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ABSTRACT. 

A syntactic tree formation system is described for use in 
incremental sentence generators, i.e. generators which allow for 
parallel planning of conceptual content and linguistic expression. 
The system achieves full generality in the sense that (1) all forms of 
incremental production (upward expansions, downward 
expansions, and insertions) are covered, and (2) branches of a 
syntactic tree are grown in a maximally independent way (3) while 
at the same time grammatically of the utterance as a whole can be 
maintained (aside from 'syntactic deadlocks'). The tree formation 
system is called Incremental Grammar (1G). Two novel ideas are 
the use of node-arc-node segments as elementary building blocks 
(e.g S-subject-NP, S-object-S, NP-head-N, PP-object-NP), and 
the introduction of feature matrices associated with segments rather 
than with nodes. 

1. INTRODUCTION 

The problem of incremental sentence generation has begun to 
attract the attention of AI researchers, computational linguists and 
psycholinguists (Joshi, 1987; MacDonald & Pustejovsky, 1985; 
Kempen, 1978). In psycholinguistics, incremental generation 
accounts for the observation that speakers plan their utterances 
partly from left to right and sometimes 'talk themselves into a 
corner' (syntactic deadlock, self-corrections). In the context of 
interactive AI systems, the need for an incremental generation 
strategy arises whenever those systems attempt to spare the user 
long pauses between the successive utterances of a natural-
language interface. In combination with synthetic speech, an 
incremental generator may produce a very natural output. 

Although it is gradually being recognized that incremental 
generation imposes special requirements upon syntactic 
mechanisms, no satisfactory framework for incremental syntactic 
tree formation has emerged. Linguistic formalisms which have 
addressed the issue more or less explicitly, are Functional 
Unification Grammar (Appelt, 1985) and Tree Adjoining Grammar 
(Joshi, 1987). However, as pointed out by De Smedt & Kempen 
(1987), they can handle only certain types of'incrementation' and 
do not achieve a full solution. 

In Section 2, I put forward three basic demands to be made 
upon truly incremental tree formation systems. A framework 
satisfying these requirements is described in Section 3. Finally, 
Section 4 is devoted to a comparison with existing syntactic 
formalisms and to some evaluative remarks. 

2. INCREMENTAL GENERATION: IMPLICATIONS FOR 
TREE FORMATION 

De Smedt & Kempen (1987) distinguish three types of 
incrementation: upward expansion, downward expansion, and 
insertion. A combined illustration is provided by utterance (1). 
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The increments (separated by slashes) are also shown in the 
boxed parts of Figure 1. Figure lb is an upward expansion of la 
because the original root node (NP) has become the daughter of a 
new parent (S). Downward expansion is exemplified by Figure 
lc: the increment is attached as a subtree to an already existing 
node. Figure Id shows a case of insertion: the increment is added 
inbetween two existing nodes. (One may view insertion as a 
combination of upward and downward expansion.) All three 
varieties of incrementation should be within reach of an 
incremental tree formation system This is the first requirement. 

The second requirement reflects the observation, as witnessed 
by (1), that increments may be very small, sometimes no longer 
than a single word. Therefore the grammar should enable 
growing individual branches without imposing unnecessary 
constraints upon the simultaneous growth of other branches. In 
other words, the grammar needs a 'vertical' orientation: 
Establishing connections between mother and daughter nodes, 
between daughter and grand-daughter, etc. (or vice-versa) should 
be its primary concern. Existing grammar formalisms tend to have 
a 'horizontal' orientation: Their rules typically specify 
combinations of daughters for a given mother node, that is, they 
emphasize sisterhood. Phrase structure rules are the best example. 
An incremental generator, on the other hand, needs a type of rule 
which stresses mother-daughter relationships (allowing for 
inferences concerning sisterhood). From the point of view of 
incremental generation, the main advantage of 'vertical' rules is 
that the development of two or more sister branches need not be 
initiated at the same point of time. 

The third requirement addresses maintenance of grammatical 
coherence in the course of utterance realization. The chronological 
order in which the various constituents are attached to the 
syntactic tree clearly need not be identical to their left-to-right 
order in the resulting utterance. This applies in particular to 
languages with rigid word order patterns such as English, Dutch 
and French. If the generator would overtly realize constituents 
immediately after their being attached to the tree, massive 
ungrammaticality would ensue. An example is provided by the 
finite (main or auxiliary) verb in main clauses of Dutch and 
German. In many circumstances, this constituent occupies an 
obligatory 'second position*. Now suppose the subject and direct 
object constituents are attached to the S-node earlier than the finite 
verb (subject at position 1, direct object at 3). Overtly realizing 
subject and direct object before attachment of the finite verb 
would lead to a sequence of constituents which will remain 
ungrammatical, irrespective of how it is completed by further 
constituents. What is needed, apparently, is a device which 
prevents the utterance realization process to skip over obligatory 
constituents with reserved positions. 

3. SYNTACTIC TREE FORMATION IN INCREMENTAL 
GRAMMAR 

The grammatical framework developed below is called 
Incremental Grammar (IG). It may be viewed as abstracted from 
Kempen & Hoenkamp's (1987) Incremental Procedural Grammar 
framework (IPG) by leaving out psycholinguistic processing (i.e. 
'procedural') aspects. Two important innovations are reported 
here for the first time: the introduction of node-arc-node segments 
as elementary building blocks, and a more systematic treatment of 
features and feature transport than was given in IPG. The latter 
includes the idea of associating feature matrices not only with 
nodes but also with the larger segments. 

3.1 Tree Structure 

IG trees consist of labeled nodes and arcs. Names of syntactic 
categories serve as node labels; arcs are labeled by syntactic 
functions. A simple example is given in Figure 2. 

The elementary building blocks are node-arc-node triplets 
called segments. Table 1 lists 19 segment types needed in many 
natural language grammars. The mother node of a segment 
('root') is a phrasal category: Sentence (clause), Noun Phrase, 
Prepositional Phrase or Adjectival/Adverbial Phrase. The 
daughter node (' foot') is either a phrasal or a lexical category 
(Verb, Noun, Pronoun, Cardinal Number, Article, Coordinating 
Conjunction, Subordinating Conjunction, etc.). The arc labels 
have been selected from a small set of syntactic functions such as 
Head, Subject, Direct Object, Indirect Object, Modifier, 
Quantifier, etc. 

Figure 2. Syntactic tree corresponding to the Dutch equivalent of 
These guests have decided to travel by car. 

The members of a coordination are dominated by an arc labeled 
'Conjunct', and the coordinating conjunction by 'Sequencer1 (cf. 
Figure 3). 

There are three composition operations: concatenation, 
insertion, and furcation. They all involve merging identically 
labeled nodes from two segments. In case of concatenation, the 
root node of one segment is merged with the foot of the other 
one. Strings of one or more concatenated segments are branches; 
they, too, have a foot and a root. Furcation is a merge of two root 
nodes. In case of insertion, one node of a segment/branch is 
replaced by a segment/branch whose root and foot labels are 
identical (to each other and to the replaced node). 

The composition operations are illustrated by the incremental 
construction of Dutch sentence (3a) out of the six segments listed 
in (3b). 
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The first word of sentence (3a) can be realized after concatenating 
segments A and B. (I assume that nominative case is selected only 
after the NP has been assigned the role of Subject.) The second 
word follows after furcating C with the Subject branch. Furcation 
of the resulting structure with Object branch D gives the third 
increment. Then segment E is inserted into D at root node S 
(effectively 'lowering' the Object NP) and segment F furcated 
with the embedded S. The result is depicted in Figure 4. 

Table 1. Important types of segments. Alternative node labels are 
separated by slashes. 

Figure 3. Syntactic tree corresponding to the Dutch equivalent of 
John, Mary and Peter. 

3.2 The Lexicon 

The lexical entries in an IG lexicon are arranged in the form of a 
hierarchy of objects, each object representing a segment or 
segment type. Figure 5 illustrates a small portion of the IG 
lexicon for Dutch. The lines represent inheritance links between 
objects: a lower segment possesses all properties of its parent(s). 
except those which are explicitly overwritten. (De Smedt, 1984 
advocates the utilization of object-oriented programming 
techniques for the representation of lexical knowledge, e.g.. for 
the purpose of default reasoning.) The entry for the Dutch verb 
willen (to want) is shown in simplified form at the bottom of 
Figure 5. The inheritance links dominating the object 'willen-vtrb 
'indicate that willen is an instance of an S-Head-V segment. The 
expression furcate(...) says that this segment is forked with a S-
Subj-NP segment and either an S-Obj-NP or an S-Obj-S segment 
(cf. (3bD) and (3bE)). This exemplifies how subcategorization 
restrictions on verbs can be stated very easily. Notice also that the 
inheritance hierarchy minimizes redundancy. For instance, the 
fact that segments have a foot, an arc and a root need be 
mentioned only once, namely, at the topmost member of the 
hierarchy. 

3.3 Features and Feature Transport 

The structure of a segment is more complex than discussed so far. 
In fact, it is a set of features which is partioned into subsets 
associated with root, arc and foot. The subsets are conveniently 
depicted as feature matrices. For instance, a more detailed 
notation for one of the two NP-Head-N segments in Figure 2 is 
shown in (4). 

Figure 4. Syntactic tree corresponding to sentence (3a). 

The example shows that all three kinds of incrementation 
distinguished in Section 2 are within reach of IG: upward 
expansion (A+B), downward expansion (B+C, C+D), and 
insertion (D+E). Moreover, the nature of the segments and the 
composition operations defined over them lends the grammar a 
vertical rather than a horizontal orientation. 



The feature matrix at the right lists features which are shared by 
root and foot. The values of 'cat' (= category) and 'fn' 
(= function) are labels serving to identify segment type (e.g. NP-
Head-N). Undefined values are indicated by underscores 
('J).The 'addr' (= address) and 'dest' (= destination) attributes 
defined for root and arc, respectively, refer to an aspect of word 
order computation which I will discuss below in Section 3.4. The 
'lemma' attribute of the segment's foot takes as its value a pointer 
to a morpho-phonological specification (Kempen & Huijbers, 
1983). 

3.4 Functional and Positional Trees 

In the foregoing I have paid no attention to word order. In fact, 
the trees discussed so far contain no information on this score. 
For this reason I call them functional trees. Word order is 
computed in the course of a mapping from functional into 
positional trees. It proceeds as follows. 

To each segment of a functional tree, a value is assigned for 
two attributes: destination (point of attachment, 'address') and 
precedence (serial position amidst segments attached to the same 
node). 

A destination evaluates to an address, i.e., a number 
associated with the root node of the current segment or one of its 
ancestors. The default case is 'dest = addr (root)'. Under certain 
conditions (e.g. related to WH-constituents) the destination value 
is computed by evaluating special functions imported from the 
lexicon. 

The precedence value of a segment is a sequence of one or more 
rank numbers. For instance, the four segments attached to the top 
S-node in Figure 2 might be assigned precedence values 1, 2.1, 
2.2 and 3. (A partial set of precedence rules for Dutch, which are 
mostly applicable to German as well, is worked out and justified 
in Kempen & Hoenkamp, 1987.) The positional tree belonging to 
a functional tree is assembled by attaching all segments to their 
destination node and ordering them from left to right according to 
their precedence values. (Branches which, in the course of the 
mapping process, have lost their lexical segment, are pruned 
away at the lowest furcation point.) The hierarchical structure of a 
positional tree is often identical to that of its functional counterpart 
(in Figure 2, for example), but sometimes the positional tree is 
flatter. A case in point is Dutch sentence (3a) whose functional 
tree is depicted in Figure 4. This effect — the IG equivalent of 
Clause Union — comes about as follows. 

The lexical entry for the Dutch verb willen (to want, cf. Figure 
6) lists a special rule which causes the value of the address feature 
of its object complement S-node to be overwritten by 'addr (root)' 
in case it is a non-finite clause. The two segments dominating the 
object NP appels now look basically as in (6). 

In the course of determining a destination ('addr (root)') for 
the lower segment, the embedded S is accessed. Since the address 
listed there evaluates to the topmost S, the lower segment is 
attached to the top-S rather than to the embedded S. The S-Head-
V segment dominating the infinitive verb eten (to eat) undergoes 
the same fate. Left without offspring, the upper S-Obj-S segment 
is pruned. A flat positional tree is the result, depicted in Figure 6. 
(Numerical arc labels are rank numbers referring to serial 
positions within phrases.) 

The introduction of feature matrices necessitates reconsidering 
the operation of node merging discussed above. I define it here as 
the unification (in a sense similar to Kay, 1985) of the associated 
feature matrices, including the shared component. For example, 
furcation of segments (5a) and (5b), both belonging to the tree in 
Figure 2, yields (5c).* 

Unification is an effective mechanism for distributing feature 
information over syntactic constituents. The burden put upon it is 
considerably smaller, though, than in Functional Unification 
Grammar because it operates in conjunction with the tree 
formation mechanism discussed in Section 3.2. 
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3.5 Utterance Realization 

When the positional tree dominating a new increment is finished 
and values for all necessary features have been computed, it is 
passed on to the Utterance Realization module. Here, various 
morphological and phonological operations take place whose 
nature I cannot go into (see Kempen & Hoenkamp, 1987; Van 
Wi jk & Kempen, 1987). The important point, in the present 
context, is that the positional tree spanning a new increment (or a 
full sentence) is processed in depth-first, left-to-right manner. The 
output of the realization module is a phonological representation 
(of a complete or fragmentary sentence) containing all information 
needed for further phonetic processing. 

I owe a solution to the problem, raised at the end of Section 2, 
of obligatory constituents which have not yet been attached to the 
tree. How can the Utterance Realization module be induced to halt 
at the position reserved for such missing constituents? The danger 
of skipping a reserved position is lurking whenever constituents 
further down to the right have already been attached. It can be 
warded off effectively by the following convention. A dummy 
head segment is obligatorily connected to every phrasal node of 
the functional tree, until a regular head has been selected. The foot 
node of a dummy head segment has an empty feature matrix, but 
otherwise receives the same treatment as a regular one. So it wi l l 
show up in the positional tree at the reserved position. When 
running into the defective feature matrix, the Utterance Realization 
module wi l l come to a halt**. 

** Under certain special circumstances, phrases are permitted to remain 
without a head. Gapping is a case in point (e.g. Robin wrote a book and 
John a paper, where a S-Head-V segment is missing in the second 
conjunct). For a detailed treatment of conjunction reduction, see Pijls & 
Kempen, 1986. 

4. EVALUATION, RELATED WORK, CONCLUSION 

I have described a framework for syntactic tree formation which 
meets the basic requirements of incremental sentence generation. 
To my knowledge, no satisfactory alternative is available to date. 
Other grammatical formalisms reported in the literature fall short 
in several respects. 

Transformational Grammar does not generate anything smaller 
than full sentences. A l l base-generated structures have to pass the 
transformational component of the grammar, and transformations 
are defined for sentences only. Formalisms which use some form 
of phrase structure rules (not only Transformational Grammar but 
also Lexical-Functional Grammar and Generalized Phrase 
Structure Grammar) are biased towards downward expansion. 
Upward expansion and insertion are impossible wi thout 
additional machinery. In addition, as already observed in Section 
1, these rules have a horizontal rather than a vertical orientation. 
Functional Unification Grammar seems biased to downward 
expansion, too. Categorial Grammar, on the other hand, only 
allows for upward expansion. Tree Adjoining Grammar can 
handle insertion very well, and is probably unbiased. However, 
the elementary trees serving as building blocks are roughly the 
size of a deep clause, so it is questionable whether TAG could 
handle smaller increments. 

These brief assessments are concerned with current versions 
of the grammar formalisms, which of course were designed for 
other purposes. How easily they could be tailored to the demands 
of incremental production without losing sight of their original 
goals, is difficult for me to judge. Moreover, it remains to be seen 
whether IG can develop into a viable syntactic formalism living 
up to the standards of present-day linguistic research. One who 
wishes to evaluate IG from this point of view be referred to 
Kempen & Hoenkamp (1987) and Pijls & Kempen (1986). Using 
the more complicated IPG framework, these authors present 
detailed treatments of various complicated constructions of Dutch, 
including interrogatives (WH-movement), object complements 
(cross-serial dependencies), and coordination (gapping, forward 
and backward conjunction reduction). The essence of their 
conclusions generalizes to the IG framework, as interested 
readers may judge for themselves. These papers also explain how 
semantic/conceptual structures computed by an AI system can be 
mapped into IG trees for the purpose of overt expression by 
artificial language generators. 
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