. In: Proceedings of the 23rd annual
meeting of the Association for Computational Linguistics.
Chicago, Illinois.

Pijls, J. & G. Kempen (1986) Een psycholinguistisch model voor
grammatische samentrekking. DeNieuwe Taalgids, 79, 217-234.
(English translation available: A psycholinguistic model of
grammatical conjunction reduction.)

Van Wijk, C. & Kempen, G. (1987) A dual system for producing
self-repairs in spontaneous speech: evidence from experimentally
elicited corrections. Cognitive Psychology, 19(2).

660 NATURAL LANGUAGE

