
T o w a r d s a n I n t e g r a t e d D i s c o v e r y S y s t e m 

Bernd Nordhausen 
Pat Langley 

Irvine Computat ional Intell igence Project 
Department of In format ion & Computer Science 
University of Cal i fornia, I rv ine, CA 92717 USA 

A b s t r a c t 
Previous research on machine discovery has focused on 

limited parts of the empirical discovery task. In this paper 
we describe IDS, an integrated system that addresses both 
qualitative and quantitative discovery. The program repre­
sents its knowledge in terms of qualitative schema*, which 
it discovers by interacting with a simulated physical envi­
ronment. Once IDS has formulated a qualitative schema, 
it uses that schema to design experiments and to constrain 
the search for quantitative laws. We have carried out pre­
liminary tests in the domain of heat phenomena. In this 
context the system has discovered both intrinsic proper­
ties, such as the melting point of substances, and numeric 
laws, such as the conservation of mass for objects going 
through a phase change. 

I I n t r o d u c t i o n 
In recent years, AI researchers have developed a number 

of systems that operate in the domain of scientific discov­
ery. For instance, BACON [4] discovers numerical laws 
(e.g., the ideal gas law) and postulates intrinsic proper­
ties of object classes (e.g., atomic weight). ABACUS [2] is 
similar to BACON, but employs an improved search mech­
anism to find numeric laws in a more efficient manner. It 
also improves upon BACON by identifying qualitative pre­
conditions on quantitative laws. GLAUBER [6] addresses 
a different aspect of empirical discovery - the formation of 
qualitative laws and object taxonomies. 

Although each of these systems is successful at its task, 
each addresses only part of the overall problem of empir­
ical discovery [5], We are developing an integrated dis­
covery system (IDS) that deals with a variety of empiri­
cal discovery tasks, including the formation of qualitative 
and numeric laws. Historically, qualitative discoveries have 
tended to lay the foundation for quantitative discoveries, 
but the latter can in turn lead to higher level qualitative 
discoveries. Our system operates in the same basic man­
ner, first finding qualitative laws and then using them to 
aid in discovering quantitative relations. 

IDS operates in a simulated world of simple physics and 
chemistry, thus overcoming one deficiency of previous dis­

covery systems. Previous systems were provided with data* 
and could not perform their own experiments. In contrast, 
IDS interacts with the simulated world through a set of ef­
fectors and sensors. Using an effector, the system can ac­
tively alter certain attributes of an object, e.g., by changing 
its location or heating it. Sensors let the program inspect 
certain attributes, such as the temperature and mass of an 
object. To carry out an experiment, the system applies 
effectors to a set of objects and uses its sensors to observe 
the manner in which those objects change over time. 

In the following section, we introduce the representation 
that IDS employs to state qualitative laws. After this, 
we examine the mechanisms by which the system discovers 
qualitative laws and then consider how it uses the resulting 
schemas to aid its discovery of numeric laws. We close with 
some proposals for extending the system. 

I I R e p r e s e n t i n g Q u a l i t a t i v e Schemas 
Before one can discover qualitative knowledge about the 

world, one must first have some way to represent that 
knowledge. Let us consider an example from the domain 
of heat phenomena. We might begin with a simple view 
of what happens when we heat an object, e.g., we expect 
the temperature of the object to increase. If we actually 
heat a solid, we will see that this occurs, but after some 
time we may also observe the appearance of a new liquid 
object. At this point the temperature increase stops and 
the mass of the liquid increases while the mass of the solid 
decreases. When the solid has disappeared, the tempera­
ture of the liquid begins to increase. This process continues 
until a new gaseous object appears. As before the mass of 
the gas increases while the mass of the liquid decreases, the 
temperature of both objects remains constant during this 
period. Finally, the liquid vanishes and the temperature of 
the gas increases, but so does its pressure. 

IDS represents qualitative knowledge of this type in qual­
itative schemas. Our representation has been influenced by 
Forbus' [3] qualitative process (QP) theory, with qualita­
tive schemas corresponding to envisionments in QP theory. 

* Lenat's AM [7] is an exception, since it collected its own data and 
designs its own experiments. But the mathematical domain of AM 
allowed methods not easily extendable to "real world" domains. 
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description: 
solid(a) V liquid(a) 
quant.cond.: 
temp.(a) < C1 
weight(a) > 0 
weight (a) = C2 
process: 
Atemp.(a) > 0 

description: description: 
•olid(b), liquid(c) gas(d) 
V liquid(b), gas(c) quant.cond.: 
quant.cond.: wcight(d) = C2 
temp.(b) = C process: 
weight(b) > 0 Atemp.(d) > 0 
weight(b) < C2 Apressure(d) > 0 
weight(c) > 0 
weight(c) < C2 
process: 
Aweight(b) < 0 
Awcight(c) > 0 

Figure 1: Qualitative Schema for heating an object 

The schemas can be viewed as finite state diagrams that de­
scribe the behavior of objects over time. States correspond 
to intervals of time during which objects exhibit some con­
stant behavior. Links specify connections between states, 
along with the conditions that must be satisfied to enter a 
successor state. 

IDS represents each state as a frame with three slots. 
The description slot includes one or more classifications 
of the objects present in the state (e.g., solid or acid). 
This slot also includes structural descriptions (e.g, heater 
h touches object a, container a is connected to container 
b). The quantity-conditions slot contains statements about 
attributes of the objects in the state. These statements are 
expressed as equalities or inequalities between the quanti­
ties of attributes and limit-points (see below). The process 
slot is a list of zero or more changes that are occurring dur­
ing the state. Like Forbus, we express a change in terms 
of the derivative of the changing attribute. For example, 
an increase in mass of object a is denoted Amass(a) > 0. 

A state ends only if the process reaches a limit-point, 
such as the melting-point, or if the agent intervenes, e.g., 
by turning off the heat. Limit-points are important be­
cause they are used in the quantity-conditions, and also 
because they form the basis for quantitative discoveries. 
Figure 1 presents a graphical illustration of a heat schema 
with the object description, the quantity-conditions, and 
the process for each state. 

Although qualitative schemas are structurally similar to 
the envisionments of De Kleer [1] and Forbus, there is a 
major difference. Envisionments are deduced from struc­
tural or process descriptions, while qualitative schemas are 
induced from observations. In the following section we de­
scribe this discovery process. 

I l l I n d u c i n g Q u a l i t a t i v e Schemas 
IDS begins with a simple qualitative schema for each of 

its effectors. For example, the initial schema of the heat 
effector consists of two states: sO, with one object and no 
active process, and sl, with an object touched by a heater 
and with the temperature of the object increasing. This 
represents IDS' initial knowledge of the results of applying 
the heat effector to an object. 

The system carries out experiments to improve its 
schemas, which can be refined in several ways. First, if 
IDS encounters unfamiliar behavior, it adds a new state to 
the schema along with a link connecting it to the existing 
states. Second, the system may discover that an existing 
state can follow another known state; in this case it simply 
adds a new link connecting the states. Furthermore, any 
time new limit-points are found, the system adds quantity-
conditions to the states. 

Consider again the heat example and the initial heat 
schema. IDS experiments by applying the heat effector to 
a block of ice. At first, the temperature of the ice increases, 
satisfying all conditions of state s1. Eventually, a new ob­
ject (liquid water) appears; after this point the mass of this 
new object increases, while the mass of the ice decreases. 
IDS' heat schema does not yet contain a state for this be­
havior, so the system creates a new state (st) and adds it 
to the schema. This state has a heater and two objects, b 
and c. The process slot describes the qualitative behavior 
of the system - that the mass of object 6 decreases and 
the mass of object c increases. Since a new limit-point has 
been found, quantity-conditions are added to states s1 and 
s2. These conditions specify that the temperature of the 
object in state s1 is less than some limit-point C1 and that 
the temperatures of the objects in state st are equal to C1. 

After the ice disappears, state s1 again accurately de­
scribes the current behavior. When the temperature of the 
liquid reaches the limit-point C1, state st adequately de­
scribes the current behavior, so the system does not change 
the schema at this point. When the liquid disappears, IDS 
encounters unseen behavior; not only does the temperature 
of the object increase, but so does its pressure. Thus the 
system creates a new state (sS) and adds it to the schema. 
After further experimentation using different objects, IDS 
discovers that the object in sS is always a gas, while the 
object in si is either a solid or a liquid. The object de­
scription for st is found in a similar way. This information 
is added, giving the final schema shown in Figure 1. 

One can think of this schema-building process as a data-
driven search through the space of possible schemas. In 
these terms, adding states and links make schemas more 
general, while augmenting the state description and adding 
quantity-conditions makes them more specific. 

I V D i s c o v e r i n g Q u a n t i t a t i v e L a w s 
Once IDS has formulated a qualitative schema, it uses 

that knowledge to constrain the search for numeric laws.** 
"In addition, schemas provide a context for numeric laws. They 

describe not only the applicability of laws but also specify their pre-
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Returning to our heat example, the system would use the 
schema in Figure 1 to run different experiments. The 
schema was discovered using a block of ice, so one experi­
ment would examine the effect of varying the initial mass 
of the ice. Other experiments would vary the class of ob­
ject used; for instance, IDS might see if the schema still 
holds when the heated object is hydrogen chloride or some 
other acid. 

Most of the data used in discovering numeric laws are not 
directly observable, but are gathered in the form of limit-
points and state durations. This information is recorded as 
attribute-value pairs during the matching of a schema to 
an experimental run. Thus, the system records the values 
of the limit-point C1 for different objects and uses these 
attribute-value pairs as data in its search for numeric laws. 
Like BACON, the system formulates a quantitative law 
upon finding some numeric term with a constant value. 

IDS discovers two basically different forms of numeric 
laws. First it finds numeric terms that are constant for all 
objects of a given class. Langley et al. [4] have called such 
terms intrinsic properties. For example, the system notices 
that all instances of the class of ice have the same value for 
the limit-point C\. Thus it stores an intrinsic value for the 
property C\ and associates this value with the ice class. In 
fact, this value corresponds to the melting point of water. 
IDS also discovers that the zero mass is a critical value 
for all objects, since this is the point when object appear 
and disappear. This can be viewed as an intrinsic value 
associated with all objects. 

IDS also discovers numeric laws that relate the attributes 
of different objects within the same instance of a schema. 
For example, the system notices that the masses of the 
solid, the liquid, and the gas within the same instance of 
the heat schema are always equal. Based on this regularity, 
it postulates a conservation law stating that the mass of an 
object remains constant as it goes through a phase change. 

V C o n c l u d i n g R e m a r k s 
In this paper we have described IDS, a system that in­

tegrates the process of qualitative and quantitative dis­
covery. We have focused on a single example - involving 
heat phenomena - to illustrate the acquisition of qualita­
tive schemas and their role in discovering numeric laws. 
However, the qualitative schema representation and IDS' 
discovery methods are general enough to cover a wide range 
of physical and chemical phenomena. For instance, the 
system has also induced a schema that describes simple 
chemical reactions and another that describes Black's law 
of specific heat. We have also used qualitative schemas to 
represent the fluid-flow of two connected containers filled 
with liquids [3] and the osmosis of two liquids with differ­
ent concentrations [8], though IDS has not yet generated 
this knowledge itself. 

We are extending the discovery system on several fronts. 
Our next step is to incorporate a more robust search mech-

and post-conditions. 

anism, such as those used in BACON and ABACUS, to 
support the discovery of more complex numeric laws. In 
addition, we must currently supply the system with a con­
cept hierarchy, and are actively extending the system to 
construct taxonomies on its own initiative. In forming 
these taxonomies, the next version of IDS will use sym­
bolic attributes, numeric attributes, and information de­
rived from qualitative schemas. As the capabilities of IDS 
grow, so will the need for an improved agenda mechanism 
[6] that directs not only the discovery process but also the 
design of experiments. Even though the IDS project is still 
in an early phase, it has already led to promising results 
that have improved our understanding of the complex pro-
cess of scientific discovery. 
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