CYPRESS-Soar: A case study in

search and learning in algorithm design

David Steier
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15208 USA

Abstract

This paper describes a partial reimplementation of Doug Smith's CYPRESS
algorithm design system within the Soar problem-solving architecture. The
system, CYPRESS-SOAR, reproduces most of CYPRESS' behavior in the
synthesis of three divide-and-conquer sorting algorithms from formal
specifications. CYPRESS-Soar is based on heuristic search of problem
spaces, and uses search to compensate for missing knowledge in some
instances. CYPRESS-Soar also learns as it designs algorithms, exhibiting
significant transfer of learned knowledge, both within a single design run,
and across designs of several different algorithms. These results were
produced by reimplementing just the high-level synthesis control of
CYPRESS, simulating the results of calls to CYPRESS* deduction engine.
Thus after only two months of effort, we had a surprisingly effective
research vehicle for investigating the roles of search, knowledge, and learn-
ing in this domain.*

I Introduction

Good human programmers have at least two remarkable abilities: they
manage to produce programs in the face of incomplete knowledge, and they
make use of previous experience in solving new problems. How could we
get automatic programming systems to produce the same intelligent be-
havior? Al-based performance systems in other domains compensate for
incomplete knowledge by searching through a space of possible solutions,
and there exist a variety of mechanisms for learning from experience.
However, automatic programming research has so far produced only a few
systems that either search or learn, and, to my knowledge, none that do
both. This is true despite the field's growing acknowledgement of the
importance of both search and learning [2,3,4].

This paper describes a prototype system that both searches and learns
while performing part of an automatic programming task. An algorithm
design system, previously built within a special-purpose framework, was
reimplemented in a more general problem-solving architecture with built-in
search and learning capabilities. The previously implemented system is
Doug Smith's CYPRESS [11,12,13], which is most noted for its design of
divide-and-conquer algorithms. The foundation for the reimplementation is
Soar [7,8], an architecture for general intelligence developed by John Laird,
Allen Newell, and Paul Rosen bloom. The combined system, CYPRESS-
Soar, produces the bulk of three of CYPRESS' sorting algorithm deriva-
tions, and takes advantage of the properties of Soar to search and learn
while doing so.

In Section |1, | describe CYPRESS and its approach to the synthesis of
divide-and-conquer sorting algorithms and in Section 111 | give an overview
of the Soar architecture. The remaining sections discuss CYPRESS-Soar,
presenting the following results:

» Performance without fixed design strategies: CYPRESS-
Soar uses any knowledge available at run-time to decide when
algorithm refinement operators should be applied. If the
knowledge is unavailable, CYPRESS-Soar automatically falls
back on general problem-solving methods, initiating lookahead
search to evaluate the possibilities. In contrast, design
strategies control operator application in CYPRESS, and any
necessary search must be guided by an expert user. (Section
V)

» Transfer of learned knowledge: CYPRESS-Soar knows what
goal it is working on, and caches the result of the goal for
future use. Because some goals show up more than once, this

*This research was supported in part by the National Science Foundation under Grant
DCR-8412139. and in part by the Defense Advanced Research Projects Agency under Contract
F336 15-81-K-1539. Work on Cypress-Soar was begun while the author was visiting Kestrel

learning mechanism reduces problem-solving effort, both
within the design of a single algorithm, and on later designs of
different algorithms. CYPRESS does not learn, and con-
sequently can not take advantage of repeated subgoals.
(Section V)

Section VI concludes with a discussion of several issues involved in
extending the prototype CYPRESS-Soar system into a more general
automatic algorithm designer.

Il How CYPRESS designs divide-and-conquer algorithms

CYPRESS is a semi-automatic system that derives algorithms from for-
mal specifications. It works by top-down refinement of program schemes,
or templates, which represent abstractions such as divide-and-conquer and
generate-and-test. A problem specification is matched against a program
scheme, and with the aid of a design strategy, decomposed into specifica-
tions of simpler problems. This problem reduction process continues recur-
sively until a specification can be solved directly by primitive operators
known to the system. When more than one design strategy is applicable, or
more than one operator matches a specification, the user makes a selection
among alternatives.

CYPRESS spends most of its time in calls to RAINBOW, its deduction
engine. RAINBOW performs a generalized version of theorem-proving
known as antecedent derivation [11]. Given a set of hypotheses, H and a
goal formula, G, RAINBOW tries to give the weakest possible precon-
dition, or antecedent, P such that the hypotheses in H conjoined with P
imply G. If P is just true, then G is already a valid formula given H. In the
context of algorithm synthesis, RAINBOW is used to reason backwards
from output conditions to test if a specification is satisfied. If it is not
satisfied, the derived antecedent is used as dictated by the active design
strategy as the basis for further action. Viewed in problem-solving terms,
RAINBOW provides a sophisticated form of means-ends analysis.

The input to CYPRESS is a formal specification of the problem to be
solved, giving the input and output domains (types, or sets), and input and
output conditions for the problem. A specification of the problem of sorting
lists of natural numbers from [13] is

SORT:X=2Zsuch that Bag:x=Bag:z A Ordered:z
where SORT: LIST(N)-->LIST(N).

The SORT function maps the input x into the output z. An implicit input
condition, true is assumed. The output condition is that the bag (multiset)
of elements in x is the same as in z, and z is ordered. The specification
assumes pre-existing knowledge of the terms "Bag" and "Ordered".

The sorting problem is amenable to a divide-and-conquer solution. The
CYPRESS scheme for divide-and-conquer is expressed in a typed func-
tional programming language, a derivative of Backus' FP [1]:

F:x if
Primitive:x —» Directly_Solve:x [|
--Primitive:! —» Compose * (G xF) » Decompose:x
fi
The scheme abstractly specifics how to compute the value of F on input r.
If x is a base-case input, then solve it directly; otherwise, decompose x into

two subproblems, recursively solve one and apply an auxiliary function G to
the other, then compose the results.

Steier 327

To instantiate this scheme for a given specification, CYPRESS credies

gjltemp!s to o ms for these bspecifications or to an%tt@
r su or fo ve

known operators them Along the way, the auxiliary function G is

refined, usually either to a recursive call to the top-evel algonthm ortothe

i enhly operatorDe(rl;j_p&? Primitive control predicate is denved as the input

design strategies for instantiating the
Iowﬂwednoeofeﬂhersmpledengompoeumorsm

opetatqs For sorl]ng, choosing a smple
'Ihe"aelgonha Slmrﬁsefgﬂr']le top levels of the quick
sort md partition glgonthms d
Quort 2 e il
Tg=nil v Rewt spenit - Id.x |
zpyhnil /. Remi xypénil — Append +{Quort X Quort) » Partition . x
i

Partition 5w if
Beat - Rest:s =nil — Purtition_Threctly_Solve s [

Rest » Rent 7 pinil — Partition_Compose * (1d »Partition) « FirstRest 1
HJ

Thetoplevel ﬁjndlpgg'gr]qud(sortlsad uer schee that
UId<sort|sihesd'e're mple decom-

%s%on rstR%t equwalentto retumlngﬂfleheadadtallofallst The
1, |tre1urnsx it partiions X into 1
ad its. “The partition algorithm CYPRESS dif-
fers from uer
algorithm, and it does not lsea partitioning element If there are only two
elements in the s, it produces n%\l%onllsts with the smaller

the rest of the list, and adding
sublist as . defermi by |ts value 'Ihe funcuons im

ivide-and-conq
operator Append wh|Ie the partition algomhm
called snted © L D o
vel function 1he conventional UICkSOFLgSX is of Oor
created
theslamad parhtlonalgonthm in that it is a divi
|nﬁ1he first list. Oherwse it builds up lists by recurswely partitioning
ing
Partition Directly Save and Partition Ormme for the partition algorithm
were also produ%/ed by CYPRESS, but are not shown here pa

111 Soar
is built in Soar, an arohrtedu
mechanisms necessay ntelllfgent behavior [62y
repreee?{jledthe ﬂ&atogemgoal A ined b
ina a
admmaadm?wmmsﬁm&aé
Tl e S e D e o S
move a
axxmbesmheelabaatmﬂmeaﬁusm&?gsalabwsforachonlnm
decision of each dedsion cycle, the basic unit of

effort in Soarbased Severa productions ﬁremaowmuatng
the o aglvendeas%gd(abwt rmﬁ)/rod
cycle for C).

Often the directly available in a Nensrtuatlonlsmsufﬁaent
toldetermled_ mt&e ﬂwlngtodmrgmedlately m
called impasses, arise ex in response messea
The}@of thatrra/arsenS(stHTsaedeierrrmdbym
archi For example, a common impasse, operator-ie, oocurs when
several operators are for application to a given state,
axjherelslnsufﬁaenthm/edgeto bdweenﬂ’lem The

to resolve an fie mpasse would be satisfied when the sysiem ac-
uired ndlcatlngthataeoflheoperanmnltlallysznglhe

tCJJe |saduallypreferabletoalldhercand

V\lrmSoerﬁnnsh%mdmg subgoal, it can leam from its ex-
%U"dmﬁ productions called chinks for use in future problem
here the

of a chunk are the fealures of the
are those ng-mermyelemerﬂsaeatedlnhesbgod orits
b@ietc?he are acoessbie from super% (duk
results. Atﬁrstganoeone ®<pectchunk| fo yield
nothing more than rote leaming, but generalization

chunks test only relevant atiributes of the problemsolvlngoomext[ﬂ
The Scer architecture hes rONbee’IStbjeded extenswe
xpenmemalusenrmyapa{ %’J%Ietrs
frommetradmonalAltoyproblemssmas

%?mﬁxuzjenﬁ urati orgm% l«wvledge-lntenswe

that Soer can exhlblt tfeem [vanety

of problem-soh/lng melhoos [5]. Also, chunking, which V\.as developed

328 KNOWLEDGE ACQUISITION

ical models of humen leaming [9 ptoventobea
%)werfu med‘a’ﬁmczapdaleoflmprowngp%n]nme
Therefore while Scer is notyeta model for |nte||gent
it already demonsiraies mary necessay for
a

IV_CYPRESS-Soar
One

a task in Sor %wntlng productions |mPenm erS|on

44) produdlons Cﬁ productions, GOoontaln Soar's default seach
nrol knowledge, and1herema|n|ng 13 (comprising dJout45(I)I|nesof
me B0 by 8 Peraite Pk TG i
mplemented by the task-speciiic productions. The deriva-
tlon of the quicksort algorithm discussed earfier is summarized fo illustrate
the operation of the syStem.

CYPRE$SoerfoIIowsheseme rinciples of "Soaware engineering”
m'fteappy lgf (1(9] fﬂEtOptl)evelk | RI
] a si onf igure-backplane in RI-
p|S%%r Synthesize in @P%gf)cﬂ SOerihe problem. Because no
uctions implement this operator dire: oealesas_bgod
[?_Iﬁmemt,wlecung. D problem space % assooa%Ich
lspoblemspmem m oontains other operators v
selves implemented in gther problem spaces, or else i dlrectly
byprodudn'lsﬂ'\atﬁreMEQppropnateoonte)dlnﬂan‘amtasleae
deaomposad into problem spaces in the same way that conventional
Waebmkmupmtomm%pmblemspemsaeevokedto
search control, such as the selection of operators.
CYPRESSSoertheSynthesmeoperabr nplemenledbysb

goalglntoihe either a spaoelnwlsgiggenhm ora3|mple

conditional. “This foauses on the creation of
gorithms, for whi stes in 1he e ac 1he suooemwe
refinements of the: divi schee. The initial state is

oormlebly scheme, ﬂ’ledeﬂredslmlsasdmthlwllof
ts parts refined to known operatons. The Specify-decompose,
gpec]lfy aulean;m s o ISpelclfy primitive,
ecify-compose eci irectly-solve
p yy %e cat of p y thaY opeatasrmp

mfy ordering %y% a well-founded ordenn%on 1he |nput

guarantee that the fesi algmhbrmmat%Eadwofitme

il e be IRl ok

ad Spectfy—dlrectly -solve problem spaces, the Sf\(/)nthesme operabr

may be recursively Invoked 1o satisfy specifications for complex algorithms.
pproblem £

For example, the is used fo refine the
ueralg Deom’pose For

Fwtgeammoperahs problemspa:e ht choose FirstRest, which retums
is
attf‘eheajofhelstalorgwrththemﬂofthelstl-b/vever
&gxm one desires an algorithm that Uses a smple method of composing
lis sayihe(b’sopetator'leFrsRestwnl not suffice for the
FirstRest does not a strong
oondmontogaa‘eemedmulswnhﬂ'\edmoomposmm
The existence of such constraints imposed by already instantiated parts of
the mwﬂlrrdeoherreﬁnementopeatorsaooepdaleln
& aWdenvedfromtfewMoondmonsd
problem pecrﬁczhon auxilia operator the specification of
Cb'smoonjuncmonwrthl«‘oﬂedgery Nrjeard-oonquertoﬁnda
stru’geroutputoondrhonforthedeoompoe@spectﬁca

A complete

ullé%\?\/)ml developlm fordeg (1he klnddoreby
N
deduc%gn Veiod RAINBOWS g 'hanon
so we simul
CYPRESSSoer ind

involved in
udesmlesthatreMm 1he r&sullscfcalls
RAINBOVV on the particular sels needed for

mm%%mmﬁﬁmg%mmwgﬁdﬁ

choice level, where the method of dedudtion does not
resuts.

For the tgocrjigq specification, CYPRESSSoar w@
knowledge n |nsemon-son,
could ea3|0|¥ be exlg m Flgure 1 |Ilusirates Ihe
grawor ESSSoer dun 1he

umn desabes mece in deelgn seoond
column states the dwg;wm%mahve CYPRESSSoar selected, and the
third column lists any altematives that were rejected. The fourth column
dasscﬁ&sthepooeﬁesaﬁhwvledgelnvolvednnamglredm

oLu
=

usnghefollowmgcategones
* Lookahead: Candidates are evaluated by trying them out to sse
if they lead to a complete algorithm.
* Derived antecedent. An antecedent is derived from the con-
straints imposed by previous design choices.

» Domain oom tibility. The input or output of the
proposed refi = rt%eoompatlp&thhadoman
resutting from a previous design chaice or from the spedifica-

tion.

* Operator match: The specification of a known operator

rrwmlhespecrﬁcahorssetupforhe&bpoblenbeng

-Preselededpreferemes: Preferences dictatin smeofihe
choices are set up beforehand in order o
sorting al onlhm Extra atiributes added to the
for each rfferentwrmmggertmenefeteno%

The creation of i ucr algorithms at two levels resuts from

decisions #2 and #8. while the foms of these ms are chosen in
dedisions #3 and #10. The

first derived in decision #7. mm,npmw riion strenghenedw gureZsrm/stheeffedsofmunH in CYPRESSSO&Wlththe
order for the spedification to be satisfiable. Inn‘amgdeosm#15 removed. The dusters of bars give the
CYPFESSM&@%(H%MWEMNMMOondmon rejecting lenghs of syntheses of insertion-sort, ad qui under
the first two beca,seﬁeyleadban unsatisfiable for varous leami oondmonsﬂmefrstberlneach usters‘r,wsthen.rrber
Directly-solve. With the exwpﬂon of the o L Directiy-sove and ~ of dedsion used by CYPRESS Scer with no
Ocnpose for Partiion (which ;g about condiionals rather leaming off during the run. The seaond ber displays R e Sokon 'e'?ﬁg
than just d the details of the deduction, the behavior ~ 8gain With no previous leaming, but with Ieamlng on dunng the run
in designing quicksort is sa‘reasthatofCYPRESS last three bers in each duster give solution lengths gg\msbamlng
Fu this .y I l i e fixed on each of the three algorithms, with leaming off dunng
ies controling the :ssg ﬂ‘eseocrdbasofeemdusterlnﬁgure2|||ust*ate\matls|«mmas
2%9 m% it can exhlbrt the characteristic behavior within-trial transfer, a relatively rare p‘erme’m n the machine leaming
shamf%l&c itis not (xJnstralned 1o follow a fixed ma e, Ilterature. Within-trial transfer r&eu betase
This i possbl for e msteep&desoert = %gﬁ*'?ﬁm o Wtﬁy%emd%gn Inhenmwrth%ullseadwontrol legmlng
. hesllittle effect, since there'is no search, the operators perfor disti
E?]e megxphuﬂy bad&Z% o 'tmsedava“abb gOpose anply , in the runs with m|n|mal search control, the searth
dgem*ned the cuent siate and the precondiions lThe
d&sm fi by evaluahh?&ee operrsgrsat %&a to ten ae agoim ten ae kanig
me, into a i i i
e e ot of P Witbe ol S EEE M g e fen ae amoefnae
Deaign choice Puth seiected Pathis) cefscted Ratlonale
L. Sort apecification: SORT spec {Nonc) Pre-szivcied preference
2, Sort stheme: Divide- e Conditionai Lonkahrad
3. Sort ordering: Length of poe kst Lot of two tists Damain compatibiily
4. Bt DivCong form: Simple cm_ M_;n;ifmm Pre-selecied preferesce
5. Sori compose! Ap;lmld h Conx Pre-selecied preference.
I—- —— — Dprrator muich
6. Soct puxBiary operator: Son 7] Domain companmihiy
1. Partition specilication ; Son ‘ L . {MNone) Derived anteceden:
B, Pariitian schinoe: mm--lgmw___ " Contitionsl Lockahead
9. Purtition orderiag: Length oi[one liss Length of two lins Domin compatibility
10, Partltion DivCong form: Simple drpg_n_nooe . _.S-imjﬁ_e-mmpue Levtahead
11. Partition deconspose: FirstRest T Gusplic Pre-selected preference.
|\---._________‘ Dperator maich
12, Partition suxiliary: 1;1 Panition Domain compatibiliry
13. Partiton primitlve; Length;l_'wiz‘ __ (None) Derived antecedent
14, Partitlon compose scheme: Cmd:uond o ’ Dwide-lnd—:m Lorkahrad
15. Partition input condltion: Lemgth:fapwi> 1 o :r;_f;.mmmo Derived anteceden:,
R Lookahead
L6, Partition directhy-solve scheme: Culdillionll Dwdnqndmnqw Lookahead
17. Sort primitive; lmglh‘les 1 (Mane) Derived aniecedent
18. Sorc directly-solve: i (Nonc} Operator match

saved as a chunk. Such chunks

produce future behavior comespondi
to the effects of one of CYPRESS design strategies. o

V Search and Learning in CYPRESS Soar
Because of the Scerd ndauon , we were able
knowledge and leami the problem—solvl ff rtcjf ired fi Oorlggl
ing on effol uired for al
rihm desgn For @gnple CYPRESSrgoa msreq
control ofsoluhor‘s reflect only 1he

uwedtofllllnallhedeial of the algorithm. Itis ble% the
%ad'] CYPI%SSSC& p053|

well, byremovlng 15of1he‘|%produd|ons CYPRE&&HSS:IOm
oonedalgomh under these conditions, albeit with greater
solving effort (a factor of 2 to 4 more decision cydes).

Trmwr'ngchunlqng,wemr’reemetheeffeds soluhonlenglhs
ngt ?enenoe only on different algorithms, but also

levels oontroll«m/iedgelnmmﬂ‘eeﬁedsof
ae

pronounced when search control knowledge is absent.
Thlsg%uenotonlybefafethesduhmsfrommmmeffortmbesaved

also because the larger number of impesses lead b more
oppomJnm&sforleamlng

o run severa

Figure ¥: Quickaar design choces bn CYPRESS-Soar

Steier 329

Dacialon eycles to solntion
0 300 600

No lesrning
During lsort
After Isort

Alter Maart
After Qoart

Nuo learning
Turcing Myor
Alter sort
After Msort
After Qaozy

No leazning

During Qaort|
After Imort

Alter hMuort
Alter Qaort

A

| Quieksost | [

Figure 2: Effects of leaming with minimal search control

kads to a rmbefofsmllarsrtuahons and operator applications, and
with the e chunking, much redrpé)lat
solving € canbewved Thswal%e in in the quicksort
synthesis where the sysiem needs for the right input condition for
partition: the reduction in dedsion cydes from leaming is dose to 70%.
nCYPRESSSoa’hemaJomyofihewnhln-tnalhansferresuhsfrorn
thereedtoaduallylﬂ)ly operator after it hes been evaluated by
lookahead. Since an operator by lookahead implies computing
therecultoflheoperatcxlnlhepm,aﬂerbddeadlherewnlbea
chunk that directly crestes the new once, the operator is actually
selected. 'I'heoontextlnwhmthedwrkﬁreslsﬂentcaltolheoneln
which the chunk wes formed, so the transfer is not very surprising.

The remaining within-trial transfer coours when an algorithm is syn-
the sized_ for a subproblem ication in one context,” and the same
specification shows up again in anather context in the same design.
An example of this shows up in the quicksort derivation. In synthesizing
partition, CYPRESSSoer proposed possible input conditions in
wetmlngfortheoonedme eanhhmeretalnl thesarewtwtoondmon.
Since the ication for the com

dtgd@s in the input condition, the same com m oould be
on each With minimal seadw oontol
ellmlnatlngi

the total

syniheses of the composition amounied
o problem-solvlng effort of the run wnhlgut leamlwn% In more
complicated ms and specifications, one would expect the savings
from leaming 0 be even greater.

The last three bars show that CYPRESSSoer also exhibits across-trial
transfer, improvi ng% performance on of the same
rithm, and across-task transfer, applying =d from
design of one Iglonth m to desg’sofdrfferenta ms. For
exam& wrthfulwadmommlawdnoleamlng, ook
303 to synthesize insertion-sort. “As one might
tookalnnstnoefforttosyrﬁmzegut atterleaml onlt

a sa/ngs of 93% e of the

d%gTer 269 dedision
and 249 ud<sort,3amgsof11%ard18%
of 826% i |n were observed aaoss al
both the m|n|mal and the fuII seach control runs.

The transfer ooours nnsﬂybea,eeallheealgam”ssdvehe

the well-fw ordensomngl u bepreservecljlstgf;altl1d
so the same can al
three topevel A %

fransfer oocurs in“im-

sim ucion operators, rlﬁah certain logical
A Als%e reﬁnlngsgr.%ctlysd\/eto Id %ansfer o
and quicksort,

mergesort both cases the in| lseﬂhera3| le-

e%’utrlerto(rjr?gllclllst There is msgnersfer?lln?sem_ornﬁb&ase th%rfen%‘e
condition specifies null lisf representation

input condition would have% cri‘%gedfo the matcher, which only fires
|ntheoaeeofanexadwntachcmathtohe context, 1o that

tarnlatoperatorpuL that handied a certain type of input could also hande subsets of
in

Redmlms
pairs ofalgonihms in

VI Discussion

While a system that designs three algorithms is better than a sysem that

330 KNOWLEDGE ACQUISITION

only designs one, is still not a

CYPRESSSoer
designer, not even within the dass of divi
is mainly due to the spediakcase rules for deduction and conditional
thesis, a consequence of the strategic choice in this research to focus first on
seadwawdleamll Ina@dmmﬂa%h .
system, one would need to implement additione lem
theoretical bariers o such exten-

algonthms Thls

perform these functions. We foresee no t

The maior hurdies to be dealt with are the construction of better
|nterfaoes for working with logical formulae in Soer, and the efficiency of a
Soarbased deduction engine.

most important is that with the existing chunks and the ability to
preaselypelhaps wo&@skm fransfer, CYPRE%S(H fomsa unqwtgx-
penmenial vehide with which to expfone the potenhal for leaming in this
The Soarbased can apply

to which a o
|mprove its depencb on how similar situations are
repeated as subgoals while lem-solving. The repetfition be less
frequentihan it could be because prob repe wnrr%]nﬂy breek

down the deduction into subgoals. It is likely that more transfer would
Wt birmently i ot i ot b CYPRESS et
to caplure har%gonthms in the syntax of the
representation On the other be the case with these
sorting algmhnshatmﬁjmernarsfe*sposgue that the design
processes needed for their creation are just not very similar.

While much work remains to be done, rttsermragr‘gﬂntthewm
resuits were obtained in CYPRESSSaer with only two months' work. This
demonstration that a formal theory of is fuIIy compatible with a
genera framework for intelligent action wes bie only beca,ee of the
Strong foundations available in the work on and Scer. It is also
encouraging that the issues raised in the course of
Soerra/eseermdbbe\/voruwhllemmmpm in addréssing them, we
€ to gain useful insights about algorithms and the prooesses involved
in their design.
Acknowledgements

| am most grateful fo

nity and

Smith and the Kestrel Institute for providin%
me with the Op ad

envionment to begin this

Allen Newell for numerous discussions during. the .
Smrlh Allen Newell, Elaine Kant, Laird,
Knoblodg and Oren Etzioni also medk useful com»
rrer% on earlier drafts of thls paper.

References

;the)dq?Jr.‘JchTang&;ramnwg be liberated from the von Neumemn
e? a onal al%ebra
Communications of the Ag 21 r;(BJ(Al,lgust 1978), 61 g&%

2. Balzer, R. "A 15year perspeciive on prog ming". [IEEE
Transactions on Software Engineering SE-11, 11 (Noverrbe‘ 985).
3. Barstow, D. R. "Domain-spedific autometic ramming”. IEEE
Transactions on Software Engineering SE-11, 1985).
4. Dietzen, S. R. and Scheris, in develop*ne'Tt
Corflerence on the Language in Problem

ProoeedEp of the Seaond
Solving, April, 1986.

5. Laird, J. E. Universal subgoaling. In Universal Subgoaling and Chunk

ing: The Automatic Generation and Learning of Goal Hierarchies, Kluwe

Academic Publishing, Hingham, MA, 1986.

?o IéglwrgalJ ItE"NeweII fe\’n‘a’r-‘\d / I telli S(193807E;rAnarcdeLlre
r intelligence". IICIa nte Igence in press.

7. Laird, J lewell. A. Towards chunking as a

generd lea mechenrsm Prooeemgs of AAAI-84, The American As-

soaahon188—1% for Artn" cial Intelligence, Austin, Texas, August, 1984, pp.

8. Laird, J. E., Rosenbloom, P. S., and Newell, A. "Chunking in Scer; The
anatomy ‘ofa generd Ieamlng mechansm’. Machine Learn/ng 1,1 (1986).
9. Rosenbloom, P. S. The chunking of goal hierarchies. In Universal

subgoaling and chunking: The automatic generation and learning of gc

h/erarch/es Kluwer Publishing, Hingham, MA, 1986.
RS PAE Laird, J. E McDemott. J., NeweII A a‘dOr—
ciu "RI-Soar. An experimert in knowledge-intensive
problem—solvlnF architecture”. IEEE Transactions on attern nalySIS
and Machine Intelligence 7,5 (1985) 561-569.
11. Smith, D.R. Derived preoond and their ue in

In Sixth Conference on Automated Deduction, Springer- edag 1982. Lec-

ture Notes in
12. Smith, D.R. "The desig Ndeand-oorgw algorithms". Science
of Computer Programmmg 5(1 985) 374 P

13. Smith, D.R. "T of divide-and-conquer algorithms”.
Art/ﬂc:/a/lntel/lgence 27, 1 (1985), 43-96.

