
COMPILING DESIGN PLANS FROM DESCRIPTIONS OF 
ARTIFACTS AND PROBLEM SOLVING HEURISTICS 

Agustin A. Araya and Sanjay Mittal 
Intelligent Systems Laboratory, Xerox Palo Alto Research Center 

3333 Coyote Hill Rd., Palo Alto, CA. 94304 

Abstract 
An analysis of the design plans in the Pride expert system 

shows that they integrate knowledge about structure and 
functionality of artifacts as well as problem-solving heuristics A 
method is presented by which such plans can be automatically 
generated by compiling knowledge about artifacts, problem 
solving heuristics, and characteristics of specific problems. 
Knowledge compilation allows the creation of plans tailored to 
particular problems and offers potential benefits in maintaining a 
knowledge base, in reusing the same knowledge for different 
purposes, and in providing a framework for more systematic 
knowledge acquisition 

I Introduction 
The process of designing many kinds of complex systems, 

in particular mechanical systems, can be viewed as a 
knowledge-guided constraint-satisfaction problem. In this view, 
the process of designing an artifact that can achieve a desired 
functionality is mapped into a problem of assigning values to 
variables which are constrained by the desired structural and 
functional relationships of the artifact Typically, such problems 
are under-constrained and require much domain-dependent 
knowledge for guiding the constraint-satisfaction process In a 
previous paper [Mittal and Araya 1986], we have argued that a 
useful way to structure design knowledge is in the form of design 
plans. Expert systems such as AIR-CYL [Brown and Chandrasekaran 
1986) and Pride [Mittal et al 1986] have beer successfully built 
using this approach. 

A design plan serves two important purposes in the Pride 
system. First, a plan implicitly describes the space of possible 
artifacts by representing parameters of the artifact as the 
dimensions of a search space Second, a plan embeds knowledge, 
including heuristics derived from the experience of human 
designers, for guiding the search for solutions given requirements 
for specific artifacts. An analysis of these plans shows that they 
integrate knowledge of different kinds into a knowledge 
structure which can be used by a problem solver to produce 
multiple solutions to the original design problem. We have 
identified at least three kinds of knowledge embedded in design 

plans. First, a plan implicitly uses knowledge about the structure 
of artifacts that art known to satisfy the desired functionality The 
structure consists of the recursive composition of the parts that 
make the artifact and their properties. Second, plans implicitly 
contain knowledge about the functional relations that must exist 
between the properties of the components so that their stipulated 
behavior is achieved Finally, plans contain problem-solving 
heuristics whose purpose is to make the constraint-satisfaction 
process more efficient It is the kind of knowledge that expert 
designers acquire through a long practice of designing similar 
kinds of artifacts 

The plans that have been used in the Pride system to 
support the design of paper transport systems have been 
hand-coded from an analysis of design processes carried out by 
expert engineers. In this paper we examine the problem of 
automating the generation of such plans from more explicitly 
represented knowledge We will show that it is possible to 
generate design plans using the following kinds of knowledge: i) 
knowledge about structure and functionality of classes of 
artifacts, ii) problem-solving heuristics, and iii) characteristics of 
the given design problem We view the process of generating 
such plans as a form of knowledge compilation in direct analogy 
with the standard notions of language compilation in computer 
science As we shall show later on in the paper, the analogy with 
compilation is justified because domain-dependent knowledge 
expressed in one form is transformed into a different form, which 
is executable by a problem solver Furthermore, the 
transformation also takes into account efficiency considerations 

The ability to compile plans is desirable for several reasons 
such as maintainability, tailorability, and reusability of the same 
basic knowledge. It can be argued that for certain problem 
domains a large number of plans may be necessary to adequately 
cover the range of problems in those domains. It is likely that 
there will be a high degree of redundancy among plans, so that a 
more economical representation would be desirable, especially 
from the point of view of maintaining the knowledge base. Also, 
the possibility of creating plans taking into account the specific 
characteristics of a given design problem makes it possible to 
generate plans that are better suited to the problem at hand. 
Finally, an explicit representation of the different kinds of 
knowledge opens up other possibilities that are important for 

552 KNOWLEDGE REPRESENTATION 



reusability of knowledge. For example, the same basic knowledge 
can be used for other purposes such as diagnosis. Another 
possibility is compilation into a different problem solving target 
architecture, i.e., other than plans, which might be more suitable 
for some problems. 

Being able to take knowledge of different kinds expressed 
in some form and compiling into a representation that is 
optimized for a particular problem solving model, has the 
potential of resolving a major dilemma in the development of 
large knowledge-based systems, which can be stated as follows. 
On the one hand, there is clearly a need to represent domain 
knowledge at some "deep" level without regard to how it is 
eventually used for any of different purposes. This is crucial in 
developing large knowledge bases that can be shared across many 
different applications, otherwise one would continue to pay the 
large cost of acquiring such knowledge on an application by 
application basis. On the other hand, experience with expert 
systems shows that methods that operate on "deep" 
representations tend to be inefficient and the power of current 
systems derives from structuring knowledge in a form that is most 
suitable for a particular task. Knowledge compilation seems to 
offer an attractive bridge between these two competing 
requirements. 

The ideas we present here should be taken as a small step 
towards the larger view presented above In the same vein, our 
work connects to a scattering of other work that is confronting 
similar issues. In an earlier paper [Chandrasekaran and Mittal 
1982], it was shown that it is possible and desirable to compile 
diagnostic knowledge structures from the underlying body of 
domain knowledge. The work on the automatic derivation of 
explanations (Swartout 1983] can also be viewed as a kind of 
compilation. Our work begins to connect to work on qualitative 
reasoning [deKleer and Brown 1985, Forbus 1985], in so far as they 
provide ideas for representing deeper models. Finally, there is 
some overlap in concerns with the work on partial evaluation 
(Kahn 1984] and meta-interpreters (Sterling and Beer 1986]. In 
particular, the processing inside a knowledge compiler can be 
viewed as a partial evaluation of the original knowledge 
structure. Furthermore, the knowledge compiler can be viewed as 
a meta-interpreter that operates on the original knowledge base 
to produce a new interpreter, i.e., a plan in our case. This plan 
operates on artifact descriptions 

The ideas reported in this paper are being tested in two 
domains: paper transport systems of copier machines and 
transducers. We have developed a representation for describing 
different kinds of transducers in terms of their structural 
composition and functional relations. A relatively simple compiler 
has also been implemented and tested for certain kinds of force 
transducers. This paper is organized as follows. In the second 
section we makt an analysis of the notion of plans in the Pride 
system. The third section describes by way of examples from the 
transducer domain how such plans can be automatically 

generated. The last section closes with a general discussion of the 
implications of being able to compile design plans. 

I I Plans f o r g u i d i n g cons t ra in t sa t is fac t ion 

For many kinds of design problems, we find that the 
following 2-stage approach can be gainfully used. In the first 
stage, the specifications of a particular design problem are used to 
define the parameters of a search space along with constraints 
derived from the structural, functional, and performance 
requirements. The first stage thus defines a constraint satisfaction 
problem that can be solved in the second stage by some suitable 
problem solver. This division of labor is motivated by the different 
kinds of reasoning that must be performed in each of the two 
stages of problem definition and problem solution. In this section, 
we briefly describe the notion of design plans in the Pride system 
as a representation for a stage two constraint-satisfaction 
problem solver. A more detailed account can be found in [Mittal 
and Araya 1986]. 

Design plans define a search space as well as ways of 
efficiently searching in that space. The dimensions of the search 
space are represented by variables that correspond to the 
parameters of the artifact to be designed. For example, in the 
domain of transducers variables are used to represent different 
properties of components such as the length and material of the 
beam, and the strain on the strain gauge (see fig. 1 for a diagram 
of a transducer whose characteristics will be presented in detail in 
the next section). Pieces of knowledge that are used to assign 
values to variables are represented by methods. Some of the 
methods calculate the values of a variable in terms of values of 
other variables. Other methods, generators, assign values from a 
set of possible choices (e.g., the material can take values matl to 
matn). Methods may also include heuristics for making plausible 
choices or taking optimality considerations into account. For 
example, the method for deciding the material might specify that 
matl is a good initial choice based on experience. Plans also 
contain constraint expressions that express relations between 
variables that must be maintained during the design process, e.g., 
the expression "strain<maxstrain" indicates that the strain in the 
strain gauge should be maintained below certain threshold. 
Finally, advice expressions are used to represent possible ways of 
repairing a partial design when there is a constraint failure. 

The different elements of a plan as described above are 
structured around goals, which serve several purposes in the plan 
representation. First, goals are used to index all the knowledge 
relevant to making a decision about a design variable. This is 
made possible by creating a goal for each design variable, ideally 
as a one-one mapping, i.e., a unique goal for each variable and 
only one variable per goal. Attached to a goal are all the methods 
for making a decision about that variable, as well as constraints 
which are applicable. This indexing allows the plan interpreter to 
select the most suitable method for making the decision. It also 

Araya and Mittal 553 



allows the applicable constraints to be checked as early as 
possible. The same indexing feature also allows advice for revising 
a variable to be sent to the unique goal responsible for making a 
decision about that variable. 

The goals are also used to represent the ordering 
heuristics which are helpful in selecting the order in which the 
variables are decided. A partial order might be directly 
represented at a goal in terms of dependencies on other design 
variables or computed from the particular method which is run. 
Order information helps improve the efficiency of the constraint 
satisfaction process by allowing more constrained variables to be 
decided before less constrained ones. Ordering knowledge may 
come both from experience as well as from an analysis of the 
constrained-ness of the variables. 

Finally, goals can be used to remove an important cause of 
inefficieny in constraint satisfaction This is the case of n 
tightly-coupled variables in which the variables art so constrained 
that an attempt to find consistent solutions, which starts with a 
subset of these variables and then propagates the partial solution 
over the rest, will lead to much backtracking We allow a single 
goal to be used to represent a tightly-coupled set of variables. This 
allows the constraints to be simultaneously resolved if suitable 
methods exist It also creates a single decision point where all 
revision advice is posted 

operational, etc. Optionally, the top level configuration of the 
transducer might be given, i.e., the higher level components of 
the transducer. For instance, one could specify that a transducer 
should consist of a cantilever bending beam, a strain gauge and a 
Wheatstone bridge, which corresponds to the case of figure 1a. 
Specifications for an example transducer are given in figure 2. 

force 

III Gene ra t i ng a p l a n : An e x a m p l e 

We will examine in detail, using examples from the 
domain of transducers, how a design plan can be generated A 
force transducer is a mechanical device that is used to measure 
forces. Figure 1 shows two kinds of transducers consisting of a 
cantilever bending beam (column), a strain gauge and a 
Wheatstone bridge The first kind of transducer behaves as 
follows: when the force to be measured is applied to the beam it 
produces a strain on it (a local deformation). This strain generates 
a strain on the gauge attached to it, which alters its electrical 
resistance. The change of electrical resistance, in turn, generates a 
change of voltage in the Wheatstone bridge, which can then be 
translated into numbers on a display, representing the magnitude 
of the force The transducer has to be designed in such a way that 
for forces with magnitude on a certain range the relations 
between the magnitude of the force, strain, change of electrical 
resistance, and so on, are linear, so that the change of voltage in 
the Wheatstone bridge is linear with the magnitude of the force. 
This allows us to measure the magnitude of the force in terms of a 
change of voltage. 

The specifications for a transducer to be designed indicate 
the range of the magnitude of the forces to be measured. Other 
specifications vary with the problem. There might be 
specifications about the desired precision of the transducer, 
desired sensitivity, restrictions on the weight, restrictions on the 
size, range of temperatures for which the transducer must be 

F : maximum force to be measured, in pounds 
MWT : max weight, in pounds (WT < MWT) 
MID : max lateral displacement of the beam, 

in inches, (LD < MLD) 
ML : max length, in inches 
OSC : output of supporting circuit, in volts/lb 
P : precision, in pounds 

Fig. 2 : Some of the variables that are specified 
in a typical force-transducer problem 

The process of generating a design plan can be 
decomposed into three stages, as shown in figure 3. The first stage 
takes into consideration the problem specifications and 
descriptions of classes of artifacts, and determines the parameters 
and functional relations that are relevant for a particular problem 
The second stage performs an analysis of the functional relations 
and uses domain-dependent heuristics to determine an ordering 
on the assignment of values to parameters, selects methods for 
assigning the values, and detects certain kinds of tight coupling 
between variables. The last stage maps the different elements 
produced by the previous stages into a design plan. 

554 KNOWLEDGE REPRESENTATION 



A. Stage I: Determining relevant parameters and 
functional relations 

In designing an artifact it is necessary to determine the 
paramtttrs and functional relations relevant to the problem, i.e., 
tht parameters that must be designed and the relations that must 
be taken into account during design This can be accomplished in 
two steps First all the parameters and functional relations that 
need to be considered in a design situation are obtained Second, 
tht problem specifications are utilized to determine whether they 
affect tht rtltvanct of some of the parameters and relations 
obtained in the first step. 

Identifying always-relevant parameters and relations 

Ltt us assume that we have available descriptions of 
artifacts consisting of the structural decomposition of the artifact 
and a set of functional relations. Further, assume that the top 
level configuration of the desired transducer is given (e.g., the 
configuration depicted in figure 1a). Either this configuration is 
included in tht specifications or has been generated by an earlier 
stagt of tht design process, during conceptual design. The given 
configuration is used to determine the structural decomposition 
for that kind of transducer (set figure 4). The structure of the 
artifact can than be used to dtrive an initial set of parameters and 
access a set of functional rtlations associated to them (see figure 
5). This is accomplished by having tht functional rtlations indtxed 
by all tht parameters (proptrties of the components of the 
artifact) occurring in the relations. 

stress ■ F*SGA/S (stress on the beam at the position 
where the gauge is attached) 

strain ■ stress/E (the strain of the beam is a function 
of the stress and the elasticity of the material) 

SGstrain ■ strain (the strain on the gauge is equal to 
the strain on the beam) 

minstrain < SGstrain < maxstrain (the strain on the 
gauge must be within certain range) 

E ■ f3(M) (elasticity of a material) 
D ■ f4(M) (density of a material) 
S ■ f1(W,H) (expression for the modulus of cross-section) 
WT - L*A*D (weight of beam) 

Fig. 5: Some of the functional relations for beam 
transducers. Refer to fig.4 for relating 
the variables to the structure of the 
transducer 

The parameters and relations obtained in this way art of 
two types. The "always-relevant" parameters and rtlations art 
those that capture important aspects of tht functionality of tht 
transducer and are always relevant to problems of these kind. 
Examples of these are the relations between tht applitd forct 
and the stress on the beam, and between tht strain in tht gaugt 
and its changt of tlectrical resistance. Thtst art tht rtlations that 
determine that the transducer can be used to measure forcts in 
terms of changts of electrical rtsistanct. Tht "possibly-relevant" 
paramtters and rtlations art thost whose relevancy depends on 
tht given specifications, which vary from problem to probltm. 

Araya and Mittal 555 



Determining how the specifications affect the 
relevance of possibly-relevant parameters 

The second step of this stagt consists of determining 
which of the possibly-relevant parameters and relations are made 
relevant by the given specifications. The basic criterion is that if 
the specifications contain restrictions on a possibly-relevant 
parameter, then the parameter becomes relevant. For instance, in 
the specifications given in figure 2 there are restrictions on the 
weight of the transducer (WT < MWT), and on the displacement 
of the beam caused by the application of the force (LD < MLD) 
The weight and lateral displacement initially are not relevant 
parameters as they do not contribute to the functionality of the 
transducer. But the restrictions on these parameters given in the 
specifications, which presumably are restrictions imposed by 
other components of the larger system in which the transducer is 
embedded, make them relevant in the current problem 

Once a parameter becomes relevant it is necessary to 
determine how it is related to the other relevant parameters, and 
how these relations affect the relevance of the rest of the 
parameters. The new parameter must be connected with the 
previously found relevant parameters through a chain of 
functional relations. These connections may involve other 
parameters, which in turn may participate in other relations with 
additional parameters, and so on In the examples we have 
analyzed we have found that new parameters are related to 
existing parameters by means of equalities (Functional relations 

ara of two kinds: equality relations, e.g., z ■ f(x,y), and inequality 
relations, e.g., t > f(x,y)). For example, suppose that p1,...,pn are 
relevant parameters, and z is added as a new relevant parameter. 
Then, either z = f(pi,pj, .pm), or z may be derived from other 
intermediate parameters which ara in turn derived through 
equality relations from relevant parameters. In this case, all the 
intermediate parameters as well as the equality relations between 
them become relevant. In our work reported here we have 
considered only this special but common case, and have not 
addressed the most general situation where several paths can be 
found between the new parameter and the relevant parameters, 
in which also inequality relations ara present that may alter the 
relevance of other parameters. 

B. Stage II: Analysis of relevant relations and 
application of heuristics 

The purpose of this stage is to analyze the set of 
parameters and relations previously obtained and to create the 
"skeleton" of an efficient design plan, which in the next stage will 
be mapped into a full-fledged design plan interpretable by the 
problem solver. (Figure 6 represents the skeleton of a plan for 
designing the example problem). Domain-dependent and 
domain-independent heuristics are applied to datarmine 
grouping of variables, an order of assignment of values to 
parameters, and methods for assigning those values 

556 KNOWLEDGE REPRESENTATION 



Decomposing the set of relevant parameters into 
tightly-coupled sets 

The first step is the identification of sets of tightly-coupled 
parameters, i.e., parameters that are highly interdependent and 
should be designed together (see Section II). This step decomposes 
the set of relevant parameters into appropriate subsets. Often 
domain-dependent heuristics are available for this purpose. It is 
also possible to use domain-independent heuristics. For example, 
if several parameters are related to the same parameter p by 
equality relations, then the set of all these parameters, including 
p, is considered to be tightly-coupled. Furthermore, inequality 
relations between parameters in a tightly-coupled set are also 
associated with the set. In particular, any inequality relation 
relating one or more of the parameters in the set to parameters 
that appear first in the order of assignment of values, is associated 
to the set. This ensures that if any of these relations is violated all 
the parameters in the set will be recomputed, rather than only p 
and the ones involved in the violated relation(s). This reduces 
significantly the amount of backtracking necessary to satisfy all 
the relations. 

Determining order of assignment of values and 
methods 

The next step determines the order in which variables are 
assigned values First, from the specifications we can determine 
the parameters whose values are initially known (e.g., force F in 
figure 6) Utilizing equality relations it is possible to determine 
other parameters that can be derived from them. Second, 
domain-dependent heuristics that contain order information and 
information about methods for assigning values can also be used. 
For example, a heuristic could indicate that the design of a beam 
transducer should start by proposing a length for the beam taking 
into account restrictions imposed by the specifications. Another 
heuristic could indicate that the material of the beam should also 
be selected at the beginning of the process, choosing first a 
standard material, from the list of possible materials (see figure 6). 

Once a method for assigning value to a parameter is 
determined, the equality relations can again be used to see 
whether additional parameters can be derived. This process is 
repeated for every new parameter. After these heuristics are 
utilized we are left with a partial order for a subset of the 
parameters, and with methods for assigning values to some of 
them. 

When no more equalities are available and still there are 
parameters whose values have not been assigned, the inequality 
relations can be used. For example, consider the "F*L/S 
max-stress" relation. If F, L, and max-stress are known, this 
relation can be used to generate values for S: "S> 
F*L/max-stress" (See figure 6). 

Attaching inequality relations to parameters 

After this step is performed, it is possible that some of the 
relevant inequality relations may not have been used. For each of 
these relations, the parameter that participates in the relation 
that is assigned value last in the order determined in the previous 
step, is identified. The relation is then added to the plan by 
attaching it to the node that contains that parameter. If the 
relation contains parameters that are in parallel branches of the 
partial order between parameters, then the functional relation is 
attached to a new node, and is connected to the nodes for those 
parameters. This ensures, first that when the constraint is tested 
by the problem solver all the parameters that participate in the 
relation have already been assigned values, and second that the 
constraint is checked as soon as possible. 

Notice that a different plan would have been created for a 
different set of specifications which is an indication that the plan 
is sensitive to the characteristics of the particular problem. For 
instance, if the specifications for a problem impose tight 
restrictions on the size of the transducer, i.e., its length, width and 
height, a domain-dependent heuristic would have determined 
that the parameters of the cross-section of the beam should be 
designed first. Then, the maximum allowable stress (max-stress) 
would be determined using the relation on the modulus, under a 
different form (max-stress >F*L/S) Finally, the material would be 
selected taking this max-stress into account. Thus, the order in 
which variables are assigned values and the methods used for that 
purpose in the new plan, are different from those of the original 
plan. 

C Stage III: Generating a plan 

The skeleton plan that was developed in the previous 
stages is now mapped into a design plan. The relevant 
parameters are mapped into variables of a plan. The methods for 
assigning values to variables are mapped into appropriate kinds 
of plan methods, such as generators and calculations (e.g. the 
methods for assigning values to material (M) and to stress, 
respectively, in figure 6) Then the goals of the plan are created, 
and variables, methods and constraints are attached to them, 
taking into account the semantics of plans. Typically, a goal will 
have only one variable attached to it, as well as one method for 
assigning values to that variable If in the previous stage a 
constraint was attached to a parameter, then it will be attached to 
the goal corresponding to that parameter. Sets of variables 
corresponding to sets of tightly coupled parameters are attached 
to a single goal, together with the corresponding constraint. At 
the end of this process all the elements of the design plan have 
been tied together in a network of goals 

It should be noted here that a plan doesn't specify a single 
solution to a design problem, but rather a set of solutions. This is 
because generators, that are used to assign values to some of the 
variables, can produce a different value from their specified sets 
of values each time that they are activated. Also, an important 

Araya and Mittal 557 



property of a plan is that the problem solver can back up to a goal 
if it needs to revise a decision made at that goal, e.g.. when a 
constraint has been violated. These two characteristics allow plans 
to guide the constraint-satisfaction process 

0. Current implementation of the compilation process 

We have developed a preliminary implementation of the 
process for generating plans for certain kinds of the domain of 
force transducers, including the beam and column configurations 
In this implementation, a class of artifacts is described in terms of 
descriptions of classes of components, which in turn specify the 
classes of their subcomponents and their properties We assume 
that the top-level configuration of the desired artifact is available 
The description of the configuration is used to index into the 
description of the structure of known classes of artifacts to obtain 
an initial set of properties From these properties their associated 
functional relations are accessed and collected The process then 
continues as exemplified in section ill A For the second stage of 
the process we have concentrated on making use of 
domain-dependent heuristics, leaving for a later version the 
implementation of some of the domain-independent kinds of 
analysis. The last stage of the current implementation creates 
design plans that can be processed by the constraint satisfaction 
engine of the Pride system 

IV Discussion and Conclus ions 

In this paper we have identified a two-stage process for 
representing domain knowledge and using it to design suitable 
artifacts, and have described a method for compiling different 
kinds of knowledge from a stage I representation into a stage II 
plan for constraint satisfaction. Two distinct arguments have been 
made for knowledge compilation, in this section, we examine 
these arguments in more detail and try to relate them to different 
characteristics of problem domains 

The first argument for compiling from stage I to stage II 
can be made on the grounds of maintainability of knowledge A 
stage I representation allows different kinds of knowledge such as 
the structure of artifacts, functional constraints, and problem 
solving heuristics to be separately represented Thus, appropriate 
representational schemes can be devised which would allow 
suitable knowledge editing and browsing tools to be developed 
Under maintainability criterion alone, stage I representations are 
viewed as an easier-to-maintain representation, while stage II is 
viewed as optimized for execution. However, no problem solving 
goes on during compilation 

The second argument for compilation is based on the 
need to tailor a stage II plan to the requirements of specific design 
problems. Under this criterion, the compiler is not merely 
transforming one representation into another one but also 
carrying out some of the reasoning required by the design task In 
particular, the compiler has to select the relevant design variables 
and decide which constraints are relevant to the problem at hand 
This creates a closer bond between the compiler and the problem 

solver used in stage II. For example, consider a situation where the 
problem requirements can be satisfied by more than one top-level 
configuration of transducer components. In such a case, the 
compiler would select one of the configurations and build a plan. 
However, detailed execution of the plan may show the 
configuration to be unsuitable This requires an ability to back up 
to the compiler and select a different configuration. Notice, 
however, that this kind of reasoning is already performed by the 
stage II problem solver. This would seem to indicate a more 
iterative relationship between the plan compiler and plan 
problem solver 

Another important point in relation with the applicability 
of the compilation process is that in many domains it might be 
possible to develop a single plan or a small number of such plans 
that cover a large number of problem instances »n the domain. In 
this situation the compiler is used purely for maintainability 
reasons, leaving all reasoning with the plan interpreter In other 
words, the compiler is only used to help in maintaining the 
knowledge base and not in compiling out certain kinds of 
reasoning This observation is based on a comparison of the 
pinch-roll paper transport (PRPT) and force transducer (FT) 
domains Knowledge about the former domain can be largely 
captured by a single plan with local variations The latter domain, 
however, requires different plans for different problems A 
comparison of the two domains seems to indicate that the 
problem-independent knowledge is more stable for PRPT 
problems than it is for FT problems. In other words, the relevant 
constraint expressions are more or less the same for all PRPT 
problems, much more so than they are for FT problems 

A c k n o w l e d g m e n t s 
We would like to give special thanks to Walter Wang for 

many discussions on design issues and for having familiarized us 
with the transducer domain We would also like to thank Felix 
Frayman for many discussions on the notion of compilation 

References 
Brown, D C and B Chandrasekaran "Knowledge and Control for 
a Mechanical Design Expert System " Computer, July 1986 
Chandrasekaran, B and S Mittal "Deep versus compiled 
knowledge structures for diagnostic problem solving " In Proc. 
AAAI-82, August, 1982 
deKleer, J. and J S.Brown "A Qualitative Physics Based on 
Confluences " In Qualitative Reasoning about Physical Systems. 
D Bobrow (Ed), MIT Press, 1985 
Forbus,K. "Qualitative Process Theory." In Qualitative Reasoning 
about Physical Systems, D.Bobrow (Ed), MIT Press, 1985. 
Kahn, K. M. "Partial Evaluation, Programming Methodology, and 
Artificial Intelligence." Al Magazine, Spring 1984. 
Mittal, S, CL.Dym, and M.Morjana "PRIDE: An Expert System for 
the Design of Paper Handling Systems " Computer, July 1986. 
Mittal, S and A Araya "A Knowledge-Based Framework for 
Design " In Procs AAAI-86, August 1986 
Sterling, L and R. D Beer "Incremental Flavor-Mixing of 
Meta-lnterpreters for Expert System Construction." In Procs. 3rd 
Symp on Logic Programming, Salt Lake City, 1986. 
Swartout.W R "XPLAIN: A System for Creating and Explaining 
Expert Consulting Programs "Artificial Intelligence, Vol 21, 1983 

558 KNOWLEDGE REPRESENTATION 


