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Abs t rac t 
The system presented here shows how Soar, an architec­
ture for general problem solving and learning, can acquire 
general search-control knowledge from outside guidance. 
The guidance can be either direct advice about what the 
system should do, or a problem that illustrates a relevant 
idea. The system makes use of the guidance by first for­
mulating an appropriate goal for itself. In the process of 
achieving this goal, it learns general search-control chunks. 
In the case of learning from direct advice, the goal is to ver­
ify that the advice is correct. The verification allows the 
system to obtain general conditions of applicability of the 
advice, and to protect itself from erroneous advice. The 
system learns from illustrative problems by setting the goal 
of solving the problem provided. It can then transfer the 
lessons it learns along the way to its original problem. This 
transfer constitutes a rudimentary form of analogy. 

I . I n t r o d u c t i o n 
Chunking in Soar has been proposed as a general learning 
mechanism [Laird et a/., 1986]. In previous work, it has 
been shown to learn search control, operator implementa­
tions, macro-operators, and other kinds of knowledge, in 
tasks ranging from search-based puzzles to expert systems. 
Up to now, though, chunking has not been shown to ac­
quire knowledge from the outside world. The only time 
Soar learns anything from outside is when the user first 
defines a task; but this is currently done by typing in a 
set of productions, not by chunking. The objective of the 
research reported here is to show that chunking can in fact 
learn from interactions w i th the outside world that take 
place during problem solving. 

Two particular styles of interaction are investigated 
in the present work. Both come into play when Soar has 
to choose among several courses of action. In the first, the 
advisor tells Soar directly which alternative to select. In 
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the second, the advisor supplies a problem wi th in Soar's 
grasp that illustrates what to do. Both styles of interaction 
teach Soar search-control knowledge. 

In the next section, the basics of the Soar architecture 
are laid out. A Soar system that implements the two styles 
of interaction mentioned above is then described. Follow­
ing that is a discussion of related work and directions for 
future research. The final section summarizes the contri­
butions of this work. 

I I . The Soar A rch i t ec tu re 
Soar [Laird et al., 1987] is an architecture for general cog­
nit ion. In Soar, all goal-oriented behavior is cast as search 
in a problem space. Search normally proceeds by selecting 
an operator from the problem space and applying it to the 
current state to produce a new state. The search termi­
nates if a state is reached that satisfies the goal test. A l l 
elements of the search task - operators, problem spaces, 
goal tests, etc. — are implemented by productions. 

Various difficulties can arise in the course of problem 
solving. An operator-tie impasse results when Soar is un­
able to decide which operator to apply to the current state. 
An operator no-change impasse occurs when Soar has se­
lected an operator, but does not know how to apply it to 
the state. When Soar encounters any kind of impasse, a 
subgoal is generated automatically to resolve i t . This sub-
goal, like the original goal, is solved by search in a problem 
space — thus Soar can bring its ful l problem-solving capa­
bilities to bear on the task of resolving the impasse. 

Chunking is the learning mechanism of Soar. It sum­
marizes the processing of a subgoal in a chunk. The chunk 
is a production whose conditions are the inputs of the sub-
goal, and whose actions are the final results of the subgoal. 
Intuit ively, the inputs of a subgoal are those features of 
the pre-subgoal situation upon which the results depend. 
Because certain features are omitted from the chunk 
namely those that the results do not depend on — the 
chunk attains an appropriate degree of generality. 

Once a chunk is learned for a subgoal, Soar can apply 
it in relevant situations in the future. This saves the effort 
of going into another subgoal to rederive the result. 

I I I . Design o f the System 
In this section, a Soar system that learns search control 
from outside guidance is presented. The performance task 
of the system is described first, and then the strategy for 
learning from interactions wi th the outside world. 
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A . T h e P e r f o r m a n c e Task 
The system works in the domain of algebraic equations 
containing a single occurrence of an unknown, such as 

(a + x)/(b + c) = d + e. (1) 
The unknown here is x, and the solution is 

x = (d + e)-(b + c)-a. (2) 
To derive this solution, the system goes into its equa­

tions problem space and applies an appropriate sequence of 
transformations to the equation. Transformations are ef­
fected by isolate and commute operators. Together, these 
two types form a minimal sufficient set for solving any 
problem in the task domain of the system. 

Isolate operators transfer top-level terms from one 
side of the equation to the other. To illustrate, two isolate 
operators are applicable to equation 1. One multiplies the 
equation by the term (b + c), yielding 

a + x = (<f + e)-(b + c); (3) 
the other subtracts e from both sides and produces 

(a+x ) / ( b +c) - e = d. (4) 
The reason the latter subtracts e from both sides, and 
not d, is that isolate operators always transfer right-hand 
arguments. Isolate operators can thus be characterized by 
two parameters: the operation they perform, and the side 
of the equation the transferred term starts out on. There 
are five possible operations: add, subtract, multiply, divide, 
and unary-minus; the side of the equation is either left or 
right. The operators above are isolate(multiply, left) and 
isolate(subtract, right), respectively. 

There are just two commute operators, one for each 
side of the equation. They swap the arguments of the 
top-level operation on their side, provided the operation is 
abelian. Commute (right) applies to equation 1, giving 

(a + x)/(b + c) = e + d. (5) 

B . T h e L e a r n i n g S t r a t e g y 
The system's strategy for learning is to ask for guidance 
when needed, and to translate that guidance into a form 
that can be used directly in solving equations. The gen­
eral procedure for doing this is to formulate an appropri­
ate goal and then achieve it, thereby learning chunks that 
influence performance on the original equations task. The 
instantiation of the general procedure depends on the form 
of guidance provided. The most direct form is where the 
advisor tells the system which of its operators to apply. 
Alternatively, the advisor could suggest an easier problem 
whose solution illustrates what to do in the original prob­
lem. Less direct still, the advisor could refer the system to 
a textbook, or offer other equally hostile assistance. 

The current system accepts both of the simpler forms 
of help mentioned above — direct advice and illustrative 
problems. In the following sections, the general procedure 
is instantiated and illustrated for these forms of help. 

1. Learning f rom Direct Advice 
In the course of solving its equations, the system is likely 
to run into situations where it does not know which oper­

ator to apply next. This condition is signalled in Soar as 
an operator-tie impasse in the equations space. Soar's de­
fault behavior is to go into a selection problem space and 
proceed to evaluate each operator involved in the tie in an 
arbitrary order, until a correct operator is found. 

At this point, there is an opportunity for the system 
to benefit from outside guidance. Rather than evaluate 
operators randomly, the system enters an advise problem 
space, where it displays all of the operators, and asks the 
advisor to pick one. The advisor's choice is evaluated first, 
in the hopes that it will be correct, allowing the evaluation 
process to be cut short. Normally, the system will be un­
able to evaluate the advisor's choice by inspection; thus it 
sets up a subgoal to do the evaluation. In the subgoal, it 
goes into another equations space and applies the advisor's 
choice to the current equation. If this leads to a solution, 
the operator is accepted as correct. 

Phrased in terms of the general procedure given above, 
the goal that the system sets for itself is to evaluate the 
correctness of the advisor's guidance — in this case, the 
system resembles a traditional learning apprentice; this 
point is taken up in section IV.A. A more trusting sys­
tem would simply have applied the suggested operator to 
its equation. However, by verifying that the recommended 
operator leads to a solution, the system paves the way for 
the learning of general conditions of applicability of the 
operator. This is done by the chunking mechanism, which 
retains those features of the original equation that were 
needed in the verification, and discards the rest. Moreover, 
if the system is given a wrong** operator, its verification 
will fail, and thus it will gracefully request an alternative 
suggestion. It even picks up valuable information from 
the failed verification by analyzing what went wrong; the 
chunks learned from this analysis give general conditions 
for when not to apply the operator. 

2. Example of Direct Advice 
Following is a description of how the system solves 

ab= -c- x. (6) 
together with direct advice from outside. A graphic depic­
tion of the problem solving appears in Figure 1. 

Since the system has no prior search-control knowl­
edge, it cannot decide which operator to apply to the initial 
equation. It asks for a recommendation, and the advisor 
gives it isolate(add, right). The system sets up a subgoal 
to evaluate the correctness of this operator. In the subgoal, 
it tries out the operator on its equation, yielding 

a.b + x = -c . (7) 
Here the evaluation runs into a snag, as the system 

again cannot decide on an operator. It asks for help, and is 
told to apply commute(left). Accordingly, it sets a subgoal 
within its current evaluation subgoal to verify this advice. 
The first equation generated in the new subgoal is 

x + a • b = -c . (8) 

**It turns out that in the current domain, the only wrong operators 
are those that are inapplicable to the equation. 
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The final bit of guidance the system needs is that it 
should apply the isolate(subtract, left) operator. It goes 
down into a third nested subgoal to verify this, and obtains 

x = -c-ab. (9) 
Having reached a solution, the system is satisfied that 

isolate(subtract, left) is correct, and Soar learns a chunk 
that summarizes the result. The chunk states that if the 
left-hand side of the equation is a binary operation with 
the unknown as its left argument, then the best operator 
to apply is the one that undoes that binary operation. 

The verification of the preceding operator, com-
mute(left), now goes through as well. The chunk for this 
subgoal pertains to equations with an abelian binary op­
eration on the left-hand side, whose right argument is the 
unknown. It says to apply the commute(left) operator. 

Finally, the first evaluation subgoal terminates, and 
a chunk is learned for it. This chunk requires that the 
equation have on its right-hand side a binary operation 
whose inverse is commutative, and whose right argument 
is the unknown. It asserts that the best operator to apply 
is the one that undoes the binary operation. 

Having done the necessary evaluations, the system can 
go ahead and solve the equation. It no longer has to ask for 
advice, because its chunks tell it which operators to apply. 
These chunks may also prove useful in other problems, as 
demonstrated in the next two sections. 
3. Learning f rom Il lustrative Problems 
Learning from an illustrative problem takes place in the 
same context as learning from direct advice — namely, 
when Soar is about to evaluate the operators involved in 
a tie. But now, instead of going into an advise problem 
space, the system enters another equations space. This 
instance of the space is for solving the illustrative problem. 

The initial state of this space does not contain an 
equation. The system detects this, and goes into a parse 
problem space, where it asks the advisor for an illustrative 
equation. It parses the equation into its tree-structured 

internal representation, and attaches it to the initial state; 
now it is ready to attempt a solution. 

To instantiate the general procedure presented earlier, 
the goal the system sets for itself this time is to solve the 
illustrative example. There are several ways for it to do 
so — the current system can either follow direct advice, as 
described above, or do an exhaustive search. 

In the process of solving the illustrative problem, 
chunks will be learned that summarize each subgoal. Then, 
if the subgoals of the illustrative problem are sufficiently 
similar to those of the original problem, the chunks should 
apply directly, resolving the original operator-tie impasse. 
The learning strategy is thus to apply the lessons of one 
problem to another. This can be viewed as a rudimentary 
kind of analogical transfer, as discussed in section IVB. 

4. Example of an I l lustrative Problem 
In this run, the system is again asked to solve 

a-b = -c-x. (10) 
Figure 2 gives a pictorial representation of the run. 

As before, the system hits an operator-tie impasse at 
the first step, but this time the advisor helps by supplying 

r = s/y ( I I ) 
as an illustrative problem. This problem is simpler than 
the original one, as it has no extraneous operations, such 
as a multiplication or unary minus, to distract the system. 
An exhaustive breadth-first search would expand 28 nodes 
in solving the original equation, but only 7 nodes here. 

The system proceeds to solve equation 11 by brute-
force search. The details are suppressed here, but the 
outcome is that it finds the sequence of operators iso­
late (multiply, right), commute (left), and isolate(divide, 
left). Chunks are learned for each step of this solution. 
These chunks are in fact identical to the chunks learned 
in section III.B.2; this is because equations 10 and 11 are 
identical in all relevant aspects. It follows that the chunks 
can be applied directly to solve the original problem. 

Figure 1: Subgoal structure for learning from direct advice. The levels of the diagram correspond to 
subgoals. Non-horizontal arrows mark the entry and exit from subgoals. Within a subgoal, a box represents a state, 
and a horizontal arrow stands for the application of an operator. Ovals denote operator-tie impasses. Operator 
no-change impasses appear as two circles separated by a gap. A wavy line symbolizes arbitrary processing. 
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I V . D i s c u s s i o n 
The system described here represents a first step toward 
the construction of an agent that is able to improve its be­
havior merely by taking in advice from the outside. Soar 
appears ideally suited as a research vehicle to this end, 
as it provides general capabilities for problem solving and 
learning that were not available in previous research ef­
forts [McCarthy, 1968, Rychener, 1983]. The relatively 
straightforward implementation of direct advice and illus­
trative problems shows that the advice-taking paradigm 
fits naturally into Soar. Below, these methods of taking 
advice are compared with related work, and extensions to 
the straightforward implementations are proposed. 

A . D i r e c t A d v i c e 
The system is similar to a learning apprentice [Mitchell 
et a/., 1985] in its treatment of direct advice; instead of 
accepting it blindly, it first explains to itself why it is cor­
rect. Nevertheless, the system cannot accurately be called 
a learning apprentice, as it actively seeks advice, as op­
posed to passively monitoring the user's behavior. In fact, 
the learning-apprentice style of interaction could be consid­
ered a special case of advice-taking in which the guidance 
consists of a protocol of the user's problem-solving. 

The limitation of direct advice is that it forces the 
advisor to name a particular operator; it would be desirable 
to allow higher-level specifications of what to do. To take 
the canonical example of the game of Hearts, the advisor 
might want to tell the system to play a card that avoids 
taking points, instead of spelling out exactly which card 
to play. To accept such indirect advice, the system would 
have to reduce it to a directly usable form [Mostow, 1983]. 

B . I l l u s t r a t i v e P r o b l e m s 
The system processes an illustrative problem by applying 
the chunks it learns from that problem to the original one. 
Since it is solving the two problems in serial order, it may 
seem that this approach amounts to just working through 
a graded sequence of exercises. There are two reasons that 
it does not, however. First, the teacher can observe how 
the student fails, and take this into account in choosing a 
suitable illustrative problem. Second, the system is solving 

the illustrative problem in service of the original one; thus 
it can abandon the illustrative problem as soon as it learns 
enough to resolve the original impasse. 

A more apt way to view the system's processing of il­
lustrative problems is as a type of analogical transfer from 
the illustrative to the original problem. The trouble with 
this type of analogy, though, is that the generalizations are 
based solely on the source problem, without regard for how 
they will apply to the target. A more effective approach 
would be to establish a mapping between the two problems 
explicitly. This forces the system to attend to commonali­
ties between the problems, which would then be captured 
in its generalizations. This is in fact just the way general­
izations are constructed in GRAPES [Anderson, 1986]. 

V . C o n c l u s i o n 
The system presented here shows how Soar can acquire 
general search-control knowledge from outside guidance. 
The guidance can be either direct advice about what the 
system should do, or a problem that illustrates a relevant 
idea. The system's strategy of verifying direct advice be­
fore accepting it illustrates how Soar can extract general 
lessons, while protecting itself from erroneous advice. This 
strategy could be extended by permitting the advice to be 
indirect; the. system would then have to operationalize it. 
In applying the lessons learned from solving an illustrative 
problem to its original task, the system demonstrates an 
elementary form of analogical reasoning. This reasoning 
capability could be greatly improved, however, if the sys­
tem were to take into consideration the target problem of 
the analogy as well as the source problem. 
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