
An Integration Tool for Life-Cycle Engineering 

Kathryn M. Chalfan 

Advanced Technology Center for Computer Sciences 
Boeing Computer Services 

P.O. Box 24346, MS/7L-65 Seattle, Washington 98124-0346 

Abstract 

Life-cycle engineering is the integration of the 
design process, which addresses primarily the system's 
performance, wi th analysis of the design's other 
attributes, including reliability, maintainability, life-
cycle cost, and manufacturability. The advent of 
symbolic approaches to design integration reveals the 
requirement and opportunity of using higher-level 
analysis to select the opt imum design. This 
opportunity is present only when human interaction is 
reduced sufficiently to permit several complete design 
and analysis cycles to take place. We have 
implemented a generic integration tool that has been 
demonstrated to significantly shorten the design cycle, 
and are s tudy ing its appl icat ion to l i fe-cycle 
engineering. This logic-based tool regards the 
requested attr ibutes as a set of uninstant iated 
variables and invokes external computat ional 
programs, recursively if necessary, to achieve a proof 
consisting of the computed variable bindings. 
Key Words: Software integration, engineering design, 
expert system. 

I Introduction 

In engineering design and analysis, knowledge of 
how to create the design is fragmented among 
numerous computational programs. These programs 
typically perform computer-aided design and other 
computational functions such as simulation modeling, 
dynamic analysis, and optimization. The programs are 
islands of automation within an environment that is 
not otherwise automated. Design and analysis of the 
product require that they be integrated as defined by 
their input and output data relationships. Because of 
the complexity of the interrelationships among the 
programs, numerous delays and errors occur during 
their integration. These delays and errors can increase 
costs, cause scheduling crises, and reduce design 
quality. (Kowalik and Chalfan [1987] discuss this 
problem.) When the design is complete, it addresses 
only performance. Usually no feasible alternatives are 
developed because of the high cost of the design cycle. 
When subsequent analyses reveal shortcomings in 
other attributes that may actually have more effect 
than performance on the life-cycle cost of the product, 
last-minute changes are made that often unnecessarily 
compromise performance. 

In order to rapidly generate numerous design 
Copyright® 1986 The 

alternatives, we have formalized in an expert system 
the problem-solving knowledge required to integrate 
the components of the design process. The expert 
system "understands" the objectives of the analyst and 
executes all programs necessary to produce the desired 
design. This paper describes the Expert Executive, 
which we developed for preliminary design and are now 
applying to electronic circuit design, and describes how 
this work relates to the broader problem of life-cycle 
engineering. 

II The Integration Problem 

For the typical design and analysis problem, there 
is a set of programs that are logically interrelated by 
computed data values. This relationship can be 
represented as a directed graph. In electronic circuit 
design, as depicted in Figure 1, an electronic computer-
aided design (ECAD) program typically produces a 

parts list and a connectivity list. The bold rectangles 
represent computational programs, and the light ones 
represent input and output variables, as indicated by 

Boeing Company 

592 KNOWLEDGE REPRESENTATION 



the arrows. The parts and connectivity lists are input 
to thermal and reliability analysis, maintainability, 
and life-cycle cost. The involvement of the designer 
typically ends when the performance of the circuit, as 
measured by the thermal analysis program, is 
satisfactory. Subsequent analysis is outside the 
primary design cycle. Outputs from thermal analysis 
are input to reliability, and so on. 

In preliminary design of aerospace vehicles, four 
codes form the basis of analysis: weight, aerodynamics, 
propulsion, and performance. Figure 2 depicts a 
typical configuration of these codes. For example, w1 
is an output of the weight technology code and also an 
input to the aero technology code. Some input 
variables, such as v, are not output by any of the 
technology codes in the given configuration. They are 
known as free design parameters. A typical task might 

be to compute the range of a vehicle. Since the 
performance code requires inputs from the propulsion 
and aero codes, propulsion and aero must be run first. 
In turn, the weight code must be run before the aero 
code can be executed. When the range is f inal ly 
obtained, the cycle begins aga in , based on 
perturbations of free design parameters. If a different 
vehicle type is considered, a different set of technology 
codes may be applied. 

Each program is "owned" and validated by a 
technology group, such as Weights Technology and 
Propulsion Technology for prel iminary design, or 
ECAD and Reliability for electronic circuit design. In 
the absence of an automated integration program, 
technology groups interact to identity the appropriate 
technology codes to run, obtain input values from one 
another, run the codes, and analyze the results. The 
computed values are manually extracted from code 
outputs and inserted, possibly erroneously, as input 
values for other codes. Since the typical design cycle 
requires several weeks, and multiple design concepts 
may be generated in parallel, technology analysts may 

be uncertain which version of which design they are 
addressing. Because of the time required for the paper 
output to be analyzed and the appropriate values to be 
passed to other groups, and the scheduling problems for 
such a complex activity, often only one or two designs 
can be considered. It is then very difficult to justify the 
selection of one design over all other possible designs. 
Because of the high cost of the preliminary design 
process with respect to the quality and quantity of 
designs produced, the need for an integrated approach 
to preliminary design has long been recognized: within 
the industry. However, earlier solutions failed due to 
the complexity of the problem, variabi l i ty of codes, 
in f lex ib i l i ty of the procedural control structures 
embedded in the integrat ion programs, and the 
administrative difficulties of validating new versions 
of the integrated codes within the various technology 
organizations. 

I l l The Expert Executive for Preliminary Design 

Symbolic computing presented a new approach to 
this problem. Kowalik et al. [1987] have described a 
class of composite software systems that integrate 
knowledge-based processes and numerical processes 
into a single unified system. We hypothesized that if 
the general knowledge of how to run the technology 
codes and compute the values of design variables could 
be codified, then the specifics of the problem could be 
addressed relatively inexpensively and thereby provide 
a practicable integration capability. To investigate the 
feasibility of this approach, we developed a preliminary 
design tool with an Expert Executive" that contained 
symbolic knowledge of how to execute a set of 
computational programs. The Expert Executive 
assumes the support functions currently assigned to 
the technologists, thereby freeing them to perform 
design and analysis. By expediting the computation 
process, it provides more design alternatives. 

The Exper t Execut ive is cu r ren t l y be ing 
reimplemented in Quintus Prolog. The current 
knowledge base, which remains unchanged for all sets 
of computational programs, contains about 120 
propositions. In add i t ion , fact bases conta in 
information about the inputs and outputs for each of 
the programs to be configured. The size of a fact base 
depends mostly on the number of inputs and outputs, 
since each is described by one fact. 

The rules provide knowledge about solving a 
specific, user-defined problem. For example, the 
Expert Executive has several rules for finding the 
value of a variable. Variable values are represented as 
a relation between a variable and its value. The 
knowledge base contains one such statement, or 
proposition, for each variable whose value is known 
through either user input or computat ion. As 
additional knowledge is acquired through computation 
or interaction wi th the user, additional value-of 
propositions are asserted into the knowledge base. 

The fact base consists of input, output, and script-
name propositions. Input propositions are in a format 
that translates to "the first input to the propulsion code 
is v (velocity).'' The sequence number indicates the 
sequence in which it is read by the computational 
program. Output propositions are in a similar format, 

Chalfan 593 



which translates to "the fourth output from the aero 
code is ci2 (coeff icient-of- l i f t -2)." Script-name 
propositions provide a relation between the name of the 
computational program and the path to the script that 
executes the program. 

The Expert Executive uses the following problem-
solving paradigm: "To run a program, if all the inputs 
to the program are present, execute the program and 
return the result. Otherwise find all the required input 
variables whose values are not known and consult the 
analyst for starting values. Then, if all the needed 
inputs are st i l l not present but there is another 
program, the outputs of which provide the missing 
inputs, run that program first." 

This paradigm is implemented as follows. First 
there must be a rule for running the selected binary 
program. This rule may be translated as follows: " I f 
all the values for the program's free design parameters 
are present, and the computation is performed, and 
output is obtained, and the output variables are paired 
with their values, then it is true that the program has 
been run and the result returned." 

Then, for each of the conditions there must be at 
least one rule with that condition as a conclusion. Such 
a rule may be translated: "I f the program is ready (all 
its inputs are present in the required sequence), and 
the script-name is known, and it is executed, and its 
output variables are paired with the computed values, 
and the computed values are asserted into the 
knowledge base, then it is true that results have been 
computed for the program." In backward chaining to 
prove this rule true, the numeric computations are 
performed through a call to a Unix shell. This call 
creates a process executing the named script. (In the 
original Franz Lisp implementation, this call was 
provided more genericaily by the function *process.). 
This script executes exactly the same copy of the 
validated program that is executed by the technology 
groups, thereby ensuring that data are val id and 
providing access to standalone, commercial software 
packages. Also, al l networking capabilities of the 
operating system are provided in this way. Standard 
input and output for the script are temporar i ly 
reassigned to Prolog, so that the object program reads 
from a Prolog write routine, which writes program 
input values interleaved by carriage returns. Program 
output is read analogously. When the ports are closed, 
the process dies. 

This compute-result rule may fail because one of the 
inputs is not known. For this case there is a second 
rule, which translates: "I f the program is not ready to 
run, and al l the parents of the program (those 
programs whose output is input to the program) are 
found, and each of them is run, then it is true that 
results have been computed for the program." 

Since the rule for running the program requires 
that all required input values be present, the program 
may fail to execute on the first attempt. However, the 
side effects from the first attempt cause the input 
variables to be bound. On the next attempt, program 
execution wi l l succeed. This rule is recursive, since in 
order to run the parent programs, it may be necessary 
to run the "grandparent programs. 

The final element in this paradigm is consultation 
with the analyst. This is done by identifying the free 
design parameters whose values are unknown and 
requesting values for all of them at once. A menu-
driven user interface presents default values for all the 
requested variables and accepts user inputs, prompting 
for re-entry of values that are out of range and 
supplying help as requested. 

Because this paradigm is executed recursively, it 
can address any level of depth. Since it executes the 
programs by starting up processes and passing inputs 
and outputs through ports, it can execute programs 
writ ten in any language. The only application-
dependent component of the system is the fact base; the 
only requirement for the fact base is that it must name 
each input and output for each program and provide a 
sequence number in the argument list, so that the 
expert system can uniquely identify each variable and 
the computational codes can receive the variables in 
the correct sequence. Since this informat ion is 
explicitly given, the facts themselves need not be in 
any special sequence. 

Formal benchmarks have not yet been established 
for the Expert Executive. In its init ial implementation 
in a logic-based, interpreted Lisp system, increasing 
the number of input and output variables produced a 
nonlinear increase in the execution time of the Expert 
Executive. Even then, the elapsed time of 10 minutes 
of Expert Executive time, plus the sum of the times for 
the computational programs, for an actual vehicle 
design compared very favorably with the length of the 
design cycle without automated integration, which 
would be several weeks. We hope for improvement of 
at least an order of magnitude from use of compiled 
Prolog. 

Because the primary advantage of the Expert 
Executive over a Fortran executive program is 
expected to be the lower cost of modifying it to address 
new sets of computational programs, which requires 
one person for approximately 8 weeks for the Fortran 
executive, the most significant benchmark for the 
Expert Executive wi l l be its reconfiguration cost. 
Reconfiguring the fact base for a new set of technology 
codes has required from 2 to 5 days. (We are currently 
automating the process of generating the fact base.) 
Also, each program usually reauires a preprocessor and 
postprocessor to provide data format compatibility and 
to intercept dialogue; development of these has 
required about 1 day each. These values suggest that 
the cost of adding additional computational programs 
is l inear. Because the fact bases are ent i re ly 
independent of the rule base, which is static, and a 
simple, straightforward representation is used for the 
fact base, we are optimistic that the Expert Executive 
wi l l prove clearly superior in its reconfigurability. 

Development of new fact bases reauires that domain 
experts agree about the true logical identities of the 
input and output variables. This requirement is not 
caused by the use of an automated integration tool. 
Even without automated tools, agreement is obtained 
either formally through software documentation or 
informally through telephone calls and scribbled notes. 
However, use of an automated tool makes this process 
more visible and moves it to the beginning of the design 
cycle. 

594 KNOWLEDGE REPRESENTATION 



IV The Expert Executive for Life-Cycle Engineering 

Applying the Expert Executive to the broader life-
cycle engineering problem requires incorporation of a 
broader range of analysis programs and CAD software 
that can operate under the control of the Expert 
Executive. We have studied the general problem of the 
interaction between a commercial ECAD system and 
another interactive software system, such as the 
Expert Executive. We have also looked at a specific 
ECAD system and identified an approach to enabling 
interaction between it and the Expert Executive. Two 
elements of this CAD software distinguish it from 
other software programs previously made to interact 
with the Expert Executive: (1) the extraction of data 
from ECAD systems for use by analysis programs and 
(2) the interface between the ECAD man-machine 
interface (MMI) and the Expert Executive MMI. 

Because CAD systems generally use a proprietary 
internal data format, computed values cannot be 
written directly to the CAD data base and an external 
format must be generated by executing a vendor-
supplied data base extraction program. The resulting 
formatted f i l e may then be used by special 
preprocessors to the analysis programs, in the same 
way that preprocessors and postprocessors have been 
generated for other technology codes. The extraction 
p rogram supplied by the CAD vendor provides the final 
imit on the data available for further analysis. While 

other data items may be available for direct use by 
CAD vendor software, the only items available to the 
analysis programs are those in the external formatted 
file. The data formats provided by the extraction 
program do not necessarily match any universally 
adopted format and therefore require reformatting 
when one CAD package is substituted for another. 
Universal formats, such as the Electronic Data 
Interchange Format, would allow the substitution of 
CAD packages with reduced data extraction effort. 

Commercial CAD programs contain a graphical 
MMI that wi l l be required to interact with the MMI of 
the Expert Executive. Certain vendor constraints 
generally l imit the range of possible interactions; for 
example, most CAD packages take control of the entire 
screen while they are active. Since a key objective of 
integrating analysis into the design process is to be 
able to analyze the design earlier in the process, it wi l l 
be necessary to define checkpoints at which analysis 
can be meaningful and interrupt the CAD process at 
these points. 

We have investigated these issues and are 
preparing to implement a prototype design workstation 
that wi l l integrate commercial CAD software wi th 
reliability, maintainability, and life-cycle cost analysis 
in order to rapidly explore the space of possible 
electronic c i r cu i t designs for a g iven set of 
requirements. We are also con temp la t ing a 
mechanical CAD application. 

V Toward Design Optimization 

The ability to generate a set of designs wi l l require 
a further abil i ty to select the best design for the 
requirements. We believe intuitively that Key design 
attributes usually trade against one another; for 

example, if we want greater reliabil ity, the product 
wi l l cost more or require more maintenance. However, 
Naft [1986] found that if analysis is done earlier in the 
design process, significant improvements in a given 
attribute can be achieved at no cost in terms of the 
other attributes; the available design space was simply 
so large that it had not been adequately explored. 
Exploring the design space is the true objective of 
automating the design process and incorporating it 
into life-cycle engineering. This same case illustrates 
the fact that we know very l i t t le about the trades 
between conflicting design attributes. For example, we 
would expect that designs for use in a space station and 
in a ground-based vehicle would differ fundamentally 
in their requirements for reliability, maintainability, 
life-cycle cost, and performance. 

If the design requirements were made explicit, and 
the data relating to the attributes of existing systems 
were made avai lab le, it would be possible to 
incorporate some level of optimization into the design 
process. Once a large design space is available, some 
degree of design optimization wil l be essential for life-
cycle engineering. 

References 

Kowalik, J.S.; Chalfan, K.M.; Marcus, R.I.; and 
Skillman, T.L. "Composite Software Systems," Boeing 
Computer Services internal working paper, 1987. 

Kowalik, J.S., and Chal fan, K.M. "H igh Speed 
Computing and Art i f ic ial Intelligence Connection," 
The International Journal of Supercomputer 
Applications, to appear in 1987. 

Naft, J., and Pecht, M. "Ramcad for Printed Circuit 
Board Design," Proceedings of Technical Interchange 
Meeting, Institute for Defense Analyses, Alexandria, 
VA, October 21-22,1986. 

Chalfan 595 


