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Abstract

This paper describes a partial reimplementation of Doug Smith's CYPRESS
algorithm design system within the Soar problem-solving architecture. The
system, CYPRESS-SOAR, reproduces most of CYPRESS' behavior in the
synthesis of three divide-and-conquer sorting algorithms from formal
specifications. CYPRESS-Soar is based on heuristic search of problem
spaces, and uses search to compensate for missing knowledge in some
instances. CYPRESS-Soar also learns as it designs algorithms, exhibiting
significant transfer of learned knowledge, both within a single design run,
and across designs of several different algorithms. These results were
produced by reimplementing just the high-level synthesis control of
CYPRESS, simulating the results of calls to CYPRESS* deduction engine.
Thus after only two months of effort, we had a surprisingly effective
research vehicle for investigating the roles of search, knowledge, and learn-
ing in this domain.*

I Introduction

Good human programmers have at least two remarkable abilities: they
manage to produce programs in the face of incomplete knowledge, and they
make use of previous experience in solving new problems. How could we
get automatic programming systems to produce the same intelligent be-
havior? Al-based performance systems in other domains compensate for
incomplete knowledge by searching through a space of possible solutions,
and there exist a variety of mechanisms for learning from experience.
However, automatic programming research has so far produced only a few
systems that either search or learn, and, to my knowledge, none that do
both. This is true despite the field's growing acknowledgement of the
importance of both search and learning [2,3,4].

This paper describes a prototype system that both searches and learns
while performing part of an automatic programming task. An algorithm
design system, previously built within a special-purpose framework, was
reimplemented in a more general problem-solving architecture with built-in
search and learning capabilities. The previously implemented system is
Doug Smith's CYPRESS [11,12,13], which is most noted for its design of
divide-and-conquer algorithms. The foundation for the reimplementation is
Soar [7,8], an architecture for general intelligence developed by John Laird,
Allen Newell, and Paul Rosen bloom. The combined system, CYPRESS-
Soar, produces the bulk of three of CYPRESS' sorting algorithm deriva-
tions, and takes advantage of the properties of Soar to search and learn
while doing so.

In Section |1, | describe CYPRESS and its approach to the synthesis of
divide-and-conquer sorting algorithms and in Section 111 | give an overview
of the Soar architecture. The remaining sections discuss CYPRESS-Soar,
presenting the following results:

» Performance without fixed design strategies: CYPRESS-
Soar uses any knowledge available at run-time to decide when
algorithm refinement operators should be applied. If the
knowledge is unavailable, CYPRESS-Soar automatically falls
back on general problem-solving methods, initiating lookahead
search to evaluate the possibilities. In contrast, design
strategies control operator application in CYPRESS, and any
necessary search must be guided by an expert user. (Section
V)

» Transfer of learned knowledge: CYPRESS-Soar knows what
goal it is working on, and caches the result of the goal for
future use. Because some goals show up more than once, this
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learning mechanism reduces problem-solving effort, both
within the design of a single algorithm, and on later designs of
different algorithms. CYPRESS does not learn, and con-
sequently can not take advantage of repeated subgoals.
(Section V)

Section VI concludes with a discussion of several issues involved in
extending the prototype CYPRESS-Soar system into a more general
automatic algorithm designer.

Il How CYPRESS designs divide-and-conquer algorithms

CYPRESS is a semi-automatic system that derives algorithms from for-
mal specifications. It works by top-down refinement of program schemes,
or templates, which represent abstractions such as divide-and-conquer and
generate-and-test. A problem specification is matched against a program
scheme, and with the aid of a design strategy, decomposed into specifica-
tions of simpler problems. This problem reduction process continues recur-
sively until a specification can be solved directly by primitive operators
known to the system. When more than one design strategy is applicable, or
more than one operator matches a specification, the user makes a selection
among alternatives.

CYPRESS spends most of its time in calls to RAINBOW, its deduction
engine. RAINBOW performs a generalized version of theorem-proving
known as antecedent derivation [11]. Given a set of hypotheses, H and a
goal formula, G, RAINBOW tries to give the weakest possible precon-
dition, or antecedent, P such that the hypotheses in H conjoined with P
imply G. If P is just true, then G is already a valid formula given H. In the
context of algorithm synthesis, RAINBOW is used to reason backwards
from output conditions to test if a specification is satisfied. If it is not
satisfied, the derived antecedent is used as dictated by the active design
strategy as the basis for further action. Viewed in problem-solving terms,
RAINBOW provides a sophisticated form of means-ends analysis.

The input to CYPRESS is a formal specification of the problem to be
solved, giving the input and output domains (types, or sets), and input and
output conditions for the problem. A specification of the problem of sorting
lists of natural numbers from [13] is

SORT:X=2Zsuch that Bag:x=Bag:z A Ordered:z
where SORT: LIST(N)-->LIST(N).

The SORT function maps the input x into the output z. An implicit input
condition, true is assumed. The output condition is that the bag (multiset)
of elements in x is the same as in z, and z is ordered. The specification
assumes pre-existing knowledge of the terms "Bag" and "Ordered".

The sorting problem is amenable to a divide-and-conquer solution. The
CYPRESS scheme for divide-and-conquer is expressed in a typed func-
tional programming language, a derivative of Backus' FP [1]:

F:x if
Primitive:x —» Directly_Solve:x [|
--Primitive:! —» Compose * (G xF ) » Decompose:x
fi
The scheme abstractly specifics how to compute the value of F on input r.
If x is a base-case input, then solve it directly; otherwise, decompose x into

two subproblems, recursively solve one and apply an auxiliary function G to
the other, then compose the results.
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usnghefollowmgcategones
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3. Sort ordering: Length of poe kst Lot of two tists Damain compatibiily
4. Bt DivCong form: Simple cm_ M_;n;ifmm Pre-selecied preferesce
5. Sori compose! Ap;lmld h Conx Pre-selecied preference.
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saved as a chunk. Such chunks

produce future behavior comespondi
to the effects of one of CYPRESS design strategies. o

V Search and Learning in CYPRESS Soar
Because of the Scerd ndauon , we were able
knowledge and leami the problem—solvl ff rtcjf ired fi Oorlggl
ing on effol uired for al
rihm desgn For @gnple CYPRESSrgoa msreq
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Figure ¥: Quickaar design choces bn CYPRESS-Soar
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Figure 2: Effects of leaming with minimal search control

kads to a rmbefofsmllarsrtuahons and operator applications, and
with the e chunking, much redrpé)lat
solving € canbewved Thswal%e in in the quicksort
synthesis where the sysiem needs for the right input condition for
partition: the reduction in dedsion cydes from leaming is dose to 70%.
nCYPRESSSoa’hemaJomyofihewnhln-tnalhansferresuhsfrorn
thereedtoaduallylﬂ)ly operator after it hes been evaluated by
lookahead. Since an operator by lookahead implies computing
therecultoflheoperatcxlnlhepm,aﬂerbddeadlherewnlbea
chunk that directly crestes the new once, the operator is actually
selected. 'I'heoontextlnwhmthedwrkﬁreslsﬂentcaltolheoneln
which the chunk wes formed, so the transfer is not very surprising.

The remaining within-trial transfer coours when an algorithm is syn-
the sized_ for a subproblem ication in one context,” and the same
specification shows up again in anather context in the same design.
An example of this shows up in the quicksort derivation. In synthesizing
partition, CYPRESSSoer proposed possible input conditions in
wetmlngfortheoonedme eanhhmeretalnl thesarewtwtoondmon.
Since the ication for the com

dtgd@s in the input condition, the same com m oould be
on each With minimal seadw oontol
ellmlnatlngi

the total

syniheses of the composition amounied
o problem-solvlng effort of the run wnhlgut leamlwn% In more
complicated ms and specifications, one would expect the savings
from leaming 0 be even greater.

The last three bars show that CYPRESSSoer also exhibits across-trial
transfer, improvi ng% performance on of the same
rithm, and across-task transfer, applying =d from
design of one Iglonth m to desg’sofdrfferenta ms. For
exam& wrthfulwadmommlawdnoleamlng, ook
303 to synthesize insertion-sort. “As one might
tookalnnstnoefforttosyrﬁmzegut atterleaml onlt

a sa/ngs of 93% e of the

d%gTer 269 dedision
and 249 ud<sort,3amgsof11%ard18%
of 826% i |n were observed aaoss al
both the m|n|mal and the fuII seach control runs.

The transfer ooours nnsﬂybea,eeallheealgam”ssdvehe

the well-fw ordensomngl u bepreservecljlstgf;altl1d
so the same can al
three topevel A %

fransfer oocurs in“im-

sim ucion operators, rlﬁah certain logical
A Als%e reﬁnlngsgr.%ctlysd\/eto Id %ansfer o
and quicksort,

mergesort both cases the in| lseﬂhera3| le-

e%’utrlerto(rjr?gllclllst There is msgnersfer?lln?sem_ornﬁb&ase th%rfen%‘e
condition specifies null lisf representation

input condition would have% cri‘%gedfo the matcher, which only fires
|ntheoaeeofanexadwntachcmathtohe context, 1o that

tarnlatoperatorpuL that handied a certain type of input could also hande subsets of
in

Redmlms
pairs ofalgonihms in

VI Discussion

While a system that designs three algorithms is better than a sysem that
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only designs one, is still not a

CYPRESSSoer
designer, not even within the dass of divi
is mainly due to the spediakcase rules for deduction and conditional
thesis, a consequence of the strategic choice in this research to focus first on
seadwawdleamll Ina@dmmﬂa%h .
system, one would need to implement additione lem
theoretical bariers o such exten-

algonthms Thls

perform these functions. We foresee no t

The maior hurdies to be dealt with are the construction of better
|nterfaoes for working with logical formulae in Soer, and the efficiency of a
Soarbased deduction engine.

most important is that with the existing chunks and the ability to
preaselypelhaps wo&@skm fransfer, CYPRE%S(H fomsa unqwtgx-
penmenial vehide with which to expfone the potenhal for leaming in this
The Soarbased can apply

to which a o
|mprove its depencb on how similar situations are
repeated as subgoals while lem-solving. The repetfition be less
frequentihan it could be because prob repe wnrr%]nﬂy breek

down the deduction into subgoals. It is likely that more transfer would
Wt birmently i ot i ot b CYPRESS et
to caplure har%gonthms in the syntax of the
representation On the other be the case with these
sorting algmhnshatmﬁjmernarsfe*sposgue that the design
processes needed for their creation are just not very similar.

While much work remains to be done, rttsermragr‘gﬂntthewm
resuits were obtained in CYPRESSSaer with only two months' work. This
demonstration that a formal theory of is fuIIy compatible with a
genera framework for intelligent action wes bie only beca,ee of the
Strong foundations available in the work on and Scer. It is also
encouraging that the issues raised in the course of
Soerra/eseermdbbe\/voruwhllemmmpm in addréssing them, we
€ to gain useful insights about algorithms and the prooesses involved
in their design.
Acknowledgements

| am most grateful fo

nity and

Smith and the Kestrel Institute for providin%
me with the Op ad

envionment to begin this

Allen Newell for numerous discussions  during. the .
Smrlh Allen Newell, Elaine Kant, Laird,
Knoblodg and Oren Etzioni also medk useful com»
rrer% on earlier drafts of thls paper.

References

;the)dq?Jr.‘JchTang&;ramnwg be liberated from the von Neumemn
e? a onal al%ebra
Communications of the Ag 21 r;(BJ(Al,lgust 1978), 61 g&%

2. Balzer, R. "A 15year perspeciive on prog ming". [IEEE
Transactions on Software Engineering SE-11, 11 (Noverrbe‘ 985).
3. Barstow, D. R. "Domain-spedific autometic ramming”. IEEE
Transactions on Software Engineering SE-11, 1985).
4. Dietzen, S. R. and Scheris, in develop*ne'Tt
Corflerence on the Language in Problem

ProoeedEp of the Seaond
Solving, April, 1986.

5. Laird, J. E. Universal subgoaling. In Universal Subgoaling and Chunk

ing: The Automatic Generation and Learning of Goal Hierarchies, Kluwe

Academic Publishing, Hingham, MA, 1986.

?o IéglwrgalJ ItE"NeweII fe\’n‘a’r-‘\d / I telli S(193807E;rAnarcdeLlre
r intelligence". IICIa nte Igence in press.

7. Laird, J lewell. A. Towards chunking as a

generd lea mechenrsm Prooeemgs of AAAI-84, The American As-

soaahon188—1% for Artn" cial Intelligence, Austin, Texas, August, 1984, pp.

8. Laird, J. E., Rosenbloom, P. S., and Newell, A. "Chunking in Scer; The
anatomy ‘ofa generd Ieamlng mechansm’. Machine Learn/ng 1,1 (1986).
9. Rosenbloom, P. S. The chunking of goal hierarchies. In Universal

subgoaling and chunking: The automatic generation and learning of gc

h/erarch/es Kluwer Publishing, Hingham, MA, 1986.
RS PAE Laird, J. E McDemott. J., NeweII A a‘dOr—
ciu "RI-Soar. An experimert in knowledge-intensive
problem—solvlnF architecture”. IEEE Transactions on attern nalySIS
and Machine Intelligence 7,5 (1985) 561-569.
11. Smith, D.R. Derived preoond and their ue in

In Sixth Conference on Automated Deduction, Springer- edag 1982. Lec-

ture Notes in
12. Smith, D.R. "The desig Ndeand-oorgw algorithms". Science
of Computer Programmmg 5(1 985) 374 P

13. Smith, D.R. "T of divide-and-conquer algorithms”.
Art/ﬂc:/a/lntel/lgence 27, 1 (1985), 43-96.



