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ABSTRACT 
Explanation-based learning is accomplished through the 

generalization of an explanation produced by analysis of a sin-
gle example. A theory of the domain is utilized in generating 
the explanation. However, problems arise when the domain 
theory is intractable. Simplifications must be made in order to 
make the problem tractable. Well-founded simplifications 
based on our real world knowledge are termed approximations. 
This paper discusses how approximations can be used to deal 
with the intractable domain problem in mathematical domains. 
The approximation method strongly supports the use of a mix 
of quantitative and qualitative reasoning over either a purely 
quantitative or qualitative approach. The approximation tech­
nique is demonstrated on one of the examples which has been 
implemented in the chemistry domain. 
1. Introduction 

Explanation-based learning makes use of domain theory to 
construct an explanation for a single observed example. The 
explanation is then generalized so the generalized concept can be 
used in future problem-solving. Explanation-based learning 
(EBL) is currently the subject of much research. Many EBL 
systems have been constructed and work is proceeding in cap­
turing a domain independent generalization technique [1-3]. 

EBL depends on the ability to construct an explanation for 
the example. This becomes difficult when we are dealing with 
an imperfect domain theory [ l . 2. 4. 5]. Mitchell outlines three 
types of imperfect theories: those which are inconsistent, those 
which are incomplete, and those which are intractable. Our 
focus in this paper is with intractable theory in mathematical 
domains. 

An intractable problem is one which is very difficult to 
solve where, because of the great number of rules and/or ways 
they can be applied, we do not quickly reach the goal. Many 
real-world problems are of this type. For instance, consider 
trying to explain why the unemployment rate changed. It is 
not possible to construct an exact explanation. There wil l 
always be further order causations which must be considered 
inconsequential. Economic theories explaining the change are 
necessarily approximate. Furthermore, due to the approximate 
nature of the explanations, many plausible explanations are 
possible as is evidenced by the variety of economic views. 

In mathmatical domains, where a set of exact rules is 
available, we encounter intractability due to the great number 
of possible applications of the rules. Chemists who work in 
chemical kinetics very often need lo solve very complicated 
differential equations. Frequently, the equations, as they stand, 
along with the set of mathematical operators characterize an 
intractable problem as discussed above. Chemists proceed to a 
solution in the only way they can: by applying their common-
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sense knowledge to form approximations to the original equa­
tions. 

Approximation is an attractive technique for use in 
mathematical problem solving because it allows us to solve 
intractable problems and at the same time can frequently lead 
to more efficient solutions to tractable problems which don't 
need a precise answer. In many cases the exact solution is no 
more desirable than an approximate one. In a laboratory situa­
tion, results might only be 95% accurate due to experimental 
error. Therefore, when calculations are performed they need 
not have less than 5% error. In fact, no more than 95% accu­
racy can be claimed. 

This paper investigates how approximation can be used to 
produce explanations to examples in mathematical domains. 
First, we discuss the method by which approximations can be 
made. Integral in this discussion is how quantitative and quali­
tative reasoning are used. Next, a chemistry example is intro­
duced which illustrates how the method is applied. Last, con­
clusions and future research directions are discussed. 
2. How Are Approximations Made? 

Approximations can be made when one has a body of 
qualitative knowledge about a domain. This is really what we 
refer to as common-sense knowledge. The knowledge doesn't 
need to be quantitatively precise, only to enable inferences 
which can help us to solve the problem. 

Many researchers have addressed the apparent dichotomy 
between qualitative and quantitative knowledge. One of these 
researchers. Johan dekleer. has shown how the two types of 
knowledge can be used together in the domain of classical 
mechanics [6]. In deKleer's approach, the first step is envisioning 
which is purely qualitative. Given a mechanics problem, this 
would entail enumerating the possibilities of what could hap­
pen. When the problem is a simple one. envisioning alone may 
solve the problem by enumerating only one possible outcome. 
In more complex problems, the number of envisionments is 
much greater. Here, dekleer uses quantitative knowledge to 
help disambiguate between possible envisionments. 

Clearly, the envisioning process can be an expensive one 
for complex problems. For highly mathematical problems, the 
quantitative analysis plays a greater role in problem-solving. 
Our approach is to start with a quantitative representation of 
the problem. The exact quantitative representation is relaxed 
into an approximate representation using qualitative domain 
rules and magnitude reasoning. 

Explanations can be constructed at several levels of 
abstraction. Doyle addresses the case when we must refine an 
explanation to a less abstract level due to inconsistencies that 
arise at the current level [7], Tadepalli indicates the importance 
of moving to more abstract levels (through approximation) as a 
method of generating explanations in intractable domains [8]. 
We will use the latter method: one which takes us from a lesser 
to a greater abstract representation. 
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In a mathematical domain, the inferences we make using 
our qualitative knowledge can lead us to consider certain quan­
tities negligible with respect to other quantities. We can then 
modify our formulae on the basis of the determined negligible 
quantities to arrive at an approximate set of formulae. For 
example, a variable can be neglected in a sum formula if it can 
be considered negligible with respect to all the other quantities 
in the formula. Figure 1 illustrates this: 
Given: 

There are many variations on this rule. They all ultimately 
involve neglecting a quantity because it is insignificant in rela­
tion to other quantities in a sum. Several researchers have 
developed systems which perform order of magnitude reasoning 
similar to that illustrated above. Recent papers include [9] and 
[10]. We will apply this type of reasoning to the introduction 
of approximations. 

Figure 2 shows the method by which approximation is 
used in solving mathematical problems. The knowledge the 
system uses in solving the problem has both domain dependent 
and domain independent components. The domain independent 
portion is pertinent to any examples which involve 

Figure 2: The Approximation Method 
mathematical reasoning. Such problem solving skills rely on 
both quantitative and qualitative knowledge. There has been a 
tendency in past work to separate these. To use approximation 
in mathematical domains, one must frequently use both types 
of reasoning. 

When purely quantitative reasoning is used, many com­
plex problems cant be solved. The system must take full 
advantage of the information available, including less exact 
qualitative information which can help it to simplify the situa­
tion. 

Purely qualitative reasoning can also fail. The quantita­
tive equations representing the problem contain much informa- • 
tion. Representing everything in a qualitative fashion is not 
always desirable and can lead to a large number of envision-
ments which must be disambiguated. 

One starts with a representation of the problem state­
ment.1 This representation can be translated into a quantitative 
representation which consists primarily of equations describing 
the situation as well as the expression or expressions which we 
are trying to find. Such a translation makes use of quantitative 
domain knowledge which explains exactly how quantities are 
related. Had we decided not to use approximations, we would 
attempt to use our quantitative mathematical reasoning abilities 
to solve the problem. If the problem is a tractable one. this will 
lead to a solution, although it may require much effort. If the 
problem is intractable, it may be impossible to reach the solu­
tion in this way.2 So. our next step is to analyze our quantita­
tive representation to see if simplifications can be made. This 
means using techniques like qualitative magnitude reasoning in 
conjunction with our qualitative domain knowledge to intro­
duce approximations. The result is a simplified set of equations, 
due to negligible terms having been eliminated. We bring our 
quantitative mathematical reasoning to bear on the problem to 
arrive at an approximate solution. In many mathematical 
examples, it is possible to check the validity of our approxima­
tions. The last step is to use our mathematical reasoning in con­
junction with the original exact quantitative representation to 
calculate error. If the error is acceptable, our solution is com­
plete.3 In mathematical domains, this ability to learn about the 
validity of our approximation is an especially important tool. 
3. An Example: Acids In Solution 

Now, let us consider how this technique is applied. Here 
is an example, which has been fully implemented, involving an 
analysis of the effects of adding an acid to water. This chemis­
try problem, taken from [11, p. 113], is: 

Find the concentrations of all species in a 0.010 molar solu­
tion of acetic acid with K0t = 1.75.x 10~5. The equilibrium 
constant for water is Kw. = 1()-14. The OH ion concentra­
tion in pure water is Cw — 10 . 

This type of problem can become intractable if we introduce 
more ions into the solution but. for purposes of illustration, we 
present this simplified version. This example uses straight-
forward inferences, clearly shows how one's qualitative 
assumptions effect the resulting solution, and shows a quantita­
tive verification of the assumptions. In the problem, the fol­
lowing two equilibria are known to be present: 

(El) 

(E2) 
Equilibrium E1 represents the dissociation of Acetic Acid (HAc) 
into H+ and Ac - ions in solution. What complicates the prob­
lem is that equilibrium E2 is also present and represents the 
dissociation of water (H2O) ) into H+ and OH- ions. The con­
stants Ka and Ku. are called equilibrium constants. They 
reflect how far the equilibrium is shifted to the left or right. 
This concept of an equilibrium can be represented by a quanti­
tative formula. The respective quantitative relationships for El 
and E2 are (brackets denote concentrations): 

(Ql) 

(Q2) 

1We will not address the translation from natural language to the 
representation. 

2Usually one would resort to numeric methods some of which are actually 
repeated approximations. 

3If necessary, we can use this feedback in a loop to arrive at the technique 
of successive approximations whereby our error gets smaller on every iteration 
until it is within the desired bounds. 
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In Q2. [H2O] doesn't appear because, since the concentration of 
water is assumed to be constant, it has already been included in 
Kw . Two more equations need to be written: the charge balance 
equation and the mass balance equation. The charge balance 
equation equates the total amount of positive charge with the 
total amount of negative charge: 

(Q3) 
The mass balance equation illustrates that if we start with C0 
moles/liter of HAc. that acetate (Ac) is conserved after some of 
the HAc has formed Ac ~. 

(Q4) 
With a knowledge of equations Q1 through Q4 and the con­
stants Ka . Kw . C0 and Cw . a cubic equation can be developed 
which will lead to an exact solution. However, for most pur­
poses, only an approximation is necessary. For those who util­
ize their commonsense knowledge of chemistry, the approxima-
tion is far easier and yields results far more quickly than the 
exact solution. Had we considered a problem with more equili­
bria, the order of the exact equation would have increased 
enough to make this an intractable problem. 

The commonsense knowledge which is applied to this 
problem is represented in the form of inferences. The following 
two rules from our set of chemistry domain rules are pertinent 
to this problem: problem: 
(Rule 1) 

IF the acid is present at a much greater concentration than 
l(r7 Molar. THEN [OH-] will be negligible compared to 
all other species. 

(Rule 2) 
IF the acid is a weak acid. THEN This is 
because weak acids dissociate very little. 
These rules tells us what to expect the relationship 

between the quantities to be based on the strength of the acid 
and/or its concentration. If we knew neither, these inference 
rules would not help us to make any approximations. But, in 
this specific example, we now do know that Acetic acid is com­
monly considered to be a weak acid. Furthermore. 0.010 is far 
greater than 1(>-7. This means that rules 1 and 2 apply, yield­
ing: \OH-] negligible with respect to everything and 
[Ac~]«[HAc }. This reduces equations Q3 and Q4 to: 

(Q3A) 

(Q4A) 
Now the system proceeds using its basic quantitative knowledge 
to much more easily solve lor the unknowns. Combining equa-
tions Q1. Q3A. and Q4A we arrive at: 

(Q5A) 

Q2 and Q5A give: 

(Q6A) 

03. Q5A.andQ6A give: 

Now we have expressions for all the unknowns. The expres­
sions are all based on our initial assumptions: the strength of 
the acid, and the correctness of our inference rules. In problems 
like these, we can verify the correctness of our assumptions. 
We use equation Q4: 

The approximation is good to within 5%. We can now express 
our error in terms of 

(Phi) 

Once the approximate solution has been constructed, the 
solution structure is generalized using the EGGS generalization 
technique [3] to produce rules like the following 

Learned Rule For Hydrogen Ion Concentration 
After Adding ?ha To Water: 

Although not shown in the above rule, the error estimation 
form shown in PE1 can be incorporated into the precondition of 
the rule to check it the rule meets the system's specified accu­
racy criterion. 
4. Conclusions 

A method has been proposed that shows how approxima­
tion can be used to overcome obstacles in mathematical problem 
solving [12]. Powerful techniques like these permit solutions to 
otherwise intractable problems and can facilitate efficient solu­
tion to many less difficult problems. One advantage of using an 
approximation technique like this in a mathematical domain is 
our ability to reason about the correctness of the approxima­
tion. Any flaws in our original domain dependent qualitative 
rules become immediately evident when we attempt to verily 
the solution. We can also more accurately determine future 
applicability of the formula. 

Many issues have yet to be addressed. This paper has dis­
cussed how approximation takes place in highly mathematical 
domains. There are many other domains in which approxima­
tion can be used to deal with intractability Work is underway 
in developing a system which generates plausible explanations 
for observed events An explanation is selected for generaliza-
tion but difficulties with the new generalized rule will trigger 
generation of a new plausible explanation for the observations. 
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