
Learn ing Genera l Search Con t ro l f r o m Outs ide Guidance*

A n d r e w Go ld ing and Pau l S. Rosenbloom John E. La i r d
Computer Science Department EECS Department

Stanford University University of Michigan
Stanford, CA 94305 Ann Arbor, MI 48109

Abs t rac t
The system presented here shows how Soar, an architec­
ture for general problem solving and learning, can acquire
general search-control knowledge from outside guidance.
The guidance can be either direct advice about what the
system should do, or a problem that illustrates a relevant
idea. The system makes use of the guidance by first for­
mulating an appropriate goal for itself. In the process of
achieving this goal, it learns general search-control chunks.
In the case of learning from direct advice, the goal is to ver­
ify that the advice is correct. The verification allows the
system to obtain general conditions of applicability of the
advice, and to protect itself from erroneous advice. The
system learns from illustrative problems by setting the goal
of solving the problem provided. It can then transfer the
lessons it learns along the way to its original problem. This
transfer constitutes a rudimentary form of analogy.

I . I n t r o d u c t i o n
Chunking in Soar has been proposed as a general learning
mechanism [Laird et a/., 1986]. In previous work, it has
been shown to learn search control, operator implementa­
tions, macro-operators, and other kinds of knowledge, in
tasks ranging from search-based puzzles to expert systems.
Up to now, though, chunking has not been shown to ac­
quire knowledge from the outside world. The only time
Soar learns anything from outside is when the user first
defines a task; but this is currently done by typing in a
set of productions, not by chunking. The objective of the
research reported here is to show that chunking can in fact
learn from interactions w i th the outside world that take
place during problem solving.

Two particular styles of interaction are investigated
in the present work. Both come into play when Soar has
to choose among several courses of action. In the first, the
advisor tells Soar directly which alternative to select. In

* T h i s research was sponsored by the Defense Advanced Research
Pro jec ts Agency (D O D) under con t rac t N00039-86-C-0133, by the
Sloan Founda t i on , and by a Be l l Labora to r ies g radua te fe l lowsh ip
to A n d r e w G o l d i n g . C o m p u t e r fac i l i t ies were pa r t i a l l y p rov ided by
N I H g ran t RR-00785 to S u m e x - A i m . T h e v iews and conclusions
con ta ined in th i s documen t are those o f the au thors and shou ld no t
be i n te rp re ted as represent ing the off ic ial pol ic ies, e i ther expressed
or i m p l i e d , o f t he Defense Advanced Research Pro jec ts Agency, the
US Gove rnmen t , the Sloan F o u n d a t i o n , Bel l Labora tor ies , o r the
Na t i ona l I n s t i t u t e o f Hea l t h . T h e au thors are g ra te fu l t o A l l e n Newel l
and H a y m H i r s h for commen ts on ear l ier d ra f ts o f t h i s paper .

the second, the advisor supplies a problem wi th in Soar's
grasp that illustrates what to do. Both styles of interaction
teach Soar search-control knowledge.

In the next section, the basics of the Soar architecture
are laid out. A Soar system that implements the two styles
of interaction mentioned above is then described. Follow­
ing that is a discussion of related work and directions for
future research. The final section summarizes the contri­
butions of this work.

I I . The Soar A rch i t ec tu re
Soar [Laird et al., 1987] is an architecture for general cog­
nit ion. In Soar, all goal-oriented behavior is cast as search
in a problem space. Search normally proceeds by selecting
an operator from the problem space and applying it to the
current state to produce a new state. The search termi­
nates if a state is reached that satisfies the goal test. A l l
elements of the search task - operators, problem spaces,
goal tests, etc. — are implemented by productions.

Various difficulties can arise in the course of problem
solving. An operator-tie impasse results when Soar is un­
able to decide which operator to apply to the current state.
An operator no-change impasse occurs when Soar has se­
lected an operator, but does not know how to apply it to
the state. When Soar encounters any kind of impasse, a
subgoal is generated automatically to resolve i t . This sub-
goal, like the original goal, is solved by search in a problem
space — thus Soar can bring its ful l problem-solving capa­
bilities to bear on the task of resolving the impasse.

Chunking is the learning mechanism of Soar. It sum­
marizes the processing of a subgoal in a chunk. The chunk
is a production whose conditions are the inputs of the sub-
goal, and whose actions are the final results of the subgoal.
Intuit ively, the inputs of a subgoal are those features of
the pre-subgoal situation upon which the results depend.
Because certain features are omitted from the chunk
namely those that the results do not depend on — the
chunk attains an appropriate degree of generality.

Once a chunk is learned for a subgoal, Soar can apply
it in relevant situations in the future. This saves the effort
of going into another subgoal to rederive the result.

I I I . Design o f the System
In this section, a Soar system that learns search control
from outside guidance is presented. The performance task
of the system is described first, and then the strategy for
learning from interactions wi th the outside world.

334 KNOWLEDGE ACQUISITION

A . T h e P e r f o r m a n c e Task
The system works in the domain of algebraic equations
containing a single occurrence of an unknown, such as

(a + x)/(b + c) = d + e. (1)
The unknown here is x, and the solution is

x = (d + e)-(b + c)-a. (2)
To derive this solution, the system goes into its equa­

tions problem space and applies an appropriate sequence of
transformations to the equation. Transformations are ef­
fected by isolate and commute operators. Together, these
two types form a minimal sufficient set for solving any
problem in the task domain of the system.

Isolate operators transfer top-level terms from one
side of the equation to the other. To illustrate, two isolate
operators are applicable to equation 1. One multiplies the
equation by the term (b + c), yielding

a + x = (<f + e)-(b + c); (3)
the other subtracts e from both sides and produces

(a+x) / (b +c) - e = d. (4)
The reason the latter subtracts e from both sides, and
not d, is that isolate operators always transfer right-hand
arguments. Isolate operators can thus be characterized by
two parameters: the operation they perform, and the side
of the equation the transferred term starts out on. There
are five possible operations: add, subtract, multiply, divide,
and unary-minus; the side of the equation is either left or
right. The operators above are isolate(multiply, left) and
isolate(subtract, right), respectively.

There are just two commute operators, one for each
side of the equation. They swap the arguments of the
top-level operation on their side, provided the operation is
abelian. Commute (right) applies to equation 1, giving

(a + x)/(b + c) = e + d. (5)

B . T h e L e a r n i n g S t r a t e g y
The system's strategy for learning is to ask for guidance
when needed, and to translate that guidance into a form
that can be used directly in solving equations. The gen­
eral procedure for doing this is to formulate an appropri­
ate goal and then achieve it, thereby learning chunks that
influence performance on the original equations task. The
instantiation of the general procedure depends on the form
of guidance provided. The most direct form is where the
advisor tells the system which of its operators to apply.
Alternatively, the advisor could suggest an easier problem
whose solution illustrates what to do in the original prob­
lem. Less direct still, the advisor could refer the system to
a textbook, or offer other equally hostile assistance.

The current system accepts both of the simpler forms
of help mentioned above — direct advice and illustrative
problems. In the following sections, the general procedure
is instantiated and illustrated for these forms of help.

1. Learning f rom Direct Advice
In the course of solving its equations, the system is likely
to run into situations where it does not know which oper­

ator to apply next. This condition is signalled in Soar as
an operator-tie impasse in the equations space. Soar's de­
fault behavior is to go into a selection problem space and
proceed to evaluate each operator involved in the tie in an
arbitrary order, until a correct operator is found.

At this point, there is an opportunity for the system
to benefit from outside guidance. Rather than evaluate
operators randomly, the system enters an advise problem
space, where it displays all of the operators, and asks the
advisor to pick one. The advisor's choice is evaluated first,
in the hopes that it will be correct, allowing the evaluation
process to be cut short. Normally, the system will be un­
able to evaluate the advisor's choice by inspection; thus it
sets up a subgoal to do the evaluation. In the subgoal, it
goes into another equations space and applies the advisor's
choice to the current equation. If this leads to a solution,
the operator is accepted as correct.

Phrased in terms of the general procedure given above,
the goal that the system sets for itself is to evaluate the
correctness of the advisor's guidance — in this case, the
system resembles a traditional learning apprentice; this
point is taken up in section IV.A. A more trusting sys­
tem would simply have applied the suggested operator to
its equation. However, by verifying that the recommended
operator leads to a solution, the system paves the way for
the learning of general conditions of applicability of the
operator. This is done by the chunking mechanism, which
retains those features of the original equation that were
needed in the verification, and discards the rest. Moreover,
if the system is given a wrong** operator, its verification
will fail, and thus it will gracefully request an alternative
suggestion. It even picks up valuable information from
the failed verification by analyzing what went wrong; the
chunks learned from this analysis give general conditions
for when not to apply the operator.

2. Example of Direct Advice
Following is a description of how the system solves

ab= -c- x. (6)
together with direct advice from outside. A graphic depic­
tion of the problem solving appears in Figure 1.

Since the system has no prior search-control knowl­
edge, it cannot decide which operator to apply to the initial
equation. It asks for a recommendation, and the advisor
gives it isolate(add, right). The system sets up a subgoal
to evaluate the correctness of this operator. In the subgoal,
it tries out the operator on its equation, yielding

a.b + x = -c . (7)
Here the evaluation runs into a snag, as the system

again cannot decide on an operator. It asks for help, and is
told to apply commute(left). Accordingly, it sets a subgoal
within its current evaluation subgoal to verify this advice.
The first equation generated in the new subgoal is

x + a • b = -c . (8)

**It turns out that in the current domain, the only wrong operators
are those that are inapplicable to the equation.

Golding, Rosenbloom, and Laird 335

The final bit of guidance the system needs is that it
should apply the isolate(subtract, left) operator. It goes
down into a third nested subgoal to verify this, and obtains

x = -c-ab. (9)
Having reached a solution, the system is satisfied that

isolate(subtract, left) is correct, and Soar learns a chunk
that summarizes the result. The chunk states that if the
left-hand side of the equation is a binary operation with
the unknown as its left argument, then the best operator
to apply is the one that undoes that binary operation.

The verification of the preceding operator, com-
mute(left), now goes through as well. The chunk for this
subgoal pertains to equations with an abelian binary op­
eration on the left-hand side, whose right argument is the
unknown. It says to apply the commute(left) operator.

Finally, the first evaluation subgoal terminates, and
a chunk is learned for it. This chunk requires that the
equation have on its right-hand side a binary operation
whose inverse is commutative, and whose right argument
is the unknown. It asserts that the best operator to apply
is the one that undoes the binary operation.

Having done the necessary evaluations, the system can
go ahead and solve the equation. It no longer has to ask for
advice, because its chunks tell it which operators to apply.
These chunks may also prove useful in other problems, as
demonstrated in the next two sections.
3. Learning f rom Il lustrative Problems
Learning from an illustrative problem takes place in the
same context as learning from direct advice — namely,
when Soar is about to evaluate the operators involved in
a tie. But now, instead of going into an advise problem
space, the system enters another equations space. This
instance of the space is for solving the illustrative problem.

The initial state of this space does not contain an
equation. The system detects this, and goes into a parse
problem space, where it asks the advisor for an illustrative
equation. It parses the equation into its tree-structured

internal representation, and attaches it to the initial state;
now it is ready to attempt a solution.

To instantiate the general procedure presented earlier,
the goal the system sets for itself this time is to solve the
illustrative example. There are several ways for it to do
so — the current system can either follow direct advice, as
described above, or do an exhaustive search.

In the process of solving the illustrative problem,
chunks will be learned that summarize each subgoal. Then,
if the subgoals of the illustrative problem are sufficiently
similar to those of the original problem, the chunks should
apply directly, resolving the original operator-tie impasse.
The learning strategy is thus to apply the lessons of one
problem to another. This can be viewed as a rudimentary
kind of analogical transfer, as discussed in section IVB.

4. Example of an I l lustrative Problem
In this run, the system is again asked to solve

a-b = -c-x. (10)
Figure 2 gives a pictorial representation of the run.

As before, the system hits an operator-tie impasse at
the first step, but this time the advisor helps by supplying

r = s/y (I I)
as an illustrative problem. This problem is simpler than
the original one, as it has no extraneous operations, such
as a multiplication or unary minus, to distract the system.
An exhaustive breadth-first search would expand 28 nodes
in solving the original equation, but only 7 nodes here.

The system proceeds to solve equation 11 by brute-
force search. The details are suppressed here, but the
outcome is that it finds the sequence of operators iso­
late (multiply, right), commute (left), and isolate(divide,
left). Chunks are learned for each step of this solution.
These chunks are in fact identical to the chunks learned
in section III.B.2; this is because equations 10 and 11 are
identical in all relevant aspects. It follows that the chunks
can be applied directly to solve the original problem.

Figure 1: Subgoal structure for learning from direct advice. The levels of the diagram correspond to
subgoals. Non-horizontal arrows mark the entry and exit from subgoals. Within a subgoal, a box represents a state,
and a horizontal arrow stands for the application of an operator. Ovals denote operator-tie impasses. Operator
no-change impasses appear as two circles separated by a gap. A wavy line symbolizes arbitrary processing.

336 KNOWLEDGE ACQUISITION

I V . D i s c u s s i o n
The system described here represents a first step toward
the construction of an agent that is able to improve its be­
havior merely by taking in advice from the outside. Soar
appears ideally suited as a research vehicle to this end,
as it provides general capabilities for problem solving and
learning that were not available in previous research ef­
forts [McCarthy, 1968, Rychener, 1983]. The relatively
straightforward implementation of direct advice and illus­
trative problems shows that the advice-taking paradigm
fits naturally into Soar. Below, these methods of taking
advice are compared with related work, and extensions to
the straightforward implementations are proposed.

A . D i r e c t A d v i c e
The system is similar to a learning apprentice [Mitchell
et a/., 1985] in its treatment of direct advice; instead of
accepting it blindly, it first explains to itself why it is cor­
rect. Nevertheless, the system cannot accurately be called
a learning apprentice, as it actively seeks advice, as op­
posed to passively monitoring the user's behavior. In fact,
the learning-apprentice style of interaction could be consid­
ered a special case of advice-taking in which the guidance
consists of a protocol of the user's problem-solving.

The limitation of direct advice is that it forces the
advisor to name a particular operator; it would be desirable
to allow higher-level specifications of what to do. To take
the canonical example of the game of Hearts, the advisor
might want to tell the system to play a card that avoids
taking points, instead of spelling out exactly which card
to play. To accept such indirect advice, the system would
have to reduce it to a directly usable form [Mostow, 1983].

B . I l l u s t r a t i v e P r o b l e m s
The system processes an illustrative problem by applying
the chunks it learns from that problem to the original one.
Since it is solving the two problems in serial order, it may
seem that this approach amounts to just working through
a graded sequence of exercises. There are two reasons that
it does not, however. First, the teacher can observe how
the student fails, and take this into account in choosing a
suitable illustrative problem. Second, the system is solving

the illustrative problem in service of the original one; thus
it can abandon the illustrative problem as soon as it learns
enough to resolve the original impasse.

A more apt way to view the system's processing of il­
lustrative problems is as a type of analogical transfer from
the illustrative to the original problem. The trouble with
this type of analogy, though, is that the generalizations are
based solely on the source problem, without regard for how
they will apply to the target. A more effective approach
would be to establish a mapping between the two problems
explicitly. This forces the system to attend to commonali­
ties between the problems, which would then be captured
in its generalizations. This is in fact just the way general­
izations are constructed in GRAPES [Anderson, 1986].

V . C o n c l u s i o n
The system presented here shows how Soar can acquire
general search-control knowledge from outside guidance.
The guidance can be either direct advice about what the
system should do, or a problem that illustrates a relevant
idea. The system's strategy of verifying direct advice be­
fore accepting it illustrates how Soar can extract general
lessons, while protecting itself from erroneous advice. This
strategy could be extended by permitting the advice to be
indirect; the. system would then have to operationalize it.
In applying the lessons learned from solving an illustrative
problem to its original task, the system demonstrates an
elementary form of analogical reasoning. This reasoning
capability could be greatly improved, however, if the sys­
tem were to take into consideration the target problem of
the analogy as well as the source problem.

Re fe rences
John R. Anderson. Knowledge compilation: the general

learning mechanism. In Machine Learning: An Ar­
tificial Intelligence Approach, pages 289 310, Morgan
Kaufmann, Los Altos, CA, 1986.

John E. Laird, Allen Newell, and Paul S. Rosenbloom.
Soar: an architecture for general intelligence. Arti­
ficial Intelligence, 1987. In press.

John E. Laird, Paul S. Rosenbloom, and Allen Newell.
Chunking in Soar: the anatomy of a general learn­
ing mechanism. Machine Learning, 1, 1986.

John McCarthy. Programs with common sense. In Mar­
vin Minsky, editor, Semantic Information Processing,
pages 403 418, MIT Press, Cambridge, MA, 1968.

T. Mitchell, S. Mahadevan, and L. Steinberg. LEAP: a
learning apprentice for VLSI design. In Proceedings
of IJCAI-85, Los Angeles, 1985.

David Jack Mostow. Machine transformation of advice
into a heuristic search procedure. In Machine Learn­
ing: An Artificial Intelligence Approach, pages 367-
404, Tioga, Palo Alto, CA, 1983.

Michael D. Rychener. The Instructible Production Sys­
tem: a retrospective analysis. In Machine Learning:
An Artificial Intelligence Approach, pages 429-460,
Tioga, Palo Alto, CA, 1983.

Golding, Rosenbloom, and Laird 337

