
Guiding Constructive Induction for Incremental Learning from Examples

Larry Watanabe and Renie Elio

Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2H1

ABSTRACT

LAIR is a system that incrementally learns conjunctive
concept descriptions from positive and negative examples.
These concept descriptions are used to create and extend a
domain theory that is applied, by means of constructive
induction, to later learning tasks. Important issues for
constructive induction are when to do it and how to control it
LA IR demonstrates how constructive induction can be
controlled by (1) reducing it to simpler operations, (2)
constraining the simpler operations to preserve relative
correctness, (3) doing deductive inference on an as-needed
basis to meet specific information requirements of learning sub-
tasks, and (4) constraining the search space by subtask-
dependent constraints.

I. INTRODUCTION
In this paper, we describe an incremental learning system

called LAIR, which learns conjunctive concept descriptions
from positive and negative examples. Incremental learning
systems need mechanisms for creating or inducing a concept
description from one example, and for modifying that
description as additional examples are presented. Several
algorithms exist for inducing a concept description that
consists of only features and values that appear in the example
descriptions [1 , 3,6]. The process of introducing new features
or descriptors into the concept description, termed constructive
generalization, has been formalized as a transformation rule [2].
However, its role in altering the knowledge representation
space is not well-understood. Of all the knowledge that could
be retrieved or derived from the descriptors that occur in the
examples, what is relevant to transforming the current concept
description (and transforming it correctly)? Simply put, the
unresolved issues about constructive generalization are when to
do it and how to guide it. These are the issues we have tried to
address in LAIR.

II. OVERVIEW OF APPROACH

In this section, we outline the general framework and
approach we have taken in LAIR. First, we consider "climbing
the generalization tree," [6] (which introduces new values for
already-seen descriptors) and "constructive generalization"
(which introduces new descriptors) as cases of constructive
induction. Second, we view constructive induction as based on
inference and deduction. Third, we use constraints that are
inherent in the learning task to limit the knowledge retrieval and
deduction. An important result of the second and third points is
that LA IR has no "constructive induction" rule among its
concept transformation rules. The constructive induction rule
is derived from inference rules and concept revision rules that
use description constraints. Our approach also uses an

"information conservation" principle when generalizing a
concept description. Finally, we have a relaxed definition of a
"correct" concept description. In LAIR, a transformation of a
concept description might make the concept description
incorrect with respect to previously-seen (but forgotten)
examples, but it is guaranteed to converge on the correct
description with enough examples.

A. Conjunctive Concept Descriptions
Descriptions of concepts and examples have form:

where each Pij(x) is of form Pn(t1,... ttn) where Pn is an
n-adic predicate symbol chosen from some fixed, finite set of
such symbols, one of the ti is x, and the other ti are constants
or skolem functions of x. We wi l l refer to the unnegated Pij as
Requireds (REQs) and the negated Py as NOTs.

Examples are denoted by constants (e.g. Ex-1) and are
described by applying a description to the constant:

Xx[Pos(Arch, x) A Block(f(x), x) A Block(g(x), x) A
Ontop(f(x),g(x),x)](Ex-l)

"Ex-1 is a positive example of the concept Arch; in Ex-1,
there are two blocks, one of which is on top of the other."

One of the predicates in each example description must be
Pos(Concept, x) if the example is positive, or Pos(Concept,
x) if the example is negative.

A description D is relatively correct at time t i ff for every
remembered positive example Ex of the concept,

KB A Ex-Description(Ex) h D(Ex)

and for every remembered negative example Ex of the concept,

KB A Ex-Description(Ex) D(Ex)

where Ex-Description(Ex) is the description of Ex, and KB is
the knowledge base.** LAIR remembers only one past
positive example and the current example, but this definition
holds true for any set of remembered examples. Relative
correctness is equivalent to correctness in systems that can
remember all the examples it has seen at any time.

B. Deductive Inference
LAIR uses the following rules of inference to determine

whether constraints on the concept description are satisfied, to
classify examples, and to extend example descriptions by
adding REQ's and NOTs.

* This work was supported by NSERC Operating Grant A0889 to Renec
Elio.

The knowledge base includes predicates and inference rules that relate
predicates, and is described in more detail in section III.

Watanabe and Elio 293

C. Constraints on the Concept Description
LAIR keeps track of whether a predicate is provable or

unprovable for some positive example:
Drop(P, t) — At or prior to time t, P was inferred false of

some positive example
Some(P, t) — At or prior to time t, P was inferred true of

some positive example.
This knowledge constrains the concept description:

concept descriptions cannot include Drop'd predicates as
REQs, or Some'd predicates as NOTs.
D- Concept Revision Rules

LAIR uses the following concept revision rules:
• The add-REQ rule:

If a predicate has never been Drop'd from the
concept description

& it can be proven true of all the remembered positive
examples

Then add the predicate to the concept description
& remember it is true of Some positive example

• The add-NOT rule:
If a predicate has not been proven of Some positive

examples
& it can be proven true of the current negative example
& it cannot be proven true of the remembered past

positive example
Then add its negation to the concept description

• The drop-REQ rule:
If a predicate in the concept description cannot be

proven true of the remembered positive examples
Then drop it from the concept description

& remember it has been Drop'd

• The drop-NOT rule:
If a negated predicate P in the concept description can

be proven true of any remembered positive example
Then drop P from the concept description

& remember it is true of Some positive example

Notice LAIR does not have a constructive induction rule.
This rule would be written in our framework as follows:

• The constructive induction rule—applies domain knowledge
to generalize a concept description.

If the concept description includes a predicate P
& the knowledge base contains a rule P implies Q

Then drop P from the concept description
& add Q to the concept description

E. Relative Completeness and Relative Correctness
Two important properties of these rules as implemented in

LAIR are "preservation of relative correctness" and "relative
completeness." A description revision rule R preserves relative
correctness iff given description D, if D is relatively correct
then R revises D to a description D' that is also relatively
correct.

Completeness is defined relative to LAIR's ability to use
the concept description to classify examples. Suppose there
exists a correct description that be proven true of all the positive
examples and false of all the negative examples. Then a set of
concept revision rules is relatively complete iff a correct
description D' can be derived from every intermediate
description D derivable from any set of positive and negative
examples, using the rules. Since LAIR is designed as a non-
backtracking system that does not maintain multiple concept
descriptions, these are important properties to ensure that LAIR
eventually does find a relatively correct concept description.
The constructive induction rule is not relatively complete, so it
is not suitable for use in a non-backtracking system that
maintains only a single concept description.

The deductive rules and relaxed versions of concept
revision rules are equivalent to the constructive induction rule,
providing the initial description is relatively correct. The add-
REQ rule is relaxed by removing the Drop constraint, and the
drop-REQ rule is relaxed by removing all its constraints. The
proof in [5] essentially reduces constructive induction to the
following steps: use the deduction rule to infer Q true of some
positive example, use the add-REQ rule to add Q to the concept
description, and use the drop-REQ rule to drop P.

I I I . LAIR'S KNOWLEDGE BASE
LAIR's knowledge base consists of frames that represent

knowledge about examples, concept descriptions, constraints
on concept descriptions, and prior or learned knowledge about
the domain.

A. Frames Representing Predicates
Knowledge is organized around predicates over

examples. Frames corresponding to these entities are created
during learning as instantiations of more general predicate
frames stored in the prior knowledge base. There are two
types of predicate frames: most-general-predicate frames and
less-general-predicate frames. A most-general-predicate frame
corresponds to a predicate expression that has more than one
argument, e.g., A,x,y,z[body(x, y, z)]. A less-general-
predicate frame corresponds to a predicate expression that has
only one argument, e.g. A,z[body(a(z), b(a(z)), z)]. Since less-
general-predicatcs are the "building blocks" of concept
descriptions, constraints on concept descriptions are stored on
these frames. The most important slots of a less-general-
predicate frame are:

This rule is based on the assumption that example descriptions are
complete with respect to the fixed set of predicates from which descriptions
are constructed.

Definition

Most-general-predicate

Lambda expression defining the
predicate
the frame representing the most
general predicate corresponding to
the predicate

294 KNOWLEDGE ACQUISITION

Propositions instances of the predicate
Some T iff the predicate is true of some

positive example
Required T iff the predicate is an unnegated

predicate in th« concept description.
Not T iff the predicate is a negated

predicate in the concept description.
Dropped T iff the predicate is not derivable for

some positive example.
Required-space T i f f the predicate has been

considered as a possible REQ in a
concept description during the
current learning subtask.****

Not-space T i f f the predicate has been
considered as a possible NOT in a
concept description during the
current learning subtask.

The second kind of predicate frame, the most-general-
predicate frame, is used to organize knowledge about
relationships between predicates and rules. Less-general-
predicates can inherit inference rules from most-general-
predicates. Most-general-predicates can inherit propositions
from less-general-predicates. The most important slots are:

Definition

Less-general-predicate

Consequent-of

Antecedent-of

Neg-antecedant-of

Lambda expression defining the
predicate
Inverse of the most-general-predicate
slot on less-general-predicate
frames.
Rules in which the predicate, or one
of its less general predicates, is a
consequent.
Rules in which the predicate, or one
of its less general predicates, is an
unnegated antecedent
Rules in which the predicate, or one
of its less general predicates, is a
negated antecedent

B. Rule Frames
Rule frames represent knowledge corresponding to logical

implications. The most important slots on a rule frame are:

Consequents Consequents of the implication.
Antecedents Unnegated antecedents of the impli

cation.
Neg-anteceaents Negated antecedents of the impli

cation
A typical rule frame might be:
graspable-14
Consequents graspable(y, z)
Antecedents cyl(y, z), small(y, z),

light(y, z), body(x, y, z)
Neg-antecedents hot(y, z)
This rule corresponds to the implication statement If something
is light with a small, cylindrical body that is not hot, then it's
graspable.

IV. HOW LAIR LEARNS
To describe how LAIR learns, we will explain learning a

concept description for "cup" [7]. Assume LAIR has a number
of rules relating to the concepts "hot," "stable," "open-vessel,"
"graspable," and "liftable." LAIR remembers only one

previous example, which must be positive, plus the current
example.

The first example is "cha-cup +," so LAIR forms the
following description as the past positive example: "A positive
example of a cup is something with a flat bottom, an upwards-
pointing concavity, a small, cylindrical body, that was lifted."

Since initially there are no constraints on the concept
description, all of the features can be added to the concept
description, which was initially empty. The second example,
"typical-cup +," has the description: "A positive example of a
cup is something with a flat bottom, an upwards-pointing
concavity, a small, cylindrical body, that is light and has a
handle." The concept description is revised to include the new
features "handle" and "light"

Relative correctness is checked by trying to prove the
extended concept description true of the remembered positive
examples. LAIR restores relative correctness by dropping the
"was-lifted" predicate (not true of example 2) and the "handle"
and "light" predicates (not true of the remembered past positive
example).

Although the concept description is relatively correct, in
some sense information has been "lost." LAIR attempts to
conserve the lost information by specializing the revised
concept description with inferences it can make from the
dropped REQ's. Essentially, this means "Docs this descriptor,
which I've decided to drop, imply something else that is
provable of both the current example and the past positive
example(s)?" Information conservation is important in LAIR
for several reasons. First, when the current example is
positive, then LAIR is essentially learning from positive-only
examples. Systems that learn from positive-only examples
must have methods to avoid over-generalization. Information
conservation avoids over-generalization by compensating for
the loss of information in generalization by a specialization
step. Further, specialization is focused only on descriptors
that can be inferred from the dropped REQ's.

This information conservation involves searches for
inferrable descriptors by looking at rule-generalizations of the
dropped REQ's. A predicate P is a rule-generalization of a
predicate Q if (1) Q has a Most-gen-pred that is an Antecedent-
of a rule that has P as a Consequent, or (2) P is a rule-
generalization of another predicate that is a rule-generalization
of Q. The relationship between P and Q is shown below.

most-gen-pred antecedent-of consequent

© K D « 0 K D

less-gen-pred most-gen-pred rule

ako

most-gen-pred

These subtasks are described in section IV.

Figure 1. Rule Generalizations
i

A subtask is created for each dropped REQ by initializing a
"REQ-boundary" to the dropped REQ. Each subtask is an
heuristic search of the space of descriptors to find a less general
predicate of a rule-generalization of the dropped REQ that can
be add-REQ'd to the concept description. The subtask chooses
a REQ-boundary element P and tries to add-REQ P (or a less
general predicate than P). If this succeeds, then the subtask
terminates successfully. Otherwise, P is deleted from the REQ-
boundary and P's rule-generalizations are added to the REQ-
boundary if P (or a less general predicate than P) satisfies the
constraint that it is true of a remembered, positive example of
the concept, and is not currently a REQ. If the REQ-boundary
is empty, then the subtask terminates unsuccessfully, otherwise
a new REQ-boundary element is chosen and the process is
repeated.

Watanabe and Elio 295

For the "typical-cup +" example, the first REQ-boundary
is initialized to {"was-lifted"}. Since "was-lifted" was
dropped, it cannot be add-REQ'd, and is removed from the
REQ-boundary. However, "was-lifted" has a rule-
generalization: If an object was-lifted, then it is lift able.

Since "was-lifted" satisfies the REQ-boundary constraint,
its rule-generalization can be added to the REQ-boundary.
LAIR proves that "liftable" is true of the current example (Ex-2)
and the past positive example (Ex-1) by accessing and applying
inference rules such as: If something is graspable and light,
then it is liftable; If something has a handle then it is graspable.

Therefore, "liftable" is added to the concept description.
REQ-boundaries arc also created for "handle" and "light," but
no further information can be conserved for these cases. The
resulting, relatively correct concept description is: "Something
that is liftable, with a flat bottom, upwards pointing concavity,
and a small, cylindrical body."

As one further positive example, consider "balanced-cup
+," whose description is: "A positive example of a cup is
something that is balanced, contains something, has a handle,
and is light." LAIR revises the concept description, and
conserves information as for the "typical-cup +" example,
resulting in the desired concept description: "Something that is
liftable, stable, an open-vessel, and has a body." Note that the
"balanced-cup +" example differed from the concept description
in several ways. This allows LAIR to drop more irrelevant
features and add more relevant features. Using information
conservation, LAIR learns faster when positive examples show
the typical variance in the concept, i.e., when "far-hits" are
presented. Second, "body" is not eliminated from the concept
description, although it is not necessary for relative correctness.
LAIR's goal is just to find a correct description; demanding
"minimally" correct descriptions is beyond its scope.

LAIR learns concept descriptions with negated predicates
using a method similar to the one outlined above. Assume the
current concept description is: "Something with a small,
cylindrical body." The past positive example is "insulated-
object +," whose description is: "A positive example of
'graspable' is something insulated with a small, cylindrical
body, and hot contents." The current negative example is
"uninsulated-object - , " whose description is: "A negative
example of 'graspable' is something with a small, cylindrical
body, and hot contents." The concept description incorrectly
classifies this example as positive, so the concept description is
specialized by an "add-REQ subtask" (with a REQ-boundary)
and an "add-NOT subtask" (with a NOT-boundary). Neg-rule-
generalizations are used by this task. A predicate P is a neg-
rule-generalization of a predicate Q iff Q has a Most-gen-pred
that is a Neg-antecedent-of a rule that has P as a Consequent.

The add-REQ subtask initializes the REQ-boundary to all
predicates true of the past positive example but not of the
current negative example. Next, the add-REQ subtask chooses
a REQ-boundary element Q and tries to add-REQ it to the
concept description. If the attempt is successful, then the
Differencing Task terminates. Otherwise, Q is deleted from
the REQ-boundary. If Q is true of the Past example, false of
the Curr example, and is not currently a REQ'd, then its rule-
generalizations are added to the REQ-boundary, and its neg-
rule-generalizations are added to the NOT-boundary.

The add-NOT subtask initializes the NOT-boundary to all
predicates true of Curr but not of Past. Next the add-NOT
subtask chooses a NOT-boundary element Q and tries to add-
NOT it to the concept description. If the attempt is successful,
then the Differencing Task terminates. Otherwise, Q is deleted
from the NOT-boundary. If Q is true of the Curr example,
false of the Past example, and is not currently a NOT, then its
rule-generalizations are added to the NOT-boundary, and its

neg-rule-generalizations are added to the REQ-boundary.
LAIR alternates between these two subtasks, since each

adds new elements to the other's boundary. Success by either
the add-REQ subtask or the add-NOT subtask produces a
relatively correct description.

V. IMPLEMENTATION DETAILS
LAIR is implemented as a frame and rule-based system in

InterLisp-D and OPS4 running on a Xerox 1186 workstation.
LAIR learns the domain theory for the "cup" domain,
consisting of 1 rule for "hot" and "cup," 2 rules each for
"stable," "open-vessel," graspable," and "liftable." Learning
requires 26 examples and takes about 570 seconds of CPU
time.

V I . CONCLUSIONS
LAIR makes some prelimary steps towards suggesting

how constructive induction can be guided. First, constructive
induction can be decomposed to simpler operations. Second,
the simpler operations can be constrained so that they preserve
relative correctness and are relatively complete. Third,
inference need not be done all at once upon presentation of an
example, but on an as-needed basis to meet the specific needs
of the learning process at each point in time. This contrasts
with a related approach in MARVIN [4] that computes the
logical closure of each presented or generated example as a
preliminary step to revising the concept description. Fourth,
constraints can be formulated on how the space of descriptors
is searched by specifying boundary conditions for specific
learning subtasks.

LAIR can be compared to explanation-based methods for
learning concepts such as "cup." Explanation-based systems
[7] require that the domain knowledge and the goal concept be
given to the system whereas LAIR induces both these kinds of
knowledge from the examples. However, LAIR may not learn
the best description for efficient recognition of instances of the
concept. Explanation-based systems try to induce efficient
descriptions by imposing an operationality criterion [8] on
learned descriptions.

REFERENCES
[1] Dietterich, T. G. and Michalski, R. S. (1983). A comparative review

of selected methods for learning structural descriptions. In
Michalski, R. S., Carbonell, J. G.and Mitchell, T. M. (Eds.).
Machine Learning: An Artificial Intelligence Approach, Vol I.
Tioga: Palo Alto.

[2] Michalski, R. S. (1983). A theory and methodology of inductive
learning. In Michalski, R. S., Carbonell, J. G. and Mitchell, T.
M. (Eds.), Machine Learning: An Artificial Intelligence Approach,
Vol I. Tioga: Palo Alto.

[3] Mitchell, T. M. (1977). Version spaces: a candidate elimination
approach to rule learning, Fifth International Joint Conference on
Artificial Intelligence, 305-310.

[4] Sammut, C, and Banerji, R. B. (1986). Learning concepts by asking
questions. In Michalski, R. S., Carbonell, J. G. and Mitchell, T.
M. (Eds.), Machine Learning: An Artificial Intelligence Approach,
Vol II. Tioga: Palo Alto.

[5] Watanabe, L. (1987). Guiding Constructive Induction. M.Sc. Thesis,
University of Alberta.

[6] Winston, P. H. (1975). Learning structural descriptions from
examples. In Winston, P. H. (Ed.), The Psychology of Computer
Vision, McGraw Hill: New York.

[7] Winston, P. H., Binford, T. O., Kate, B. and Lowry, M. (1983).
Learning physical descriptions from functional definitions,
examples, and precedents. Proc. AAAI-83, 433-439.

[8] Mitchell, T. M., Keller, R. and Kedar-Cavelli, S. (1986). Explanation-
based generalization: a unifying view, Machine Learning 1, No. 1,
January.

296 KNOWLEDGE ACQUISITION

