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ABSTRACT 

Multiple convergence is proposed as a method for ac­
quiring disjunctive concept descriptions. Disjunctive de­
scriptions are necessary when the concept representation 
language is insufficiently expressive to satisfy the com­
pleteness and consistency requirements of inductive learn­
ing with a single conjunction of generalized features. Mul­
tiple convergence overcomes this insufficiency by allow­
ing the disjuncts of a complex concept to be acquired 
independently. By summarizing correlations among fea­
tures in the training data, disjunctive concepts can pro­
vide rich extensions to the representation language which 
may enhance subsequent learning. This paper presents the 
benefits of disjunctive concept descriptions and advocates 
multiple convergence as an approach to their acquisition. 
Multiple convergence has been implemented in the learn­
ing system HYDRA, and a detailed example of its execution 
is presented. 

I Introduct ion 

The learning problem addressed is concept acquisition 
from examples, as formulated in [MITC82]. This entails 
developing a concept description to summarize training 
objects, each classified as a positive or negative instance 
of the target concept. The summary description is con­
strained to admit every positive instance and to reject all 
negative training. These are called the completeness and 
consistency requirements [MICH83]. The concern of most 
machine learning research in inductive concept acquisition 
has been the determination of characteristic descriptions, 
which represent concepts by summarizing the properties 
that hold true for all instances of the concept [DIET83]. 
Characteristic descriptions are typically encoded as a sin­
gle conjunction of maximally specific features. 

A. Classical Concepts 

Classical concept descriptions are composed of features 
that are individually necessary, and jointly sufficient, for 
classification of objects as concept instances [SMIT81]. Be­
cause of their single-conjunction form, the characteristic 
descriptions produced by most existing concept acquisi­
tion systems resemble classical concept descriptions. 

* Support for this research was provided in part by the Army 
Research Office under grant number ARO DAAG29-84-K-0060. 

Unfortunately, a single conjunction of necessary and 
sufficient features is not suitable to represent many con­
cepts in natural domains. Figure 1 illustrates this with a 
simple example of learning about trees. After two posi­
tive training instances, a classical concept description is 
adequate. However, when a negative instance is encoun­
tered, the existing classical description is found overly-
general and must be refined into a disjunction. No single 
conjunction can satisfy both the completeness and consis­
tency requirements for the given training and language. 

Learning systems that produce only classical concept 
descriptions reflect the assumption that concepts are in­
dependently separable. A concept is independently sepa­
rable when the independent determination of admissible 
values for each feature is sufficient to distinguish all pos­
itive instances of the concept from all negative instances. 
Concept acquisition under this assumption can be charac­
terized by the following two steps: 

1) for each attribute, find the set of values valid for 
the target concept 

2) take the cartesian product of all sets defined by 
step 1 

This approach fails when the attributes of the target con­
cept interact, and the values allowed for an attribute in 
one context may not be valid in another. Unless all neces­
sary featural correlations are present in the representation 
language, a system limited to classical concept descrip­
tions cannot learn these concepts. 
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B. Disjunctive Concepts 

Disjunctive concept descriptions are necessary when 
the representation language is insufficiently expressive to 
produce a complete and consistent classical description. 
This situation arises when either of two anomalies occurs: 

1) incompleteness condition: a positive instance is en­
countered, but the concept description cannot be 
generalized to admit it without also admitting neg­
ative training 

2) inconsistency condition: a negative instance is en­
countered, but the concept description cannot be 
specialized to reject it without also rejecting posi­
tive training 

A disjunctive concept description resolves these dilemmas 
by relaxing the completeness requirement for the individ­
ual disjuncts. Each disjunct summarizes some subset of 
positive training while remaining consistent with all nega­
tive training. Collectively, the disjuncts satisfy both com­
pleteness and consistency. Identification using disjunctive 
concept descriptions requires classifying an object as an 
example of the concept when any disjunct admits it. 

I I Mult ip le Convergence 

Multiple convergence enables acquisition of character­
istic descriptions for disjunctive concepts. It differs from 
existing strategies in the way concepts are represented and 
how disjuncts are created and updated, allowing each dis­
junct to emerge as an independent concept representing a 
specialization of the target concept. Multiple convergence 
has been implemented in the learning system HYDRA. 

A. Representing Disjunctive Concepts 

Although the objective is to produce a complete and 
consistent characteristic description of the target concept, 
multiple convergence maintains a discriminant description 
as well as a characteristic description of each concept it 
learns. The discriminant description summarizes negative 
training and defines criteria that all instances of the con­
cept must necessarily satisfy. The characteristic descrip­
tion summarizes positive training and represents hypothe­
sized sufficient criteria. As with FOCUSSING [BUND85] and 
CANDIDATE ELIMINATION [MITC78], concept formation pro­
ceeds as a bi-directional convergence: the discriminant 
description progresses from general to specific with nega­
tive training while the characteristic description general­
izes with positive training. 

Disjuncts formed in the discriminant description are 
used to define the disjuncts of the characteristic descrip­
tion. Intuitively, the discriminant description identifies 
regions of the feature space that can accommodate a clas­
sical description. Each disjunct of the discriminant defines 
such a region. A characteristie disjunct (i.e. a single con­
junction of generalized features) is developed to describe 
the positive instances within that region. 

This process applied to the example from Figure 1 
produces discriminant description [foliage, seed] for the 
first two training instances. After encountering the neg­
ative instance, the discriminant description is specialized 
into three disjuncts: [foliage, apple], [foliage, cone], and 
[leaf,seed\. Each of these defines a region of the fea­
ture space that can currently accommodate a classical 
description. For each region, a characteristic disjunct is 
developed to represent the positive training within that 
region, producing the characteristic disjuncts [leaf, apple] 
and [needle, cone], as shown in Figure 1. 

Each associated pair of disjuncts from the discriminant 
and characteristic descriptions defines a version 
space [MITC78] for a hypothesized specialization of the 
target concept. As the version space of each disjunct con­
verges, it defines a classical description of a generalized 
exemplar. The target concept is represented by the dis­
junction of the surviving set of generalized exemplars. In 
the example of Figure 1, two generalized exemplars repre­
senting deciduous and coniferous trees (e.g. [leaf, fruit] 
and [needle, cone]) will survive the convergence induced 
by exhaustive training. 

B. Updat ing Disjunctive Concepts 

Positive training instances are allocated to every dis­
junct that can be consistently generalized to admit them 
(as in [IBA79]). This is motivated from a desire to remain 
insensitive to training order. Rather than make arbitrary 
decisions that may require subsequent backtracking, all 
alternative hypotheses are maintained. 

When the existing discriminant concept description is 
found to admit a negative training instance, it is replaced 
with a minimal-specialization. This involves specializing 
each disjunct only to the extent necessary to reject the 
training instance, and then retaining only those new dis­
juncts not more specific than some other consistent dis­
criminant disjunct. Typically, this will introduce one or 
more new disjuncts into the discriminant description, and 
unlike other similar techniques [MITC78, IBA79, BUND85], 
disjuncts that fail to cover any existing positive instances 
are retained to avoid subsequent backtracking. Disjuncts 
of the characteristic description that admit the negative 
training instance must also be specialized. Furthermore, 
the characteristic description may need to be extended 
with new disjuncts to summarize the positive training ad­
mitted by new discriminant disjuncts. 

Specializing and extending the characteristic descrip­
tion are tasks that have required most inductive learn­
ing systems to reprocess all prior positive training (e.g. 
STAR [MICH83], and extensions to CANDIDATE ELIMINATION 
[MITC78J and FOCUSSING [BUND85]). Under multiple con­
vergence, the reprocessing of prior training can be con­
strained to consider only a portion of the past positive 
training instances. This is achieved by indexing positive 
instances under the disjuncts that admit them [IBA79]. 
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Each discriminant disjunct, d, found to admit a neg­
ative training instance is specialized to a set 5 of one or 
more new disjuncts. The reprocessing of past positive 
training to develop new characteristic summaries can be 
limited to those instances admitted by and indexed under 
d. This follows since each new disjunct s in S is a special­
ization of d, so the instances s admits must be a subset of 
the instances admitted by d. Therefore only the instances 
admitted by d need be considered when developing the 
new characteristic summary for s. 

Reprocessing all the instances of an invalidated dis­
junct is avoided by retaining a trace of the prior character­
istic summaries along with the positive training instances. 
A new positive training instance and the prior character­
istic generalization are indexed under each new character­
istic summary. As the disjunct "fills up" with positive 
training, an exemplar generalization hierarchy emerges. 
The exemplar generalization hierarchy is always rooted at 
the current characteristic summary of the disjunct, and its 
leaves are the positive instances admitted by the disjunct. 

This data structure can be used to enhance reprocess­
ing required by an inconsistency condition. For each s 
in 5, a new characteristic summary is developed during 
an all-paths traversal of the exemplar generalization hier­
archy associated with d. Each path can terminate when 
a node is either admitted by or disjoint from the new 
disjunct 3. When a node of the exemplar generalization 
graph is admitted by s, then the node itself can be repro­
cessed as a positive instance, and all the actual instances 
indexed under it can be ignored. Similarly, if the node 
is completely disjoint from s, then all instances indexed 
under the generalization must be irrelevant. 

The multiple convergence approach to learning dis­
junctive concepts has been implemented in the learning 
system HYDRA. An overview of the concept acquisition 
algorithm of HYDRA is presented in Figure 2, and the ap­
proach is illustrated by an example of learning a necessar­
ily disjunctive concept in Figure 3. 

REPEAT 
Await the next training instance, 77; 
IF TI is positive 

THEN 
for each discriminant disjunct d that admits TI do 

minimally generalize the characteristic summary of d 
to admit 77; 

IF TI is negative 
THEN 

BEGIN 
minimally specialize the discriminant description 

to reject 77; 
for each new discriminant disjunct d' do 

reprocess prior positive training admitted by d' 
to produce a characteristic summary for d' 

END; 
Display the discriminant and characteristic descriptions; 

UNTIL the teacher is satisified. 

Figure 2: The Learning Algorithm of HYDRA 

I I I Extending the Representation Language 

Disjunctive concepts are inherently taxonomic and in­
troduce new generalization hierarchies rooted at the target 
concepts. Each node of the new generalization hierarchy 
is a list of attribute-value pairs representing an instance or 
generalization in the feature space of the concept. Since 
every attribute is defined by a pre-existing generalization 
hierarchy, the new hierarchy of a disjunctive concept can 
be viewed as an orthogonal generalization hierarchy. The 
nodes of the new hierarchy represent useful correlations of 
features. The links define context-sensitive generalizations 
of the features. Upon the conclusion of a training session, 
dialogue with the teacher enables naming the useful nodes 
in the hierarchy. The named nodes are then elevated to 
the status of concepts. This process is illustrated by the 
example of Figure 3. The resulting orthogonal general­
ization hierarchy for this example is presented in Figure 
4. 

Shifting the generalization biases of representation lan­
guages used for inductive concept formation has been rec­
ognized as an important research topic, but previously 
only techniques to weaken the existing biases have been 
developed, [BUND85, UTGO86]. This involves focusing the 
internal disjunction provided by a generalization hierar­
chy by inserting a new node to segregate valid from invalid 
values of an attribute. The new generalization hierarchies 
introduced by disjunctive concepts represent an entirely 
new source of bias for generalization. 

The new generalization hierarchies introduced by dis­
junctive concepts can enhance subsequent learning tasks. 
For example, consider learning about the concept Italian-
Exports after having already defined vehicle. If provided 
with positive training examples [pedals, handlebars] and 
[engine, handlebars], the new generalization hierarchy en­
ables immediate generalization to vehicle (i.e. Italy ex­
ports vehicles). Without prior knowledge of vehicles, this 
training would lead to the more conservative (and incor­
rect) generalization [power,handlebars]. 

IV Conclusion 

Introducing disjunction into our concept descriptions 
broadens the class of concepts our systems can learn. Mul­
tiple convergence has the advantage of producing classical 
concepts when appropriate, but is also able to describe 
a concept as a disjunction of generalized exemplars. This 
becomes necessary when the representation language is in­
sufficiently expressive to produce a single-conjunct sum­
mary that is both complete and consistent. 

Many existing learning systems cannot learn disjunc­
tive concepts because they assume the target concept is, 
independently separable. Multiple convergence puts only 
tentative faith in this assumption, allowing generalization 
operators to proceed as if it were so, but enabling rela­
tively graceful recovery when the assumption fails. 
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Often the generalized exemplars of a disjunctive target 
concept themselves represent worthwhile concepts. For 
example, while learning about the disjunctive concept 
vehicle, multiple convergence also defines the concepts 
bicycle, sailboat, motorized vehicle, car, motorcycle, and 
ship. Therefore, multiple convergence emerges as an ap­
proach to learning multiple concepts simultaneously. By 
defining a generalization partial-ordering over the new 
concepts, disjunctive concepts enable rich extensions to 
the representation language. 
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CONCEPT TO BE LEARNED: vehicle 

REPRESENTATION LANGUAGE: 
power(po) 

engine(e) pedals(p) sails(s) 
jteering(st) 

handlebars(h) rudder(r) wheel(w) 
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NEW REPRESENTATION LANGUAGE: SEE FIGURE 4. 

Figure 3: HYDRA Learning About Vehicles 


