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ABSTRACT 

Tims has been studied by logicians for a long time and 
recently it has been modelled in more and more researches in 
AI. There exists a gap between the logics built by temporal 
logicians and those used in AI. This paper aims at filing 
this gap and providing a formal study on temporal logics for 
AI. In this paper, we present a new axiomatization of Allen 
& Hayes' temporal logic and locate their logic in the spectrum 
of logics built by temporal logicians. We also relate point-, 
event- and interval-based time structures to one another. 

I Introduction 

Temporal logic has been studied by temporal logicians 
for a long time. The classical approach to temporal logic 
takes instants and relation of temporal precedence as 
primitive. Recently, interest has been shown in event-
based temporal logics (e.g. [18][l2][8][9]). 

On the other hand, temporal reasoning is becoming more 
and more important in AI. It is difficult to reason with 
time but not to talk about the time structures that we are 
using. Two of the best known models of time are Allen 
A Hayes' [4] and McDermott's [10]. Allen A Hayes' logic 
is based on intervals (we shall argue that they are 
"events") and McDermott's logic is based on points. Both 
of them have been demonstrated to be useful for AI (e.g. 
[ l ] [3 ] [O] [ l l ] [6 ] ) . This gives us motivation to link them 
to formal temporal logics. 

Event-based logic arises because of the intuition that 
mental experience is based on events rather than instances 
— even the shortest event (like switching the light from 
on to off) has duration. In this paper, we start with 
Allen A Hayes' logic, which we shall refer to as A). 
because it takes intervals (events) as primitives. Then we 
shall present a new time structure. which we shall refer 
to as E' which is equivalent to A. and relate it with 
interval-based and point-based structures. 

By giving Allen A Hayes' logic a new axiomatization. 
we hope to have better understanding and control of our 
systems which are built on it. We are not satisfied with 
Allen A Hayes' axiomatization because their axioms are not 
primitive enough for extensions. For example one might 
want to remove linearity in order to talk about disjunctive 
sets of intervals — for applications like planning under 
uncertainty (which includes the issue of branching time in 
[10]. see [15]). But it is difficult to see which axiom in 
Allen & Hayes' axiom set entails linearity. Limited by 

space, most of the proofs are omitted from this paper. 
They can be found in [15]. 

II Allen A Hayes' logic, A 

In this section, we shall summarize Allen's Temporal 
Logic. This summary is based on the logic presented in 
Allen and Hayes' paper [4]. 

In [l][2] Allen presents a logic in which there are 13 
possible primitive relations between any two intervals. 
These temporal relations are before(<), meet(m). 
overlap(o). start(s). during(d). finish(f) equal(=) and their 
inverse (see [l][2] for their detail definition). In [4]. Allen 
and Hayes show that all the other 12 relations can be 
defined in terms of Meet, and provide an axiomatization of 
Meet. Intuitively, interval A meets interval B means B 
starts immediately after A ends — A and B have no 
common subintervals and there is no gap between them. 
We shall call their interval structure A: 

A - < E. Meet > 

where E is a nonempty set of intervals and Meet is an 
operator which takes two intervals (of E) as its 
arguments. There are five axioms which describe the 
structure A : 
(Ml) (V i.j) ((3 k) (i Meet k A j Meet k) -> 

(V 1) (i Meet 1 < - > j Meet 1)) 
(M2) (V i.j) ((3 k) (k Meet i A k Meet j) -> 

(V 1) (1 Meet i < - > 1 Meet j)) 
(M3) (V i.j.k.l) (i Meet j A k Meet 1) -> 

(1) (i Meet 1): XOR 
(2) (3 m) (i Meet m A m Meet 1): XOR 
(3) (3 n) (k Meet n A n Meet j) 

(M4) (V i) (3 j. k) (j Meet i A i Meet k) 
(M5) (V i.j) (i Meet j -> 

(3 (i+j)) (3 a.b) (a Meet i A i Meet j A 
j Meet b A a Meet (i+j) A (i+j) Meet b)) 

Axioms (Ml) and (M2) state that every interval has a 
unique start and end point. The meaning of (M3) is a 
little bit vague. It defines all the possible relations 
between any two meeting places. (M4) makes every 
interval have at least one neighbouring interval preceding 
it. and another succeeding it. Interval i+j in (M5) is only 
defined if i Meets j. i+j is the interval which conuins 
exactly both intervals i and j. (M5) is an axiom on E. 
which states that for any two neighbouring intervals. one 
can find an interval in E which contains both of them. 
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This interval will also share the starting point of the first 
interval, and the ending point of the second interval. 

To satisfy our intuition of time, we want to prove the 
following two lemmas under A: 

Lemma (i) 
Lemma (ii) 

Lemma (i) states that Meet is irreflexive. which satisfies 
our intuition that no interval can meet itself. Lemma (ii) 
states that if el Meet e2. then there is no interval 
between el and e2. (This satisfies our intuition of Meet). 
Proof of these lemmas can be found in [15]. 

III an event structure 

An interval can be seen as a "chunk of time". 
Interval-based logic takes intervals as primitive temporal 
items. In event-based logic, events are taken as primitive. 
Intuitively, more than one event can occur in one interval. 
But if two intervals start and end at the same time, they 
are the same interval. Based on this, we argue that A is 
more an event-based logic rather than an interval-based 
one. (Formal analysis of the distinction between interval 
and event structures will be postponed after our discussion 
on points, when we have a better understanding of our 
logic). This can be seen by the fact that A allows the 
situation in figure 1: 

Interval P 
IntervaI Q 
IntervaI R 
IntervaI S 

Figure 1 — A possible situation in A 
In figure 1 both intervals Q and R are met by P and 

meet S. But A does not insist Q and R be the same 
element in its domain E. 

In this section, we shall present an event-based logic 
which is equivalent to A. Since events occupy time 
intervals, properties of intervals and events are very alike. 
Therefore, most of the results in this section applies to 
both intervals and events. Let us start with the event 
structure E. which is used in [18]. [12]. [8]. [9] and [16]. 
and see what extra characteristics E must have (if any) 
to make it equivalent to A. E is defined as: 
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introduction of (E10). we can derive (E6) from (E2). (E5). 
(E7) and (E10). and therefore (E6) can be discarded [15]. 

To obtain (M3) and (M5). we need to be able to talk 
about both intersection and union. We define "e is the 
union of x and y" (e - xUy) as follow [note 1]: 

Allen & Hayes' logic implies that given any two 
intervals, their union always exists. The additional axiom 
that we need for obtaining (M3) is: 

Theorem III 
(E1) to (El l) of can be derived from axioms 
(Ml) to (M5) in A . 

The proof of these lemmas and theorems are quite 
lengthy and therefore will not be presented here (see [15]). 

IV T, the equivalent Point Structure 

As pointed out in [16]. any attempt to model time with 
an interval-based model must show how the concept of 
points can be formulated. Similarly, we must show how 
the concept of intervals can be constructed in a point-
based model. Therefore it is not only interesting, but 
important, to see how a point structure can be constructed 
from (and used to construct) the event structure E*. In 
this section, we shall explore what such a point-based 
structure should look like. 

We shall follow Kamp [9] and Turner [16] and define a 
point i as the maximal set of overlapping events which 
satisfies the following properties: 

1. for all el and e2 in i. el O e2 
2. for all el in the set E - i. there exists c2 in i such 

that - el O e2 

Now we can define: 
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as a point structure where T is a nonempty set of points 
(which are primitives in this time structure) and 4 is a 
binary operator (precedence) on T's elements. In order to 
match E*. T should have the following axioms: 



also prove that the point structure defined by E* (which 
we shall call POINT(E*)) has all the properties of T. 
The proof of strict linear order of a point structure 
constructed from E has been given by [8][9] (and 
abstracted in [16]). The only unproved property is (P5). 
which follows (E8) and (E9) of E* trivially. 

When points are taken as primitive temporal items, one 
question that we often ask is whether time is Discrete or 
Dense. Intuitively, a point structure has dense property if 
given any two points. there exists a third point which lies 
between them. If a point-structure is discrete, we can 
name the neighbours of any given point (when they exist). 
When intervals are taken as primitives, the choice between 
discrete and dense disappears. It is replaced by the choice 
between Atomicity or Endless Descent [5]. An atomic 
interval is defined as an interval which cannot be 
decomposed. E* has the property of atomicity if we add 
the following axiom to it: 

An interval structure has the property of Endless 
Descent if every interval has at least one subinterval 
which is not the same as itself. E* has Endless Descent 
if we add the following axiom to it: 

In our definition of intervals (using (p.q)). atomic 
intervals exist in INT(T) only if T is discrete — when q 
is the point that is following p. (p.q) is an atomic interval. 
If T is dense, there are infinite number of points between 
any two distinct points p and q. Therefore any interval 
(p.q) can be decomposed. 

It must be pointed out that it is also possible to define 
for a dense point structure an interval structure which has 
the atomicity property. This can be done by defining 
intervals as "any convex set of points" instead of our 
definition above. Then for any point q. {q) is an atomic 
interval. Notice that {q} cannot be represented by any 
(p.q) in a dense time model under our definition. 

In [4]. Allen and Hayes suggest different ways to 
capture the concept of "points" in their interval-based logic. 
To capture the concept of points in discrete point-based 
models, they define MOMENTs in terms of atomic 
intervals. To satisfy dense (which they call continuous) 
point-based models, they define NESTs. which have the 
form BEGIN(I) or END(I) for some interval I. Basically. 
if I. J are intervals where I Meets J. then BEGIN(J) is the 
set of all intervals X such that 

(1) X Meets J; or 
(2) I Meets X: or 
(3) X O I & X O J 

(where O is defined in terms of Meet as shown in [4]). 
Allen & Hayes argue that under this definition. NESTs 
have the desired feature of having END(I) - BEGIN(J) for 
all intervals I and J such that I Meets J. NESTs also 
have the feature of strict linear ordering. In fact it has all 
the properties of T. 

V Relation between Event and Interval Structures 

Intuitively, intervals are "chunks of time" in which 
events can occur. If intervals A and B start and end at 

the same time, they are the same interval. On the other 
hand, if events X and Y start and end at the same time. 
they need not be the same event. From E* we can 
define an interval structure 

by making I the set (with unique elements) of all 
equivalent events: 

Meet can be defined in terms of < and O as discussed 
above. 

As we have said before, all the axioms in E apply to 
intervals. For example < is irreflexive, asymmetric and 
transitive, intersections and unions exist, etc. The only 
difference between an interval structure and an event 
structure lies in the definition of "-". We define el - e2 
in E* if el and e2 are the same element of E. Similarly 
il - i2 in INT(E*) if i1 and i2 are the same element of 
I. 

In the event structure el-e2 implies else2, but 
not the converse. If we define equivalence in INT(E*) as: 

In an interval structure, there exists a unique interval 
which satisfies the definition of for all intervals x 
and y. This can be seen by comparing lemma (5) and the 
definition of equivalence above. This result also satisfies 
our intuition. 

INT(T) is an interval structure if we define that the 
elements in its domain are unique. If we consider figure 1 
above, we can see why we argue that A is an event 
structure more than an interval structure. In figure 1. we 
have 

P Meet Q & P Meet R & Q Meet S & R Meet S 
But A does not insist that Q and R be the same 
"interval" (Allen & Hayes do not explicitly talk about the 
domain of their structure). 

However, it is arguable that Allen & Koomen [ l ] use an 
interval-based logic for planning. There if proposition P 
holds in both intervals Tl and T2. then if Tl and T2 are 
not before or after one another, they must be the same 
interval. 

VI Intervals TS Points in Temporal Reasoning 

Whether points, events or intervals are primitive time 
entities is an ontological question. But since, as we have 
shown above, that they can be constructed from one 
another, point-based, event-based and interval-baaed 
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structures should be able to represent similar knowledge. 

We do not agree with the argument that interval-based 
logics are better than point-based logics because the 
"dividing instant' puzzle exists in the latter. One instance 
of this puzzle is: 

The light is switched from on to off. Exactly 
what happened at the intermediate instant between 
the two successive states of on and off? 

Some argue that in a dense point structure, we either 
have the light both on and off (which is contradictory) or 
the existence of some time where the light is neither on 
nor off (which violates the Law of Excluded Middle) (e.g. 
[7]). In an interval structure, there is no such problem 
because all we need to say is: interval ON meets interval 
OFF. where the light is on in ON and it is off in OFF. 
Van Benthem has made it clear that "one only has this 
problem if one insists on having it!" [5] (p.5): In a 
discrete time model, there is a last point of ON and a 
first point of OFF. In a dense time model, we can 
stipulate that "individual event either stops at some definite 
point, or its aftermath begins at some definite point". The 
structure T that we have shown above has open begins 
and closed ends. 

Table 1 Temporal relations between start/end points 
and their corresponding subset of temporal relations 

Though point-based and event-based logic can both be 
used to represent similar knowledge, we argue that Allen's 
formalism in [l][2] provides an effective way to handle 
disjunctive temporal relations with his logic. For example 
"X finishes Y or X starts Y" (where finishes and starts are 
defined according to Allen's logic [l]) can be represented 
by X [f s] Y. If we represent this expression by using 
start and end points of X and Y. then we have: 

(start(Y)<start(X) and end(X) - end(Y)) 
or (start(X) - start(Y) and end(X) < end(Y)) 

The more disjunctive primitive binary relations are allowed 
between two events, the more cumbersome this point-based 
representation would be. As the number of events grows, 
the number of conjunctive combinations will grow 
exponentially. For example to represent: 

X [o f] Y & Y [m o] Z 
in Allen's logic (which means X overlaps or finishes Y and 
Y meets or overlaps Z) with relation among start and end 
points, we need to represent each element of the cartesian 
set: 

X [o] Y & Y [m] Z 
X [o] Y & Y [o] Z 
X [f] Y & Y [m] Z 
X [f] Y & Y [o] Z 

with inequalities. 

However, we argue that point-based representation can 
be used to reason certain disjunctive temporal relations 
without needing to use disjunctive inequalities. (Similar 
view has been expressed in [17]). The exhaustive set of 
temporal relations between points is [< - >]. Each of 
these relations between two start/end points represent a 
subset of temporal relations in Allen's interval-based 
representation. They are summarized in Table 1. 

From table 1. we can see that a point-based 
representation can represent limited subsets of temporal 
relations between intervals. The subsets that they can 
represent are the sets (represented by lists) on the second 

column of table 1. or their conjunctives. For example 
start(A) < start(B) & start(B) < end(A) 

represents the subset of relations A [o fi di] B. This 
expressive power may be sufficient in applications where 
we are only informed of the relation between start and 
end points rather than more complicated temporal relations 
among intervals. But in a point-based representation, we 
cannot represent arbitrary relations like A [< >] B 
without using disjunctive inequalities. Therefore it would 
not be very favourable if we are often told constraints 
like "A and B must be separate intervals". 

VII Summary and Discussion 

Recently, interest in modeling time in AI has increased, 
and so as interest in event-based logics. In this paper, we 
have studied Allen & Hayes' logic, which has received 
great attention in AI. and locate it in the spectrum of the 
logics developed by logicians. By giving a new set of 
axioms to Allen & Hayes' logic (which we call A ) , we 
hope to have a better control of the systems built up it. 
In [15]. we present one interesting development, which is 
to remove linearity ((E7) in E*) in order to talk about 
planning under uncertainty. 

We have presented an event-based structure which 
is equivalent to A. We have also defined a point-based 
structure T which corresponds to E*. We have shown 
how point-, event- and interval-based structures can be 
related to one another. Figure 2 below summarizes the 
relationship among the different time structures mentioned 
in this paper. We conclude that these structures can all 
represent similar knowledge, and their fundamental 
difference is a question of ontology. But as a tool for AI. 
we argue that Allen's formalism in [ l l 2 ] allows us to 
represent disjunctive temporal relations more neatly. 
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In this paper, we have not discussed the trade off 
between expressive power and complexity of the different 
representations. One such discussion can be found in [17]. 
Also, we have not suggested how such time structures can 
be used for AI applications (Shoham's work fills part of 
this gap [13][14]). This paper only aims at providing a 
solid study of different time structures for temporal 
reasoning. Limited by space and our focus in this paper. 
we have not studied McDermott's time logic [10]. which 
also has an important place in AI. 
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