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ABSTRACT 

LAIR is a system that incrementally learns conjunctive 
concept descriptions from positive and negative examples. 
These concept descriptions are used to create and extend a 
domain theory that is applied, by means of constructive 
induction, to later learning tasks. Important issues for 
constructive induction are when to do it and how to control it 
LA IR demonstrates how constructive induction can be 
controlled by (1) reducing it to simpler operations, (2) 
constraining the simpler operations to preserve relative 
correctness, (3) doing deductive inference on an as-needed 
basis to meet specific information requirements of learning sub-
tasks, and (4) constraining the search space by subtask-
dependent constraints. 

I. INTRODUCTION 
In this paper, we describe an incremental learning system 

called LAIR, which learns conjunctive concept descriptions 
from positive and negative examples. Incremental learning 
systems need mechanisms for creating or inducing a concept 
description from one example, and for modifying that 
description as additional examples are presented. Several 
algorithms exist for inducing a concept description that 
consists of only features and values that appear in the example 
descriptions [ 1 , 3,6]. The process of introducing new features 
or descriptors into the concept description, termed constructive 
generalization, has been formalized as a transformation rule [2]. 
However, its role in altering the knowledge representation 
space is not well-understood. Of all the knowledge that could 
be retrieved or derived from the descriptors that occur in the 
examples, what is relevant to transforming the current concept 
description (and transforming it correctly)? Simply put, the 
unresolved issues about constructive generalization are when to 
do it and how to guide it. These are the issues we have tried to 
address in LAIR. 

II. OVERVIEW OF APPROACH 

In this section, we outline the general framework and 
approach we have taken in LAIR. First, we consider "climbing 
the generalization tree," [6] (which introduces new values for 
already-seen descriptors) and "constructive generalization" 
(which introduces new descriptors) as cases of constructive 
induction. Second, we view constructive induction as based on 
inference and deduction. Third, we use constraints that are 
inherent in the learning task to limit the knowledge retrieval and 
deduction. An important result of the second and third points is 
that LA IR has no "constructive induction" rule among its 
concept transformation rules. The constructive induction rule 
is derived from inference rules and concept revision rules that 
use description constraints. Our approach also uses an 

"information conservation" principle when generalizing a 
concept description. Finally, we have a relaxed definition of a 
"correct" concept description. In LAIR, a transformation of a 
concept description might make the concept description 
incorrect with respect to previously-seen (but forgotten) 
examples, but it is guaranteed to converge on the correct 
description with enough examples. 

A. Conjunctive Concept Descriptions 
Descriptions of concepts and examples have form: 

where each Pij(x) is of form Pn(t1,... ttn) where Pn is an 
n-adic predicate symbol chosen from some fixed, finite set of 
such symbols, one of the ti is x, and the other ti are constants 
or skolem functions of x. We wi l l refer to the unnegated Pij as 
Requireds (REQs) and the negated Py as NOTs. 

Examples are denoted by constants (e.g. Ex-1) and are 
described by applying a description to the constant: 

Xx[Pos(Arch, x) A Block(f(x), x) A Block(g(x), x) A 
Ontop(f(x),g(x),x)](Ex-l) 

"Ex-1 is a positive example of the concept Arch; in Ex-1, 
there are two blocks, one of which is on top of the other." 

One of the predicates in each example description must be 
Pos(Concept, x) if the example is positive, or Pos(Concept, 
x) if the example is negative. 

A description D is relatively correct at time t i ff for every 
remembered positive example Ex of the concept, 

KB A Ex-Description(Ex) h D(Ex) 

and for every remembered negative example Ex of the concept, 

KB A Ex-Description(Ex) D(Ex) 

where Ex-Description(Ex) is the description of Ex, and KB is 
the knowledge base.** LAIR remembers only one past 
positive example and the current example, but this definition 
holds true for any set of remembered examples. Relative 
correctness is equivalent to correctness in systems that can 
remember all the examples it has seen at any time. 

B. Deductive Inference 
LAIR uses the following rules of inference to determine 

whether constraints on the concept description are satisfied, to 
classify examples, and to extend example descriptions by 
adding REQ's and NOTs. 

* This work was supported by NSERC Operating Grant A0889 to Renec 
Elio. 

The knowledge base includes predicates and inference rules that relate 
predicates, and is described in more detail in section III. 
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C. Constraints on the Concept Description 
LAIR keeps track of whether a predicate is provable or 

unprovable for some positive example: 
Drop(P, t) — At or prior to time t, P was inferred false of 

some positive example 
Some(P, t) — At or prior to time t, P was inferred true of 

some positive example. 
This knowledge constrains the concept description: 

concept descriptions cannot include Drop'd predicates as 
REQs, or Some'd predicates as NOTs. 
D- Concept Revision Rules 

LAIR uses the following concept revision rules: 
• The add-REQ rule: 

If a predicate has never been Drop'd from the 
concept description 

& it can be proven true of all the remembered positive 
examples 

Then add the predicate to the concept description 
& remember it is true of Some positive example 

• The add-NOT rule: 
If a predicate has not been proven of Some positive 

examples 
& it can be proven true of the current negative example 
& it cannot be proven true of the remembered past 

positive example 
Then add its negation to the concept description 

• The drop-REQ rule: 
If a predicate in the concept description cannot be 

proven true of the remembered positive examples 
Then drop it from the concept description 

& remember it has been Drop'd 

• The drop-NOT rule: 
If a negated predicate P in the concept description can 

be proven true of any remembered positive example 
Then drop P from the concept description 

& remember it is true of Some positive example 

Notice LAIR does not have a constructive induction rule. 
This rule would be written in our framework as follows: 

• The constructive induction rule—applies domain knowledge 
to generalize a concept description. 

If the concept description includes a predicate P 
& the knowledge base contains a rule P implies Q 

Then drop P from the concept description 
& add Q to the concept description 

E. Relative Completeness and Relative Correctness 
Two important properties of these rules as implemented in 

LAIR are "preservation of relative correctness" and "relative 
completeness." A description revision rule R preserves relative 
correctness iff given description D, if D is relatively correct 
then R revises D to a description D' that is also relatively 
correct. 

Completeness is defined relative to LAIR's ability to use 
the concept description to classify examples. Suppose there 
exists a correct description that be proven true of all the positive 
examples and false of all the negative examples. Then a set of 
concept revision rules is relatively complete iff a correct 
description D' can be derived from every intermediate 
description D derivable from any set of positive and negative 
examples, using the rules. Since LAIR is designed as a non-
backtracking system that does not maintain multiple concept 
descriptions, these are important properties to ensure that LAIR 
eventually does find a relatively correct concept description. 
The constructive induction rule is not relatively complete, so it 
is not suitable for use in a non-backtracking system that 
maintains only a single concept description. 

The deductive rules and relaxed versions of concept 
revision rules are equivalent to the constructive induction rule, 
providing the initial description is relatively correct. The add-
REQ rule is relaxed by removing the Drop constraint, and the 
drop-REQ rule is relaxed by removing all its constraints. The 
proof in [5] essentially reduces constructive induction to the 
following steps: use the deduction rule to infer Q true of some 
positive example, use the add-REQ rule to add Q to the concept 
description, and use the drop-REQ rule to drop P. 

I I I . LAIR'S KNOWLEDGE BASE 
LAIR's knowledge base consists of frames that represent 

knowledge about examples, concept descriptions, constraints 
on concept descriptions, and prior or learned knowledge about 
the domain. 

A. Frames Representing Predicates 
Knowledge is organized around predicates over 

examples. Frames corresponding to these entities are created 
during learning as instantiations of more general predicate 
frames stored in the prior knowledge base. There are two 
types of predicate frames: most-general-predicate frames and 
less-general-predicate frames. A most-general-predicate frame 
corresponds to a predicate expression that has more than one 
argument, e.g., A,x,y,z[body(x, y, z)]. A less-general-
predicate frame corresponds to a predicate expression that has 
only one argument, e.g. A,z[body(a(z), b(a(z)), z)]. Since less-
general-predicatcs are the "building blocks" of concept 
descriptions, constraints on concept descriptions are stored on 
these frames. The most important slots of a less-general-
predicate frame are: 

This rule is based on the assumption that example descriptions are 
complete with respect to the fixed set of predicates from which descriptions 
are constructed. 

Definition 

Most-general-predicate 

Lambda expression defining the 
predicate 
the frame representing the most 
general predicate corresponding to 
the predicate 
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Propositions instances of the predicate 
Some T iff the predicate is true of some 

positive example 
Required T iff the predicate is an unnegated 

predicate in th« concept description. 
Not T iff the predicate is a negated 

predicate in the concept description. 
Dropped T iff the predicate is not derivable for 

some positive example. 
Required-space T i f f the predicate has been 

considered as a possible REQ in a 
concept description during the 
current learning subtask.**** 

Not-space T i f f the predicate has been 
considered as a possible NOT in a 
concept description during the 
current learning subtask. 

The second kind of predicate frame, the most-general-
predicate frame, is used to organize knowledge about 
relationships between predicates and rules. Less-general-
predicates can inherit inference rules from most-general-
predicates. Most-general-predicates can inherit propositions 
from less-general-predicates. The most important slots are: 

Definition 

Less-general-predicate 

Consequent-of 

Antecedent-of 

Neg-antecedant-of 

Lambda expression defining the 
predicate 
Inverse of the most-general-predicate 
slot on less-general-predicate 
frames. 
Rules in which the predicate, or one 
of its less general predicates, is a 
consequent. 
Rules in which the predicate, or one 
of its less general predicates, is an 
unnegated antecedent 
Rules in which the predicate, or one 
of its less general predicates, is a 
negated antecedent 

B. Rule Frames 
Rule frames represent knowledge corresponding to logical 

implications. The most important slots on a rule frame are: 

Consequents Consequents of the implication. 
Antecedents Unnegated antecedents of the impli

cation. 
Neg-anteceaents Negated antecedents of the impli

cation 
A typical rule frame might be: 
graspable-14 
Consequents graspable(y, z) 
Antecedents cyl(y, z), small(y, z), 

light(y, z), body(x, y, z) 
Neg-antecedents hot(y, z) 
This rule corresponds to the implication statement If something 
is light with a small, cylindrical body that is not hot, then it's 
graspable. 

IV. HOW LAIR LEARNS 
To describe how LAIR learns, we will explain learning a 

concept description for "cup" [7]. Assume LAIR has a number 
of rules relating to the concepts "hot," "stable," "open-vessel," 
"graspable," and "liftable." LAIR remembers only one 

previous example, which must be positive, plus the current 
example. 

The first example is "cha-cup +," so LAIR forms the 
following description as the past positive example: "A positive 
example of a cup is something with a flat bottom, an upwards-
pointing concavity, a small, cylindrical body, that was lifted." 

Since initially there are no constraints on the concept 
description, all of the features can be added to the concept 
description, which was initially empty. The second example, 
"typical-cup +," has the description: "A positive example of a 
cup is something with a flat bottom, an upwards-pointing 
concavity, a small, cylindrical body, that is light and has a 
handle." The concept description is revised to include the new 
features "handle" and "light" 

Relative correctness is checked by trying to prove the 
extended concept description true of the remembered positive 
examples. LAIR restores relative correctness by dropping the 
"was-lifted" predicate (not true of example 2) and the "handle" 
and "light" predicates (not true of the remembered past positive 
example). 

Although the concept description is relatively correct, in 
some sense information has been "lost." LAIR attempts to 
conserve the lost information by specializing the revised 
concept description with inferences it can make from the 
dropped REQ's. Essentially, this means "Docs this descriptor, 
which I've decided to drop, imply something else that is 
provable of both the current example and the past positive 
example(s)?" Information conservation is important in LAIR 
for several reasons. First, when the current example is 
positive, then LAIR is essentially learning from positive-only 
examples. Systems that learn from positive-only examples 
must have methods to avoid over-generalization. Information 
conservation avoids over-generalization by compensating for 
the loss of information in generalization by a specialization 
step. Further, specialization is focused only on descriptors 
that can be inferred from the dropped REQ's. 

This information conservation involves searches for 
inferrable descriptors by looking at rule-generalizations of the 
dropped REQ's. A predicate P is a rule-generalization of a 
predicate Q if (1) Q has a Most-gen-pred that is an Antecedent-
of a rule that has P as a Consequent, or (2) P is a rule-
generalization of another predicate that is a rule-generalization 
of Q. The relationship between P and Q is shown below. 

most-gen-pred antecedent-of consequent 

© K D « 0 K D 

less-gen-pred most-gen-pred rule 

ako 

most-gen-pred 

These subtasks are described in section IV. 

Figure 1. Rule Generalizations 
i 

A subtask is created for each dropped REQ by initializing a 
"REQ-boundary" to the dropped REQ. Each subtask is an 
heuristic search of the space of descriptors to find a less general 
predicate of a rule-generalization of the dropped REQ that can 
be add-REQ'd to the concept description. The subtask chooses 
a REQ-boundary element P and tries to add-REQ P (or a less 
general predicate than P). If this succeeds, then the subtask 
terminates successfully. Otherwise, P is deleted from the REQ-
boundary and P's rule-generalizations are added to the REQ-
boundary if P (or a less general predicate than P) satisfies the 
constraint that it is true of a remembered, positive example of 
the concept, and is not currently a REQ. If the REQ-boundary 
is empty, then the subtask terminates unsuccessfully, otherwise 
a new REQ-boundary element is chosen and the process is 
repeated. 
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For the "typical-cup +" example, the first REQ-boundary 
is initialized to {"was-lifted"}. Since "was-lifted" was 
dropped, it cannot be add-REQ'd, and is removed from the 
REQ-boundary. However, "was-lifted" has a rule-
generalization: If an object was-lifted, then it is lift able. 

Since "was-lifted" satisfies the REQ-boundary constraint, 
its rule-generalization can be added to the REQ-boundary. 
LAIR proves that "liftable" is true of the current example (Ex-2) 
and the past positive example (Ex-1) by accessing and applying 
inference rules such as: If something is graspable and light, 
then it is liftable; If something has a handle then it is graspable. 

Therefore, "liftable" is added to the concept description. 
REQ-boundaries arc also created for "handle" and "light," but 
no further information can be conserved for these cases. The 
resulting, relatively correct concept description is: "Something 
that is liftable, with a flat bottom, upwards pointing concavity, 
and a small, cylindrical body." 

As one further positive example, consider "balanced-cup 
+," whose description is: "A positive example of a cup is 
something that is balanced, contains something, has a handle, 
and is light." LAIR revises the concept description, and 
conserves information as for the "typical-cup +" example, 
resulting in the desired concept description: "Something that is 
liftable, stable, an open-vessel, and has a body." Note that the 
"balanced-cup +" example differed from the concept description 
in several ways. This allows LAIR to drop more irrelevant 
features and add more relevant features. Using information 
conservation, LAIR learns faster when positive examples show 
the typical variance in the concept, i.e., when "far-hits" are 
presented. Second, "body" is not eliminated from the concept 
description, although it is not necessary for relative correctness. 
LAIR's goal is just to find a correct description; demanding 
"minimally" correct descriptions is beyond its scope. 

LAIR learns concept descriptions with negated predicates 
using a method similar to the one outlined above. Assume the 
current concept description is: "Something with a small, 
cylindrical body." The past positive example is "insulated-
object +," whose description is: "A positive example of 
'graspable' is something insulated with a small, cylindrical 
body, and hot contents." The current negative example is 
"uninsulated-object - , " whose description is: "A negative 
example of 'graspable' is something with a small, cylindrical 
body, and hot contents." The concept description incorrectly 
classifies this example as positive, so the concept description is 
specialized by an "add-REQ subtask" (with a REQ-boundary) 
and an "add-NOT subtask" (with a NOT-boundary). Neg-rule-
generalizations are used by this task. A predicate P is a neg-
rule-generalization of a predicate Q iff Q has a Most-gen-pred 
that is a Neg-antecedent-of a rule that has P as a Consequent. 

The add-REQ subtask initializes the REQ-boundary to all 
predicates true of the past positive example but not of the 
current negative example. Next, the add-REQ subtask chooses 
a REQ-boundary element Q and tries to add-REQ it to the 
concept description. If the attempt is successful, then the 
Differencing Task terminates. Otherwise, Q is deleted from 
the REQ-boundary. If Q is true of the Past example, false of 
the Curr example, and is not currently a REQ'd, then its rule-
generalizations are added to the REQ-boundary, and its neg-
rule-generalizations are added to the NOT-boundary. 

The add-NOT subtask initializes the NOT-boundary to all 
predicates true of Curr but not of Past. Next the add-NOT 
subtask chooses a NOT-boundary element Q and tries to add-
NOT it to the concept description. If the attempt is successful, 
then the Differencing Task terminates. Otherwise, Q is deleted 
from the NOT-boundary. If Q is true of the Curr example, 
false of the Past example, and is not currently a NOT, then its 
rule-generalizations are added to the NOT-boundary, and its 

neg-rule-generalizations are added to the REQ-boundary. 
LAIR alternates between these two subtasks, since each 

adds new elements to the other's boundary. Success by either 
the add-REQ subtask or the add-NOT subtask produces a 
relatively correct description. 

V. IMPLEMENTATION DETAILS 
LAIR is implemented as a frame and rule-based system in 

InterLisp-D and OPS4 running on a Xerox 1186 workstation. 
LAIR learns the domain theory for the "cup" domain, 
consisting of 1 rule for "hot" and "cup," 2 rules each for 
"stable," "open-vessel," graspable," and "liftable." Learning 
requires 26 examples and takes about 570 seconds of CPU 
time. 

V I . CONCLUSIONS 
LAIR makes some prelimary steps towards suggesting 

how constructive induction can be guided. First, constructive 
induction can be decomposed to simpler operations. Second, 
the simpler operations can be constrained so that they preserve 
relative correctness and are relatively complete. Third, 
inference need not be done all at once upon presentation of an 
example, but on an as-needed basis to meet the specific needs 
of the learning process at each point in time. This contrasts 
with a related approach in MARVIN [4] that computes the 
logical closure of each presented or generated example as a 
preliminary step to revising the concept description. Fourth, 
constraints can be formulated on how the space of descriptors 
is searched by specifying boundary conditions for specific 
learning subtasks. 

LAIR can be compared to explanation-based methods for 
learning concepts such as "cup." Explanation-based systems 
[7] require that the domain knowledge and the goal concept be 
given to the system whereas LAIR induces both these kinds of 
knowledge from the examples. However, LAIR may not learn 
the best description for efficient recognition of instances of the 
concept. Explanation-based systems try to induce efficient 
descriptions by imposing an operationality criterion [8] on 
learned descriptions. 
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