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ABSTRACT
Real-time situation understanding is a difficult @ e @ 9
problem, in that decisions must be made on a

continuous basis with continuously  changing go for & ride script
data. An attractive approach to the problem is

to match the current data set to a memoay of wat
script-like structures. Partial matching to tocd
scripts enables powerful  understanding and

prediction, but requires robust uncertainty . ‘
mechanisms to overcome inherent ambiguity and commiute (o work scrip
error.

Although powerful uncertainty techniques for
dealing with time-relevant data have been
developed, little with regard to the go fto store script

implications of the real-time problem has been

presented.
home tood
This paper discusses some of the special

requirements for a real-time script Dbelief

function, and presents a derivation of such a dsy at home script
function. Finally, examples demonstrating the
characteristics of the Script Belief function Figure 1. Exampls scripts.
are provided.

INTRODUCTION
Real-time situation understanding poses some
unique  problems for Artificial Intelligence

systems. When presented with a continuous stream
of input data, there is never a "complete data set"
which can be exhaustively examined. Rather, the
best decisions which can be made at each point in
time must be determined, making the best use of the
data at hand. An example of this type of system
might be a weather forecasting Expert System, if it
were required to continuously provide
meteorological forecasts. Another example could be
a process-monitoring system, called upon to
continuously provide information on what was
happening within the process and what predictions
could be made.

Ore useful framework for understanding such a
stream of observations is a Script-like (Schank
1978) paradigm. For lack of a better term, rather
than the fairly specific definitions of Scripts put
forth by (Schank 1978), in this discussion, a Figure 2. Ares where sxample ecripts
script will be considered as any tirae-sequenced take pisce
memory structure which describes a common  sequence
of events. For example, the script shown in Figure
1 describes the scenario of a person going to work,
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in terms of a sequence of simple observations,

referred to as "script elements." The script
paradigm is attractive for the real-time situation
understanding application because sequences  of
events, which alone provide little  useful

information, can be matched to scripts in memory,
to provide a synopsis of what seems to be taking
place, and to provide predictive capability.
Because the matches are likely to be partial, and
because error and ambiguity are ever present, it is
important to utilize a robust uncertainty
management scheme, to ensure that the best among
viable matches is believed.

A number of interesting issues are apparent
when dealing with a continuous stream of input
data, which are not important when analyzing a
static data set, or data which is not time-ordered.
Ore important issue is a sensitivity to where in a
script matching occurs. For example, consider a
script (such as Figure 1) in which matches occur
only in elements temporally late in the sequence.
Belief in this match would imply that the earlier
element events did occur, but, due to uncertainty,
were missed. Now, consider a script with matches
only early in the element sequence. Belief in this
match implies that the following elements probably

will occur in the future. Because of the
constraints imposed by the real-time data
connection, the later events indeed can occur, so
clearly, the belief in the latter type of match
should be higher. Below, several possible

approaches to belief management are reviewed with
respect to special requirements of real-time script
processing, such as the above.

Ore technique for choosing among script
matches is to use an heuristic threshold value for
the minimum acceptable number of matched elements

(Lebowitz 1980), or to generate a weighting
function for considering the numbers of observed
and unobserved elements (Bozma 1985). Similarly,

other systems rely on the Knowledge Engineering
process to provide rules for how much to believe in
a match, as a function of which elements are
matched in the particular script (Azarewicz 1986).
Such techniques have been successfully implemented
in the referenced systems, but must be developed

for each application domain. If the requisite
information is available, these heuristic
approaches may be effective. In many cases,

however, a more general solution is preferable.

In the arena of Plan Recognition, issues
similar to the script-matching problem have been
addressed. An interesting approach to uncertainty
in this area is Evidential Reasoning (Fall 1986,
Lowrance 1986). Ore technique for dealing with the
temporal aspects of the problem is to provide
"frames of discernment" in which mappings between
compatible events can be made (Lowrance 1986). Ore

possible compatibility mapping is between adjacent
elements of script-like structures. Another
approach is to consider observations as evidence

with temporal extent (Fall 1986), manipulating the
constraints between those extents to determine
belief.  Unfortunately, because they were not
explicitly concerned with the real-time issues of

interest here, these approaches do not make use of
the observation constraints available. For
example, they are insensitive to temporal order of

observations, overlooking the constraint mentioned
above.

Other research in Plan Recognition uses a
Logic-based approach (Kautz and Allen 1986), in

which a taxonomy of possible event sequences is
made, used by a deductive process which selects
likely conclusions. Another approach uses the
theory of Endorsements (Sullivan and Cohen 1985),
wherein rules about what makes good or bad
plan-matches are needed. Currently, these methods
also deal primarily with the compatibility aspects
of matching, rather than with real-time issues.
While they appear extensible for incorporating the
necessary constraints, once those constraints are
properly formalized, it is currently unclear how to
proceed in this direction.

The approach presented in this paper,
therefore, is to derive Script Belief functions
which incorporate the relevant aspects of the
real-time understanding problem. A probabilistic
approach was selected, because Conditional
Probability theory allows the desired constraints
to be explicitly addressed, while maintaining a
degree of rigor. When the resulting equations have
been studied and understood, it is likely that the
essense of the probabilistic approach will also be
applicable to many of the above techniques.

1. THE PROBABILISTIC SCRIPT BELIEF FUNCTION

Keeping the general characteristics described
in the Introduction in mind, a robust belief
function can be derived, as shown below. In this
section, an overview of the approach is presented.A
complete derivation of the belief equations appears
in the Appendix.

The general approach used in the derivation is
to consider the probability of each element in a
script in terms of the confidence that it was
observed, as well as in terms of the probability
with which it appears in the Knowledge Base. The
resulting belief function is
P{script) =
P(scriptl all elements occur}
n
* [TT {(confidence(kth element)
k=1
+ P(kth‘khl, kth by sensors) *

* (1 - confidence(kth element))]
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where P(kth’k—l. kth by sensors) is the a
posteriori probability that, given the
occurrence of the lst through k-lst elements
and no sensory evidence of the ikth element,
the kth element will occur,

P(scriptfall elements occur) is the
probability that if all the elements of the
script occur, the event described by the
script is occurring. This is not, in
general, 1.0, because we assume that if
another script which subsumes the given
script is occurring, the given script is not
really occurring.

confidence(kth) is the confidence of an
external observer that the kth element has
occurred, based on sensor indications.

The probabilities P§script'all elements occur)
and P(kthfk—l, th by sensors) can be obtained by
one of two methods, First, the Knowledge Base can
be inspected to determine how likely it is that the
elements in the script can occur in another scripe,

i,e,,

P{script'all elements) =

1/ onumber of scripts with
elements 1 through n in proper order

By this method, P(kthlk-1, kth by sensors)
is similarly computed as

P(kth’k-l. kth by sensors) =

number of scripts with elements
1 through k in correct order

number of scripts with elements
l through k-1 in correct order

With a "Static Knowledge Base” assumption, these
probabilities, though computationally expensive,
can be computed off-line ard stored with the
respective scripts, On the other hand, if the
Knowledge Base is not static, such as the case with
a script-learning system, a technique for computing
the above two probabilities requiring less coupling
between individual  scripts is  needed. An
approximetion, compatible with a "Dynamic Knowledge
Base" assumptien, requiring globel parameters of
the Xnowledge Base, rather thaen details of all the
scripts, has also  been developed. This
approximation, rather than explicitly examining the
Knowledge Base, computes the probability that other
scripts contain the relevant script elements, The
resulting equations for the probabilities are
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P(scriptlall elements) =
1

L

mak-L n n
1+ ﬁ [1- (1-9T p{ith}) ] scripts(L)
L=1 i=]

where n is the length of the script: being
scored, scripts(L) is the number of scripts of
length L, max-L is the maximum acript length,
and p(ith) is the a priori prebability of
finding the ith element in the Knowledge Base.

P(kthlk-l. kth Dy sensors) =
L

max-L X k
1+ & [1- (0-TTp{ith)) ] scripts(L}
im} im=1

(5)

-L k-1
l+nf [1- (1-TT p(ith)) 1} scripts{L)
Lml i=]

These more approximate probabilites may also be
computed and stored with the scripts, and updeted
only as often as the perameters scripts{L) and
p{kth) change significantly. Upon update,
additionally, the re-evaluation of the equations is
computationally much simpler than that of the
first, more exact, method,

The probabilistic belief equations meake the
assumption that there 1s no a priori reasen to
expect the occurrence of certmin scripts more than
others. While this mey, in general, not be truye
for @ given Knowledge Base, as the number of
scripts becomes reasonably lerge, the egquations
tend to become more insensitive to the assumption
ingccuracy.

ITI. AN EXAMPLE

A simple example of processing in @&
script-based gystem will help to show how the
Probabilistic Belief Function works and demonatrate
some of its unique properties.

Assume that the Knowledge Base contans scripts
about e person who lives 1in the town shown in
Figure 2. The scripts describing the person's
common activities are as shown in Figure 1. The
beliefs assigned by the Probabilistic Belief
function, as the input observations of Table 1 are
cbaserved, are indicated in Figures 3 and &, For
purposes of the discuasion, each observation will
be assumed to have a confidence of 0.8,

Initislly, the person is seen to be at home.
This activates all seripts except the "go to store"
vwith a small value. The "go for ride" and "commute
to work” scripte are each activated in two places,
but the earliegt matches yield the higher, shown,
score. This characteristic is preferable to a
simple "compatibility check,” such as afforded by a
standard "evidentisl reesoning” aystem {lowrance
1986), which would give much more uniform scores to



table 1. EVENTS DETECTED IN THE WORLD

TIME EVENT DETECTED

at home
going east
at work
eating food
going west
going south
at store
going north

oO~NO O WN

the matches. It is also an attractive alternative
to requiring "script entry conditions" (Bozma 1985)
to be met, because, though unlikely, a late match
may turn out to be the correct match, if noise or
uncertainty is high.

At this point, the "day at home" script has
5% of its elements matched, but the "dynamic
assumption" assigns it only a 0.2 score. This is
because the probability of subsuming scripts, such
as "commute to work," is quite high. The "static
assumption" gives "day at home" a slightly higher
rating because it knows that there is only one such
subsuming script in the particular Knowledge Base.

Later, the person is seen to be going east and
arriving at work. At this point, the ‘"commute to
work" script is highly preferred, as it is a
detailed script with significant matches. If the
person would have gone west before arriving at
work, however, the commute script would not have
been preferred.

At time 4, when the person is seen to be
eating, the "day at home" script has all elements
matched, with a probability of 0.9 (with either
assumption) that all of its elements occur.
However, the belief is still much smaller than for
the "commute" script, because of the high
probability of being subsumed.

After work, the person is seen to travel south
toward the store. The static function immediately
assigns a very high score to the "go to store"
script, as no other contains similar elements. The
probabilistic increase from the dynamic function is
less dramatic, but in both cases, the "store"
script is the highest believed as more time passes.

The above example demonstrates a case of
several significant divergences between the "Static
Knowledge Base" and the "Dynamic Knowledge Base"
equations. This results because the scripts in the
example Knowledge Base are very similar to each

other, violating the "equal a priori probability"
assumption in the probabilistic "Dynamic" Belief
derivation. Because of this similarity, the more

exact Belief Function imparts less significance toa
match if that match is likely to occur in numerous
other scripts. Although it did not adversely
affect the predictions in the example, this is a
relevant point to consider when contemplating this

ol i

S—— commute to work
—— go for & ride
NECRERENN go 10 store
RASANSARRRAPARS day at home
Figure 3. Delisfs ve. time for dynsmic assumption
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—— commute to work
——— go for a ride
S g to store
SURARAARINI day at home
Figurs 4. Belisfs for static, more exact, apsumption

approach, Fortunately, however, s the Knowliedge
Base increases in size, encompassing a wider domain
of description, the similarity smong scripts tends
to decrease, yielding closer apreement between the
"static" and “dynamic" Belief Functions.
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V. OONCLUSIONS

Script-based reasoning is a powerful paradigm
for understanding sequences of events, but to
effectively deal with uncertainty and incomplete
knowledge, effective belief-management techniques
are necessary.

A temporally-ordered input stream, such as a
real-time data source, offers constraints on script
confidence which, for accuracy and robustness,
should be exploited by the belief-management
system.  Unlike other approaches which do not
explicitly address this issue, the probabilistic
belief function presented in this paper is one
effective way to take advantage of these
constraints.

To verify the applicability of the approach,
an implementation of the Script Belief functions
has been developed. It is part of a system called
PUB, the Martin Marietta Pattern Understanding
Blackboard, a script-based situation assessment
system. In example runs to date, it has provided
satisfying belief assignment, as judged by human
observers. Additionally, statistical tests have
been run to compare the approach to methods using
only compatibility-checking Evidential Reasoning
(similar to (Lowrance 1986)). Although there is
not room in this paper to adequately describe the
tests, the simulations have so far indicated
improvements in convergence time, especially as the
typical script length increases.

Several areas for further development of the
Script Belief function are apparent. First the
function ideally should take into account the
focusing, if any, provided by the data-gathering
portion of the system. For example, if most of the
attention has, for a time, been allocated to a
small part of the domain, matching may take place
to scripts relevant to another part of the domain.
Such matches should be afforded more belief, as
their probability of being observed was lower due
to focus elsewhere.

Another useful area for future work is an
extension of the Conditional Probability techniques
presented here into other uncertainty paradigms.
For example, the Dempster-Shafer (Shafer 1976)
approach used in some Evidential Reasoning systems
(Lowrance 1986) offers a range of belief values, as
well as the capability to assign belief to groups
of hypotheses. An integration of the approaches,
such as by modifying the "rule of combination" to
include the new temporal constraints, could provide
useful  improvements to the script-belief
methodology. Similar real-time-conscious
extensions to other paradigms could also benefit
applications in  which those paradigms are
well-suited. Progress in such areas promises to
provide more robust and general tools for
constructing script-based processing systems.
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APPENDIX |- DERIVATION OF THE BELIEF FUNCTION

To reduce the complexity of the presentation,
some abbreviations are in order.

Let p(kth) be the a priori probability of the
occurrence  of the kth element in  the
Knowledge Base.

scripts(k) be the number of
Knowledge Base with length k,

scripts in the

scripts-in-order(k) be the number of scripts
with elements 1 through k in the same order
as the script being scored.

The following a posteriori
assumed given the sensor inputs:

probabilities are

Let P(k) be the a posteriori probability that
elements 1 through k of the script will at
some time occur in the proper order.

P(kth) be the the kth
element will occur.

probability that

P(kth by sensors) be the probability that
sensor inputs indicate that the kth element
has occurred.

conf(kth) be the confidence, supplied by an
external observer, that the kth element has
occurred (an estimate of P(kth by sensors)).

P(script) be the probability that the

abstract event described by the script is
actually occurring.
Suppose that the length of the script being

scored is n, and that there are #SCRIPTS in
the Knowledge Base.

To begin, the a poateriori probability that
the script is occurring, given the observed data,
depends on the probability of all its elements
occurring and on the probability that, if all the
events occur, it 1s really the event described by
the script vwhich is occurring:

P(script) = P(script|n) P{n) + P(script|n} P(®)
However, the second term is zero, because if not
all the events occur, by definition the occurrence
specified by the ascript is not occurring.

P(script) = P(script|n) P(n).
Now, consider P(n}. This can be restated in terms
of the probability that all but the last event

occurred, modified by the probability that, given
thie, the last will also occur:

P(n) = P(n|n-1) P(n-1) + P(n|R-1) P(n-1)
- P(nln—]) P(n-1)



or, equivalently,

P(n) = P(nth]n-1) P(n-1).

In the seme way, P(n-1} can be expressed in terms
of the previous script elements, until reaching the
first element of the script sequence:

P(n) = P(nth|n-1) P(n-1st|n-2)
P(n-2nd|n-3)... P(lst)

n
= [T P(kth|k-1) }
k=1

New, consider the P(kthlk—l) probability.
be expressed in terms of the kth
ohserved as

This can
element being

P(kth|k-1) =

P{kth|k-1, kth by sensors) P{kth by sensors,k—l)
+ P(kth}k-1, kth by sensors) P(kth by sensorsfk-1).

Because these probabilities are assumed conditional
on the sensor inputs,

P{kth by senscrslk-l,sensors)‘? cenf (kth), so
P(kth]k-1) = conf(kth}

+ P(kth‘k-l, kth by sensors}(1- conf(kth))

Static Xnowledge
scripts in the Knowledpge Base to determine the
prubability (assuming equal Llikelihood, unless
octher statistics available) i.e.,

Base assumpticn: Examine the

—ere
P(kthik~1, kth by sensors) =

scripts—in-order{k}
scripts—in-order(k-1)

Given  the
probabilities
conditions are

Dynemic Knowledge Base
number of acripts of

about scripts meeting
found:

assumption:
each length,
the above

P(a script has ! though k-1 in ocrder) =

scripte with
elements in
order

- 1T

i

{1 - p(script 1))

where p(script i) ia the a gpriori probability
that an arbitrary script is script i.
The number of scripts of length L which could have
elements 1 through k-1 in correct order is

L L!
(k_l) 4 DT (Lt

1f we assume independerce in the choice of
elements within each script, the
each such =cript i=

script
probability of

k-1
TT plith)
i=]

so P{script has elements 1 through k-1 in order) =

L
max-L k-1 k-1
2 tl1- (1 - Trplith)) ] p(length L)
L=1 i=1

P(script has elements 1 through k in order} is
gimilarly found, using k rather than k-l in the
above equation, It is desirable te ioclude the
known script with elements 1 through k in order,
namely, the =script being acared, Therefore,
considering the ahove probabilities to reflect the
occurrence of elements 1 through k elsewhere among
possible events,

P{elements 1 throuph k in order} =
L
max-l. k k
[1- {1 =T p{ith)) ] p(length L)
L=1 iel

+ 1/ P(elements } through k-1 in order) #SCRIPTS

Therefore, the overall probability

P(kth|k-1,kth by sensors) =

L
max-L k k
1+ f [1- (1 -TTp{ith)) ] seripts(L)
L=l i=1
L
max-L k-1 {kﬂl
1425 [1- (1 - TleGieh))y 1 scripra(l)
L=1 =1

Finally, te obtain P{script},

P{script) = P(SEriptIn) P{n)

P(script'n) is not, in general, equal to P(n)
because if a script which subsumes ancther occurs,
the other script is assumed not to have occurred.
Such is the case with the "day at home" script in
the example, Fig. 1. Proceeding as before,
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Static Knowledge Bame assumption:

P(scriptln) = 1/ scripts-in-order(n)

Dynamic XKnowledge Base assumption:

P(script'n) -

L
~L n n
1+ 'gl [i- (1 -j’llp(ith)) Y scripts{L)
o

In summary,
P{script} =
P(script'n)
[j"l; conf(kth) +

P(kthlk—l. kth by sensors)
(! - conf{kth))}

where P(script|n) and P(kthlk—l. kth by sensora)
are calculated with the static- or
dynamic-assumption equations, as appropriate to the
particular system.
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