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A b s t r a c t 

Defau l t theories are a f o rma l means of reasoning about de­
fau l ts : wha t normally is the case, in the absence of cont ra­
d i c t i ng i n f o rma t i on . Au toep is temic theories, on the o ther 
h a n d , are meant to describe the consequences of reason­
ing about ignorance: wha t mus t be t rue i f a cer ta in fact 
is not k n o w n . A l t h o u g h the m o t i v a t i o n and f o rma l char­
acter of these systems are d i f ferent , a closer analysis shows 
tha t they bear a c o m m o n t r a i t , wh i ch is the index ica l na­
tu re o f cer ta in elements in the theory. In th is paper we 
compare the expressive power of the t w o systems. F i r s t , 
we give an effective t rans la t ion of defaul t theories i n t o au­
toepistemic logic; defaul t theories can thus be embedded 
in to autoepis temic logic. A more supr is ing resul t is t ha t 
the reverse t rans la t ion is also possible: every set of sen­
tences in autoepis temic logic can be effectively r e w r i t t e n 
as a defaul t theory. The f o rma l equivalence of these two 
d i f fer ing systems is thus establ ished. Some benefi ts of th is 
analysis are t ha t i t gives an in te rp re t i ve semantics to de­
fau l t theories, and yields ins ight i n t o the na tu re of defaul ts 
in autoepis temic reasoning. 

1 In t roduc t ion 
Defau l t reasoning can be i n fo rma l l y descr ibed as j u m p i n g 
to conclusions based on wha t is no rma l l y the case. To 
say tha t ' 'power co r rup ts , " for example, is to say t ha t for 
typ ica l x , in t yp ica l s i tuat ions, x w i l l be co r rup ted by the 
exercise of au thor i t y . 

Defau l t logic [9] is a fo rma l i za t i on of defaul t reasoning. 
An agent's knowledge base ( K B ) , i ts col lect ion of facts 
about the w o r l d , is taken to be a f i rs t -order theory. De­
fau l t reasoning is expressed by default rules of the f o r m 

wh ich can be read as, roughly , " i f a is provable f r o m the 
K B , and b is consistent w i t h i t , then assume w as a defau l t . " 
Un l ike o rd ina ry f i rst-order inference rules, defaul t rules are 
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defeasible: g iven KB con ta in ing j u s t a , for example , the 
ru le above wou ld a l low the inference of a;, b u t i f -b is added 
to the K B , then the defaul t ru le i s no longer appl icable. 
Defau l t rules are thus nonmono ton ic inference rules. 

In defaul t logic, the defaul t rules operate at a meta the-
oret ic level , as they are not expressed in the language of 
the K B , and are no t inference rules w i t h i n the K B . Ra ther , 
they can be though t of as a means of t ak i ng a KB and 
t r ans fo rm ing i t i n to another one by the add i t i on of sen­
tences wh i ch are no t log ical ly der ivable f r o m the o r ig ina l . 
T h e t rans fo rma t i on is def ined in te rms of a f ix-point op­
erator . T h i s f o r m u l a t i o n of defaul t reasoning leads us to 
ask several quest ions, wh ich do no t have readi ly apparent 
answers. T h e f i rst concerns the expressiveness of the logic. 
Ce r ta in s imple types of defaul ts can be read i ly s ta ted; for 
example , "power co r rup t s " cou ld be expressed as 

Powerful (x) : MCorrupt(x) 
Corrupt(x) 

B u t i t i s no t clear t ha t more compl ica ted constructs could 
be accommodated . A case in po in t is cond i t iona l defaul ts , 
where a defaul t ru le is the conclusion of an imp l i ca t i on ; or 
defaul ts whose consequent is i tsel f a defaul t . Because the 
defaul t rules are not pa r t of the logical language, there is 
no obvious, s t ra igh t fo rward expression of these concepts. 

T h e second quest ion, re lated to the f i rst , concerns the se-
mant ics of defaul t theories. Because defaul ts are expressed 
as inference rules opera t ing in con junc t ion w i t h a f ixed-
po in t cons t ruc t ion , i t is not clear wha t the meaning of 
such objects as MB is. In some recent wo rk , there have 
been proposals for a semantics for a rest r ic ted class of de­
fau l t theories [6] and for defaul t theories in general [1]. In 
b o t h cases, the "semant ics" is a re fo rmu la t i on of the K B -
t rans fo rma t i on induced by the defaul ts in terms o f restr ic­
t ions on the models o f the K B . A l t h o u g h such a re fo rmu­
la t i on can prov ide an a l te rna t ive v iew of the cons t ruc t ion 
of defaul t theor ies, i t does not p rov ide a semantics in the 
sense of p r o v i d i n g an i n te rp re ta t i on for defaul t rules in a 
mode l s t ruc tu re (an interpretive semantics). Indeed, be­
cause defaul ts are expressed as inference rules, they are 
no t amenable to i n te rp re ta t i on in th is fash ion. 

O u r idea in th is paper is to define defaul t reasoning 
w i t h i n the theory of the KB itself , ra ther t han as a t rans­
f o r m a t i o n o f the K B . I f we take the sentences o f a KB to be 
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Stable sets are thus AE extensions of their ordinary sen­
tences. From proposition 2.2, we know that every such 
AE extension is unique; hence every stable set is uniquely 
determined by its ordinary sentences. 

Proposit ion 2.5 (Moore) If two stable sets agree on or­
dinary formulas, they are equal. 

The set of ordinary formulas contained in a stable set 
is closed under first-order consequence. Different stable 
sets thus have different sets of F0-closed ordinary formulas. 
We now show that stable sets cover the sets of FO-closed 
ordinary formulas, that is, every such FO-closed set is the 
ordinary part of some stable set. 

Proposit ion 2.6 Let W be a set of ordinary formulas 
closed under first-order consequence. There is a unique sta­
ble set T such that To = W. W is called the kernel of the 
stable set. 

We are now ready to give a second semantic character­
ization of AE extensions. Since AE extensions are stable, 
let us consider restricting the range of modal indices on the 

Proposit ion 2.7 T is an AE extension of A if and only 
if it satisfies the equation 

By using a stronger type of implication (=ss over stable 
sets), we have been able to eliminate all self-referential as­
sumptions except for those involving the ordinary formulas 
of T. This proposition also hints that the nesting of L-
operators gives no extra expressive power to the language, 
since only ordinary formulas are important in character­
izing the fixed point. This is indeed so, and we have the 
following proposition. 
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2.4 S t r o n g l y g r o u n d e d e x t e n s i o n s 

One way of looking at the equation of proposition (2.7) 
is to see what type of reasoning it sanctions for reflective 
agents. An agent is justified in believing at least the conse-
quences (under of her base set A, together with the 
assumptions LTo and Moore has called belief sets 
defined in this way grounded in A, because they are derived 
from A and assumptions about self-belief.3 However, this 
notion of groundedness is a fairly weak one, and we may 
wish to strengthen it. Consider, for example, the base set 

A has two AE extensions, which we call T 
and T' (see example 2.1). T contains P and LP, while V 
does not contain P, but has The difference between 
these is precisely whether LP is introduced as an assump­
tion in the fixed-point equation (2.7). For the belief set T, 
the agent's belief in P is grounded in her assumption that 
she believes P. If she chooses to believe P, she is justified 
in believing it precisely because she made it one of her be­
liefs. This certainly seems to be an anomolous situation, 
since the agent can, simply by choosing to assume that a 
fact about the world is true, be justified in that assumption 
without any objective information. 

We would like to define a stronger notion of groundedness 
to eliminate this circularity of justifications. Now consider 
the belief set definition'given in proposition 2.7: 

The set of ordinary sentences in the belief set is To. LTO 
is the assumption that the agent believes all of these sen­
tences. There would be no circular justifications if we re­
place LTo by LA in the fixed-point definition: we are as­
sured that the derivation of facts about the world does not 
depend on the assumption of belief in those facts. The 
inclusion of LA is necessary because an ideally reflective 
agent should at least believe that her base beliefs are be­
liefs. 

From this discussion, we define the following notion of 
strongly grounded. 

Definit ion 2.2 A set of sentences T is strongly grounded 
in A if it obeys the constraint: 

A certain natural class of AE extensions is strongly 
grounded, as we will shorty show. But not every AE ex­
tension is strongly grounded. 
Example 2.9 The base set has two exten­
sions, only one of which is strongly grounded. The exten­
sion containing P cannot be strongly grounded, because P 
cannot be derived without the assumption of LP. 

3Moore actually used a different but equivalent definition of ground­
edness; in his version, a set T is grounded in A if it satisfies: 

A more complicated case is the base set 
Q, LQ P}. Again there are two extensions, one con­
taining the ordinary formulas P and Q, and one without 
them. For the former, LP and LQ must be assumed to-
gether in order to justify P and Q. Because they cannot 
be derived without this assumption, this extension is not 
strongly grounded. 

The extension of a set of ordinary formulas A is strongly 
grounded, because every is in the first-order closure 
of A, and so in the stable set containing LA. 

Strongly grounded extensions are conservative in what 
they assume about the world, given the base beliefs. As 
shown in example 2.9, the base set has only one 
strongly grounded extension, for which P is not a belief. In 
fact, strong groundedness is closely related to another con­
cept, the minimality of ordinary sentences in an extension. 

Definit ion 2.3 An AE extension T of A is minimal for A 
if there is no other extension of A such that 

Minimal extensions always exist for a base set A that has 
extensions. Note that there can be more than one minimal 
extension for a given base set, e.g., 
P} has two extensions, both of which are minimal for A. 
The base set has a single minimal exten­
sion, the one which doesn't contain P. Minimal extensions 
have a natural appeal as candidates for ideal reflective be­
lief sets, because they limit the assumptions an agent makes 
about the world. 

We now prove that, in fact, the minimal AE extensions of 
A are exactly the extensions strongly grounded in A. Thus 
we have two independent motivations for choosing these 
extensions as ideal belief sets. 

Proposit ion 2.10 An AE extension of A is strongly 
grounded in A if and only if it is minimal. Strongly-
grounded extensions obey the equation: 

2.5 N o r m a l f o r m 

The base sentences A of an AE extension can be put into 
a normal form that will be useful in the next section. We 
will use the following two facts about sentences of C in 
establishing a normal form. 

1. Every AE sentence is equivalent to a sentence contain­
ing modal atoms only of the form Lo/> or -Lo, where 

s an ordinary sentence. 

2. is equivalent to 

These equivalences hold when considering interpretations 
whose modal indices are stable sets; see Konolige [4]. 
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The first of these facts enables us to consider only base 
sets A with no nesting of modal operators. As we hinted in 
the last section, the nesting of L-operators lends no extra 
expressive power to the language. 

In deriving a normal form for a set of sentences A, we first 
convert A to an equivalent set without nesting of modal op­
erators, and then, using first-order valid operations, extract 
all modal atoms from the scope of quantifiers. 

Proposit ion 2.11 Every set of L-scntcnces is equivalent 
(under ) to a set in which each sentence is of the form: 

(10) 

with and w all being ordinary sentences. Any of the 
disjunct*, except for may be absent. 

3 D e f a u l t a n d A E e x t e n s i o n s 

In this section we briefly review default theories, and then 
present an effective syntactic translation of an arbitrary de­
fault theory W into a set of sentences W of AE logic. The 
main results of this paper are: (1) every default theory has 
a corresponding AE logic base set A whose minimal exten­
sions are exactly the extensions of the default theory; and 
(2) every AE logic base set A has a corresponding default 
theory whose extensions are the minimal AE extensions of 
A. The translation between the two systems is effective and 
local, that is, each sentence or default rule is translated in 
isolation from the others.4 

3.1 D e f a u l t e x t e n s i o n s 

As defined by Reiter [9], a default theory is a pair (TV, D), 
where TV is a set of first-order sentences, and D is a set of 
defaults, each of which has the form: 

A default d is satisfied by a set of sentences T if either (1) 
a is not in T or some is in T (the premisses of the 
rule are not satisfied), or (2) is in T (the conclusion is 
satisfied). A default extension of (TV, .D), informally, is a 
minimal set of sentences containing TV, closed under first-
order consequence, and satisfying all the defaults D. 

If none of o r c o n t a i n free variables, then the 
default is called closed. An open default is treated as a 
schema for the set of closed defaults that are its substitution 
instances. We thus need only consider closed defaults, as 
long as we allow default theories to contain a denumberably 
infinite set of them. 

Default extensions have many of the same properties as 
AE extensions. There may be one, no, or many extensions 
of a default theory. The following examples are analogous 
to the AE extensions in example 2.1. 

4Imielinski [3] defines the weaker notion of a modular translation: 
the defaults and first-order parts must be translated independently. 
Obviously, any local translation is modular. 

Example 3.1 The default extension for the theory 
( {P}, (no defaults) is exactly the first-order conse­
quences of P. 

The theory has one extension, the set of all first-
order valid sentences. P is not an element of this extension. 
This differs from the case of AE extensions for 
there is an extension which contains P. 

The theory has two extensions; 
in one of them, P is true and Q is not, and in the other the 
reverse. 

These examples are instructive by comparison to AE ex­
tensions. If the theory (W,D) contains no defaults (D 
empty), then there is exactly one extension, which is the 
first-order part of the AE extension of W. In general, a 
default of the form corresponds to the AE sen­
tence thus, in the third default theory of 
the example, there are two default extensions, correspond­
ing to the first-order parts of the two AE extensions of 

However, note the difference in 
the case of the second default theory of this example. The 
default P : has only one extension, in which P does 
not appear. The AE set has two extensions; the 
one in which P appears arises from the ability of AE exten­
sions to support circular justifications (assuming LP, the 
sentence LP P gives a derivation of P). So although it 
appears that default extensions have corresponding AE ex­
tensions for a suitable transformation of the defaults, not all 
AE extensions will have corresponding default extensions. 
In fact, as we show below, default extensions correspond to 
minimal AE extensions. 

3.2 D e f a u l t s as se l f - be l i e f 

We now define a simple transformation from a default the­
ory (TV, D) to a set of AE sentences A, such that the default 
extensions of (TV, D) are exactly the kernels (the first-order 
part) of the minimal AE extensions of A. Thus (as we 
prove), there is an exact correspondence between default 
extensions for (TV, D) and minimal AE extensions for A. 

The transformation is: 

As we mentioned in the introduction, this is the natural 
interpretation of defaults in terms of introspective knowl­
edge. A paraphrase of the AE sentence for agent would be 
something like the following: "If I know that a is true, and 
I have no knowledge that any of the are false, then 
must be true." The key phrase has been emphasized; it is 
in reasoning about what is not known that the nonmono­
tonic character of AE logic appears. However, the role of 
the other parts of the sentence also deserves 
closer scrutiny; for example, why does w appear as the 
consequent, and not As it stands, this is the trans­
formation that yields the correspondence between default 
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and AE extensions. We will comment more extensively on 
the form transformation later, after the basic results are 
presented. 

In a default, we allow either or any of the to 
be missing; the corresponding AE sentence just deletes the 
appropriate conjunct in the antecedent. The conclusion 
of the default must always be present (defaults with no 
conclusion are senseless). Let be the set of sentences 
formed by taking the transforms of defaults P; we call the 
set {W,D'} the AE transform of(W,D). 

Default extensions are the fixed points of an operator 
r (V) . This operator is meant to formalize the informal 
criteria given above for the extensions of (W, D), namely, it 
should contain W, be closed under first-order consequence, 
and satisfy all of D. Let V be an arbitrary set of first-
order sentences. Then T(V) is the smallest set satisfying 
the following properties: 

D l . 

D2. T(V) is closed under first-order consequence.5 

D3. If : 
T(V). 

Extensions are fixed-points of T, i.e., any set E satisfying 
E — T(E). As a fixed-point definition, it is similar to the 
fixed-point account of minimal AE extensions (proposition 
2.10). The parameter of T( V) essentially fills the role of the 
assumptions since -B must not be present in order 
for the default to be satisfied. Minimality is part of the 
definition of T(V) (the least set satisfying the conditions 
D1-D3); if it were excluded, then default extensions corre­
sponding to non-minimal AE extensions would be present. 

Now consider a particular default theory (W, D} and an 
associated extension E = T(E). E is closed under first-
order consequence, and hence is the kernel of a unique sta­
ble set. This stable set is closely related to the AE trans­
form of (W,D): it is a minimal stable set containing the 
AE transform. We prove this result as the following propo­
sition. 

Proposit ion 3.2 Let (W,D) be a default theory, with A = 
{W, D'} its AE transform. Suppose E is an extension of 
the default theory. Then E is the kernel of a minimal stable 
set containing A and 

Using this result, we can show that a default theory and 
its AE transform have the same extensions. 

Theorem 3.3 Let A be the AE transform of a default the­
ory A set E is a default extension of if and only if it 
is the kernel of a minimal AE extension of A. 

*In the original definition, this is stated in terms of deduction rather 
than logical consequence. 

3.3 S e m a n t i c s 

The semantics of AE sentences is an interpretive seman­
tics, in the sense that a sentence is true or false in an 
interpretation The interpretation of modal atoms is 
given by the modal index T according to equation 8. The 
interpretations themselves are straightforward augmenta­
tions of standard first-order interpretations. The problem­
atic characteristics of AE logic, from semantical point of 
view, occur in the fixed-point definition of extensions (2.1), 
in which only interpretations containing a certain modal 
index are considered. So, although it is hard to construct 
and analyze extensions, all of our ordinary intuitions about 
the meaning of the language £, its semantics with respect 
to individual interpretations, is still available. 

To give an example of this sort: consider the difference 
between the two default sentences 

LBird{Tweety) 

and 

Bird(Tweety) 

The first of these states that in any interpretation in which 
Bird(Tweety) is a belief, and -Fly( Tweety) is not a belief, 
Fly( Tweety) will be true. The antecedent of the second de­
fault is less strict: it states only that Bird(Tweety) must be 
true. The second default permits case analysis of a type not 
sanctioned by the first. For example, suppose it is known 
that either Tweety is a bird, or that Tweety is housebro-
ken (Houseb(Tweety)). In every interpretation in which 

is not a belief, and the second default sen­
tence is true, Houseb( Tweety) Fly (Tweety) is true. On 
the other hand, nothing can be concluded by assuming the 
first default sentence is true, because Bird(Tweety) may 
not be a belief. As Etherington [1, p. 34] has noted, the 
second sentence seems more in accord with our intuitions 
about the way defaults should work. 

Another example of the utility of interpretive semantics 
is in the concepts of equivalence and substitution. Two for­
mulas and of are equivalent if they have the same 
truthvalue in all models. Because the definition of AE ex­
tensions is framed in terms of the interpretive semantics, 

can be substituted anywhere occurs in a base set A, 
without changing the AE extensions of A. We used this fact 
extensively in arriving at the normal form for AE sentences 
in section 2.5. 

3.4 E x p r e s s i v e n e s s 

The question of expressiveness can be phrased as follows: Is 
it the case that default sentences of the type (13), or per­
haps other AE sentences involving complicated construc­
tions such as embedded L-operators, have no counterpart 
in default theories? On the face of it this would seem a 
plausible conjecture, since the L-operator is part of the 
language, while default rules are not. However, it turns 
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out that AE logic is no more expressive than default logic: 
there is an effective transformation of any base set of AE 
sentences into a default theory, such that the default exten­
sions are exactly the kernels of the minimal AE extensions. 
To show this, we rely on the fact (see proposition 2.11) that 
every set of sentences of C has an equivalent normal form 
in which every sentence looks like: 

(14) 

where all of and w are ordinary sentences, is always 
present, and any of the modal atoms may be missing,. 

Given any set of L-sentences A in normal form, it is pos­
sible to effectively construct a corresponding default theory 
(W, D), in the following way. Any that appears without 
other disjuncts is put into W. All other sentences are trans­
formed into defaults, in the manner indicated by equation 
11. It is easy to see that A is the AE transform of {W, D); 
by theorem 3.3, these two have essentially the same exten­
sions. More precisely, we have proven the following theo­
rem: 

Theorem 3.4 For any set of sentences A of C, there is 
an effectively constructable default theory (W, D) such that 
E is a default extension of (W, D) if and only if it is the 
kernel of a minimal extension of A. 

So, suprisingly, default theories have precisely the same 
expressiveness as AE logic over the modal language C. 
However, two caveats should be noted. 

The first is that the expression of various statements 
about defaults or autoepistemic reasoning may be much 
more natural in L, because the form of sentences is much 
less constrained than that of the default inference rules. 
For example, the second type of default (equation 13) is 
translated into the default rule: 

(15) 

The atom Bird(Tweety) does not appear in the antecedent 
of the default, but somewhat unnaturally in the consequent. 

The second caveat is that, if we extend C by allowing 
quantifying-in (i.e., expressions such as in all 
likelihood theorem 3.4 will no longer hold. There are a 
number of reasons to think this; perhaps the most com­
pelling is Levesque's observation [5] that in the presence of 
quantifying-in, there are sentences with nested belief oper­
ators that cannot be reduced to sentences without them. 

4 C o n c l u s i o n 

Given the current proliferation of nonmonotonic for­
malisms, it seems wise to establish comparisons among 
them, especially regarding expressiveness. The results pre­
sented here show that there is an exact correspondence be­
tween AE logic over C and default theories. There is an 

effective, local translation between the two that preserves 
theoremhood, in that the default extensions are the first-
order part of the minimal AE extensions. 
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