
DANTES 
An Expert System for Real-Time Network Troubleshooting 

Robert Mathonet, Herwig Van Cotthem and Leon Vanryckeghem 

CI G - Network Systems and Services 
Brand Whitlock 87 

1040 BRUSSELS - BELGIUM 

ABSTRACT 

Today's computer networks are large and complex. Their day-
to-day operation and maintenance can benefit from the support 
of an expert system, mainly as an aid in troubleshooting. 
Network troubleshooting has characteristics, like incomplete 
data, high rate of events, simultaneous presence of several 
problems, which raise interesting problems in the development 
of an expert system. 

DANTES is an expert system designed to provide real-time 
assistance to network operators. This paper presents the 
system and stresses the development issues that are peculiar to 
network troubleshooting. Of particular importance are 
performance of inference in real-time, multi-problem handling, 
and consideration of time in reasoning and revision of belief 
Dealing with such issues and especially with real-time 
efficiency is primarily a question of system design. This has 
implications for the knowledge base organization, reasoning 
mechanism, and recording of deductions. 

1. INTRODUCTION 

DANTES is a real-time assistant to network supervisors in carrying out 
their troubleshooting activities. Troubleshooting is the part of network 
control that concerns the detection and diagnosis of network problems with 
the aim to identify the deficient component. DANTES is driven by 
external events, which can be spontaneous network alarms, result of tests, 
manual operator input, etc. 
The system analyses each event and, when it detects a malfunction, warns 
the supervisor, giving advice and indications for the (manual) tasks that 
need to be performed. 

At first sight, network troubleshooting is quite similar to other 
applications of AI to industrial environment. However, it presents 
characteristics that make the development of an expert system in this 
domain an interesting challenge. Of particular importance are : 

- Integration of structural and heuristic knowledge: 
DANTES uses structural knowledge, about the network and about 
network events, and heuristic knowledge about fault detection and 
diagnosis. Both kinds of knowledge require different representation 
paradigms, and must be integrated. 

- Inference mechanism with real-time efficiency : 
Troubleshooting must be done in real-time. 

- Multi-problem handling: 
In contrast with most industrial processes, which only present one 
problem at a time, coexistence of several problems is standard in 
large computer networks, and cannot be ignored. 

- Reasoning with time : 
In common with other industrial processes 19], time aspects are 
important in network troubleshooting. They are not limited to 
correlation of events having occurred at different moments in time. 
Of special interest is the consideration of time in plausible reasoning 
[7] and belief revision with time : some deductions must be revised 
after a time lapse. 

The purpose of this paper is to discuss the issues that arise from dealing 
with such features in expert system development. Two aspects are 
considered in detail : knowledge representation and reasoning mechanism 
design. 

DANTES principles have been tested on a nationwide meshed network 
interconnecting more than 1000 processors. 

The DANTES prototype system has been implemented on a TI Explorer 
LISP Machine. 

2. D O M A I N CHARACTERISTICS 

The supervision of a large computer network is usually handled from a 
control center. Exception events occurring in the network arc reported to 
the control center through the intermediary of the network itself. These 
events must be interpreted by human operators to detect and diagnose 
problems. In this context, a problem is any abnormal situation serious 
enough to disturb communication between network components. The 
complexity of troubleshooting is due to the following aspects : 

Event Correlat ion 
A single event is usually not significant. An abnormal situation often 
generates a large number of events, each containing a small piece of 
information. Situation analysis and characterization must be done by a 
reasoning process integrating the various events. At first glance, event 
correlation seems quite straightforward : the reported events need only be 
divided into groups of related components; the resulting event sequences 
will then be compared with the standard sequences characterizing a problem 
and hence will lead us to conclude about the problem. This is not so for a 
number of reasons: 

- Time Correlation : Events related to a given situation are scattered 
over a time interval which can be long : hours, even days for some 
degradation problems. 
Also, the rate at which events appear can have an importance; e.g. a 
modem fluctuation once an hour is not serious, but 10 times a 
minute is. 

- Space Correlation : An abnormal situation can induce events on 
several network components : on the faulty component, on 
hierarchically related components and on components interconnected 
through the network. A problem must sometimes be indirectly 
detected, from related events reported by components other than the 
faulty one. 

- Redundant Events : Many events are a direct consequence of others 
and give no additional information. Events can even be reported (via 
the network) after the problem has been fixed. Such events can only 
distract the operators and should be masked. 

To cover the various aspects of event correlation, especially event space 
correlation, DANTES needs structural knowledge 

* about the network, including its components and the relations 
among them. 

* about events which can occur for these components. 

* This research was supported by IWONLIRSIA 

Mathonet, Van Cotthem, and Vanryckeghem 527 



Reasoning With Incomplete Data 
Network troubleshooting always begins and often proceeds with 
incomplete information. Information is gathered incrementally as more 
events are reported. Event interpretation does not always lead to a definite 
conclusion : events can be lost or not reported because communication to 
the control center is down, and different problems sometimes start off with 
the same event stream. In most cases, only hypotheses can be assumed 
about a given situation. When incoming events add information, these 
hypotheses need to be reconsidered or refined. Hence, the inference 
mechanism must have plausible reasoning allowing revision of belief [7]. 
Revision of belief is not only triggered by events, but also by time 
progression. The absence of events can sometimes be as significant as 
their appearance and should be interpreted as such. For instance, suppose 
events lead us to suspect some degradation on a component Other events 
should occur a short while after to confirm the degradation. If no event is 
reported, the assumption of degradation must be removed. 

Molti Problem Handling 
Any computer network usually has several unrelated problems pending. 
Corresponding events generated for each will therefore be intermixed. 
Some abnormal situations are more critical than others, and should be dealt 
with first. Since information is progressively gathered, the reasoning 
related to a given problem is achieved in several stages, discontinuous in 
time and triggered by event arrivals. In between the stages, the reasoning 
activity can focus on other abnormal situations. At each stage, the 
inference mechanism must record all deductions already made to enable the 
reasoning to continue properly. 

Event Explosion 
The number of events increases rapidly with the size of the network, 
typically like N(N-1) where N is the number of active connection points. 
Our sample network presents an event every 10 seconds on average, 
sometimes peaking to one per second. This situation adds to the efficiency 
requirement for the reasoning mechanism, as the system is meant to work 
in real-time. 

3. KNOWLEDGE REPRESENTATION 

Three kinds of knowledge must be considered: 
* STRUCTURAL KNOWLEDGE; 
* DEDUCTIONS, the data types created and manipulated during 

reasoning activities; 
* KNOWLEDGE ABOUT PROBLEM DETECTION AND 

DIAGNOSIS which specifies how to interpret network events, how 
to recognize problem situations and how to isolate faulty 
components. 

We believe no single paradigm is appropriate. We have thus combined 
different knowledge representation techniques. 

3.1. STRUCTURAL KNOWLEDGE 

Structural knowledge about the network and the network events lends itself 
to a hierarchical organization that permits inheritance of properties. 

A structured object formalism [8] is best suited to represent this 
knowledge. Each type of network object and of network event is 
represented by a class in a class inheritance hierarchy. A child class is 
considered to be a specialization of the parent The child inherits the 
parent properties but can add to or change them. 

DANTES' structural knowledge comprises two basic hierarchies : the 
network component hierarchy and the network event hierarchy. 

Some important object type properties will be used later and are worth 
mentioning: 

a) Network components: 
* properties representing relationships between objects (such as the 

component/subcomponent relationship or the relationship 
between objects which are physically interconnected); 

* properties used by the reasoning process like STATUS, which is 
a summary of object current situation. Strictly speaking, such 
properties do not belong to the structural knowledge but are most 
naturally incorporated in the classes. 

The network configuration is represented by instances of object 
classes as defined above. 

b) Network events: 
The main properties serve to identify an event in time and space 
(SEND-TIME. RECEIVE-TIME, SEND-MACHINE, ...) and to 
define event treatment characteristics (e.g. THRESHOLD and 
INTERVAL, used in "if the event occurs more than THRESHOLD 
times during a time INTERVAL, then the situation is serious"). 

3.2. DEDUCTIONS 

3.2.1. GENERAL PRINCIPLES 

Deductions can belong to three basic types : SYMPTOM, HYPOTHESIS 
and RESULT. A symptom represents a (set of) events which may be 
required for future task handling. Symptom and event differ in their 
utilization and in their temporal interpretation. An event occurs at a 
specific moment in time, then it disappears. A symptom is recorded for 
future utilization in the reasoning process. Symptoms range over time. 
As such, they have a START-TIME and a STOP-TIME property. This 
enables symptoms to represent a sequence of events of a same type and 
having occurred during a time interval. 

The distinction between HYPOTHESIS and RESULT lies in their logical 
interpretation. A hypothesis is an assertion about a network object which 
may be true or not. A result is a true assertion about a network object. 
Hypotheses are introduced to handle plausible reasoning in an approach 
very similar in spirit to [9]. 

The definition of these new notions forces us to introduce three additional 
hierarchies. However, an event and its corresponding symptom can be 
interpreted as different views of the same concept The same is true for 
hypothesis and result. Different views of a same concept can share 
identical properties. Using pure hierarchies leads to an inconvenient 
duplication of knowledge : a same concept can be present in several 
hierarchies. We have used another solution similar to the viewpoint 
approach in knowledge organization [2,11] and inspired by [5]. Hierarchies 
containing identical concepts arc fused in a single lattice. A concept 
present in several hierarchies is represented in this lattice by a single node 
containing the properties common to all concept views. Properties 
specific to a view define a viewpoint of this concept 

Deductions are linked by a N to M relationship (DEDUCTION-USED/ 
DEDUCED-FROM) expressing their use in the reasoning process. The 
deductions relative to an abnormal situation form a network representing 
our knowledge about the situation. 

3.2.2. MANAGEMENT OF DEDUCTIONS 

As a consequence of multi-problem handling, the reasoning process creates 
and uses many unrelated deductions. These could all be recorded in an ad 
hoc data structure disconnected from the network objects, a sort of large 
working memory. This solution does not allow an easy and efficient 
selection of the elements relevant to the reasoning process. Moreover, it 
is unnatural since deductions can be associated with network objects : they 
always represent an assertion about some specific object, and can be 
recorded there, in a data structure called HISTORY. The first strategy that 
comes to mind, scattering deduction recording over all the objects 
involved, has the same disadvantages. The optimal approach consists in 
associating a history with only some selected object types chosen 
according to the following criteria: 

- the component function in the network; 
- the component importance in the network structure : some 
components divide the network into independent functional units; 

- the component size : a component with a large number of 
subcomponents can record historic data for all its sub- components. 

History can contain any number of deductions. Deductions which are no 
longer valid must be removed. At first glance, all deductions related to a 
problem could be removed when a conclusion is reached. However, 
recording of conclusions is particulary useful for a direct diagnosis of 
problems which occur repetitively on the same network component Say, 
if a connection has presented failures due to a faulty subcomponent (a 
modem for instance), the next time a failure occurs for this connection, 
one can likely suspect this subcomponent Several mechanisms can be 
employed for the selective garbage collection of history : DEDUCTION 
FIXING and TIMEOUT features. They are discussed in section 4. 

528 KNOWLEDGE REPRESENTATION 



3.3. PROBLEM DETECTION AND DIAGNOSIS KNOWLEDGE 
Recent applications of knowledge based techniques to industrial systems 
have introduced the concept of deep reasoning [1] : the system is 
represented by a deep model which integrates a representation of the system 
structure with its components and the relations among them, and the 
functional description of each component [4,6]; reasoning is carried out by 
simulating system functioning from this model. 
This technique does not apply here because the knowledge is mostly 
heuristic : a large computer network is very complex; knowledge about the 
network behaviour is also very fragmented among several experts each 
having a specific domain area. Simulation is inefficient, often impossible, 
and in general not very useful. Model based reasoning can only be used at 
a very elementary level, like in "if a switching node is down, all 
processors connected to it are not obtainable". 
The heuristic nature of the knowledge would lead us naturally to a 
production rule representation. To meet task requirements, the rules 
should have the following features : 

- They must be well integrated into the structured object formalism 
used to represent structural knowledge : rules should easily access 
objects of the structural knowledge and their properties (including 
history and status). 

- The selection and application of rules related to a problem must be 
very efficient to cope with the real-time constraint. 

An alternative is to represent detection and diagnosis knowledge using 
techniques of procedural attachment [8] to structured objects (demons in 
frame terminology [2]]. Event treatment demons are defined for network 
object types. When an event occurs, the corresponding demon is executed. 
This technique is certainly efficient but not flexible. 

The representation technique we have chosen combines the advantages of 
rules and demons. In our approach, a rule is defined on an object class and 
rule application takes place for an instance of this class in a way very 
similar to the LOOPS rule oriented programming approach (10]. Rule 
definition has the following properties : 

- Class : The class to which the rule is associated. For DANTES 
domain, it references an object type in network representation. Rules 
are class properties inherited in the classical way. 

- Name : The rule name. 

- Trigger : It specifies the network events or system actions which can 
cause rule application. Typical actions considered as trigger are 
deduction assertions made by the system. The trigger property can 
then reference the precise viewpoint which may trigger the rule, or 
simply the whole concept type if concept view is not important for 
rule triggering. 

- State : The status value that a network object instance must have to 
enable rule application, 

- Environment: It allows the declaration of variables local to the rule. 
This declaration is optional. Note that a rule environment always 
include some local variables automatically bound by the system (e.g. 
CURRENT-OBJECT bound to the instance for which the rule is 
invoked). 

-Body : The body contains any LISP forms, to be evaluated 
sequentially. Generally, the body is an (IF condition THEN action) 
form where condition and action concern the history of network 
objects known in rule environment. 

Example 
(DEFRULE (CONNECTION :RI) 

(TRIGGER event modem-status-change) 
(STATE (up degrading)) 
(IF 

(Is-suggested current-object 'degradation) 
(THEN (suggest current-object 'result:failure)))) 

This rule, with name :R1, is defined for class CONNECTION. The rule is 
triggered by the EVENT MODEM-STATUS-CHANGE (we specify the 
viewpoint to consider) on CONNECTION instances with STATUS set to 

UP or DEGRADING. The rule body states that if the current object 
already presents a degradation (hypothesis or result without precision), then 
one can conclude that a FAILURE exists on this connection and one 
specifies the viewpoint of the FAILURE : it is a RESULT (the keyword 
RESULT: prefixes FAILURE). 

With these rules, problem detection and diagnosis expertise can be 
expressed succintly, in a declarative way. Moreover, the rule base is not 
flat : rules are grouped by object class. This organization allows a 
distribution of expertise among the different object types of the network 
representation at the very place where the application of knowledge can be 
useful and efficient. Rule organization also helps to efficiently select the 
rules related to a given problem. As rule application takes place on an 
instance of a class, the selection of the rules which can be applied can 
directly start from the subset of rules defined for this class. The trigger and 
state properties allow a flexible and powerful control of rule selection and 
application. Both attributes are used for a precise description of the 
situations where the rule may be applied. 

4. REASONING PROCESS 

4.1. GENERAL PRINCIPLES 

Events occurring in the network are transformed into DANTES internal 
formalism (object oriented). The network objects concerned by this event 
are determined from information associated with each event type. A 
message reporting the event is sent to each object. At message reception, 
the object selects, from the rules associated to it, those whose trigger 
matches the event received and whose state matches the object's status 
value. The selected rules arc tried sequentially in their order of selection. 
This rule application can produce deductions which, in turn, can trigger 
other rules, thus continuing the inference, and possibly updating the 
deduction network. Figure 1 illustrates this principle. 

This inference mechanism restricts problem solving activities to only the 
network objects concerned by the problem. Together with the 
corresponding distribution of history and the organization of rules, it 
makes the inference process manipulate only knowledge relevant to the 
problem. This permits to handle multi-problem reasoning in an efficient 
and elegant way. 
One can view the logic followed as a generalized "state transition 
reasoning" as commonly used in communication protocol design. Each 
object is in a well defined state (given by STATUS). The occurrence of 
events and the resulting deductions will eventually alter the state of one or 
several objects. 

The inference mechanism comprises three basic operations : 
* create deduction; 
* remove deduction set and update the deduction network resulting 
from this deletion ; 

* fix a deduction set, i.e. remove from the deduction network related 
to an abnormal situation, all those deductions which arc not used to 
deduce the given set. 

Figure 1 

Mathonet, Van Cotthem, and Vanryckeghem 529 



4.2. TIME ASPECTS OF INFERENCE 5. CONCLUSION 

From section 2, we glean that the two most important aspects related to 
time are: 

- time correlation between events ; 
- belief revision with time : some deductions become invalid after a 
while (i.e. they have a "lifetime"), and should thus be removed. 
Deciding when a deduction gets too old is part of domain expertise. 

These features can be implemented in several ways : integrated in the heart 
of the system, by functions, or by rules. Knowledge about time 
correlation is best expressed by rules. Conditions for time correlation of 
events refer only to the properties of : 

- the incoming event; 
- symptoms or other deductions to which this event can be related; 
- network objects concerned by this event. 

On the other hand, revision of deduction with time is directly concerned 
with the whole deduction network to which they belong. If a deduction is 
used to derive other (valid) deductions, it cannot be invalid. Checking 
whether a deduction can be revised, and subsequently removed, could be 
implemented in the rule base. This is however highly inefficient (these 
rules have to be tried on a regular time basis) and would pollute the rule 
base with knowledge which is in fact control knowledge and not domain 
expertise. As amply stressed in the literature [31, both kinds of knowledge 
must be separated for the transparency of the knowledge base. 

Our approach is as follows : to handle revision of deductions with time, 
we have added to each trigger object type a timeout viewpoint, which 
contains all properties allowing time management of these objects in the 
reasoning process. A deduction is IN TIMEOUT if and only if the 
deduction has not been IN USE for a predefined time (the timeout interval). 
A deduction is not IN USE during a certain interval if and only if: 

- it has not been used to derive any deduction(s); 
- no deduction deduced from it is still IN USE. 

The implementation uses a separate timeout process which maintains a list 
of timeout viewpoints for deductions which can be in timeout. When a 
deduction times out, the timeout process reports to the associated object. 

The timeout viewpoint of a trigger can be used to trigger rules just like the 
other viewpoints of trigger objects (event, symptom, hypothesis or result). 
This allows removal of deductions after a certain period and also : 

- specific action for deductions at regular times; 
- polling of certain conditions by the inference engine. 

These facilities allow us to deal with time aspects in expert systems, 
without increasing the time required for rule selection. 

4.3. REALTIME ASPECTS OF INFERENCE 

Real-time considerations are important for the design of DANTES. In the 
following, we discuss several features built in DANTES, which arc typical 
of traditional real-time systems. 

Real-time implies fast response, hence one must: 
- minimise the amount of code executed; 
- avoid disk accesses by limiting virtual memory size and usage. 

The rule selection mechanism, using state and trigger properties of rules, 
limits drastically the number of rules tried at each inference step. For our 
sample network, the ratio between the number of rules selected at each 
inference step and the total number of rules in the knowledge base is at 
most 1/10. 
All aspects concerned with memory management are mostly machine 
dependent. We have incorporated the following features : 

- deductions are allocated and deallocated by the inference engine, in a 
special area on which no garbage collection is done; 

- the structural knowledge is static and can be loaded in a static area 
(no garbage collection); 

- a judicious choice of which parts (code or data) should stay in 
physical memory leads to a minimization of disk access; 

- code reduction and optimization are used in the rule compiler, 
augmenting the code efficiency; 

- the dynamic work area is quite small, with frequent on-line garbage 
collection. 

This paper introduced DANTES, an expert system to assist network 
operators in the maintenance and problem diagnosis of a large computer 
network. Apart from its significant economic value, DANTES presents 
interesting functional aspects which are not found in other industrial expert 
system applications : 

- It is driven by discrete external events; 
- Time aspects are important, not only in the correlation of events, but 
also in the reasoning process; 

- Multi-problem handling; 
- The inference process must be real-time and sustain a high rate of 
incoming events. 

DANTES combines a number of paradigms, each well suited for a part of 
the problem. The salient aspects of the proposed system are : 

- the integration of heuristic and structural knowledge; 
- the ability to treat several distinct problems concurrently; 
- a fast and efficient rule selection and rule application mechanism; 
- a fast and original approach to handle time in the inference process; 
- various design and implementation issues to provide real-time 
performance. 

We believe that the proposed solution forms a framework that can be used 
in many real-time expert system. The inference mechanism provides a 
natural way to deal with time dependent knowledge without imposing 
undue restrictions on the formulation of the rules. 

6. ACKNOWLEDGEMENTS 

We are grateful to Francoise Van Den Berghe, our domain expert, for her 
continuous cooperation throughout this project. We thank Suzanne 
Galand for her helpful comments about this paper. 

REFERENCES 

[I] Bobrow, D., and P. Hayes, "Special issue on qualitative reasoning." 
Artificial intelligence. (1984). 

[2] Bobrow, D. and T. Winograd, "An overview of KRL a knowledge 
representation language." Cognitive Science. 1:1(1977) 3-46. 

[3] Clancey, W. "The advantages of abstract control knowledge in expert 
system design." In Proc. AAAI -83. Washington DC, United States, 
August, 1983, pp. 74-78. 

[4] Davis, R. "Diagnosis reasoning based on structure and behaviour." 
Artificial intelligence. 24 (1984) 347-410. 

[5] Elio, R. and J. de Haan "Knowledge representation in an expert 
storm forecasting system." In Proc. IJCAI-85. Los Angeles, United 
States, August, 1985, pp. 400-406. 

[6] Gallanti, M., L. Gilardoni, G. Guida and A. Stefanini "Exploiting 
physical and design knowledge in the diagnosis of complex industrial 
systems." In Proc. ECAI-86. Brighton, United Kingdom, July, 
1986, pp. 335-349. 

[7] Hayes-Roth, F., D. A.Waterman and D. Lenat Building expert 
systems. Addison Wesley, 1983. 

[8] Nilsson, N. J. Principles of artificial intelligence. Tioga Palo 
Alto, 1980. 

[9] Paterson, P., P. Sachs and M. Turner "Escort : the application of 
causal knowledge to real-time process control." In Expert systems 
85 Cambridge University Press, 1985. pp. 79-88. 

[10] Stefik, M., and D. Bobrow The Loops manual. Xerox Palo Alto 
Research Center, 1983. 

[II] Stefik, M. and D. Bobrow "Object oriented programming : themes 
and variations" Ai Magazine 6:4 (1986) 40-62. 

530 KNOWLEDGE REPRESENTATION 


